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Abstract

Multiplexed imaging technologies enable highly resolved spatial characterization of cellular environments.

However, exploiting these rich spatial cell datasets for biological insight is a considerable analytical chal-

lenge. In particular, effective approaches to define disease-specific microenvironments on the basis of

clinical outcomes is a complex problem with immediate pathological value. Here we present InterSTEL-

LAR, a geometric deep learning framework for multiplexed imaging data, to directly link tissue subtypes

with corresponding cell communities that have clinical relevance. Using a publicly available breast can-

cer imaging mass cytometry dataset, InterSTELLAR allows simultaneous tissue type prediction and inter-

ested community detection, with improved performance over conventional methods. Downstream analyses

demonstrate InterSTELLAR is able to capture specific pathological features from different clinical cancer

subtypes. The method is able to reveal potential relationships between these regions and patient progno-

sis. InterSTELLAR represents an application of geometric deep learning with direct benefits for extracting

enhanced microenvironment characterization for multiplexed imaging of patient samples.
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1 Introduction

Disease states are associated with a complex interplay of diverse cell types within close proximity in het-

erogeneous tissues. Highly multiplexed imaging techniques now enable the concurrent quantification of at

least 40 antigens from histological specimens at subcellular resolution in situ [1,2]. This provides a means

to assess tissue microenvironments with both molecularly specific features and cell location information.

Currently, sophisticated multiplexed imaging protocols are being developed, including imaging mass cy-

tometry (IMC) [3–6], co-detection by indexing (CODEX) [7, 8], cyclic immunofluorescence (CyCIF) [9]

and multiplexed ion beam imaging (MIBI) [10, 11].

With rich cellular and neighbourhood information captured, proper analysis of these spatial data has

become a new challenge. Traditional analysis methods cluster cells into distinct communities using unsu-

pervised machine learning algorithms, on the basis of the cell-type composition mixtures of their neigh-

bours [3, 4, 8]. However, these strategies overlook spatial inter-cellular relationships from tissues with

different topological structures; hence, they can only provide a highly resolved view of cellular hetero-

geneity in tissues. This limits higher-order cellular community identification, such as detection of disease

relevant areas.

To overcome this challenge, there has been increased interest in applying graph neural networks (GNN)

[12, 13] to spatial cell analysis, in which both cell marker expressions and spatial information are taken

into consideration [14–20]. Some methods focus only on tissue-scale classification [14] or cell phenotype

annotation [19]; other methods have been developed for microenvironment analysis [15, 16]; and finally,

some are directed at general tissue structure classification, through integrating GNN and unsupervised

learning algorithms [17, 18]. However, these methods solely focus on either patient-level outcome [14] or

cell-scale analysis [15–19].

Connecting the emerging single-cell rich information with spatially relevant contextual information is

a challenge – specifically as it relates to correlating outcomes and cell communities of interest. SPACE-

GM [20] solved this issue by training a GNNwith tissue-scale labels, then combining trained latent features

and K-means clustering to identify disease relevant microenvironments. Though powerful, this framework

requires downstream unsupervised clustering to locate potential interested communities related to the cor-

responding tissue-level outcomes.

In this work, we present Interpretable SpaTial cELL leaARning (InterSTELLAR), a geometric deep
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learning framework for multiplexed imaging data, to link the outcomes of tissue and microenvironments

directly without downstream processing algorithms. By employing weakly supervised learning methods

based on tissue-scale labels, InterSTELLAR is designed to simultaneously predict tissue outcomes and de-

tect disease relevant microenvironments. We apply InterSTELLAR to an open-source breast cancer IMC

dataset [4] and show that it can accurately characterize patient tissue clinical subtypes. Moreover, by utiliz-

ing identified cell communities with high diagnostic value, InterSTELLAR can benefit microenvironment

exploration and correlative patient outcomes. We demonstrate the InterSTELLAR workflow using the

breast cancer IMC dataset [4], but the method can be easily modified to analyze any other types of highly

multiplexed imaging data, such as CODEX, CyCIF and MIBI.

2 Results

2.1 Interpretable spatial cell learning (InterSTELLAR) principle

Through the modeling of cell spatial interactions of patient tissue specimens, InterSTELLAR aims to pre-

dict clinically relevant tissue subtypes and corresponding cell communities (Methods). Here, we focus on

a key feature set in breast cancer pathology assessment, including hormone status and growth factor recep-

tor expression, to investigate these cell and cell organizations in aggressive triple negative breast cancer

(TNBC). As shown in Fig. 1A, with spatial cell locations, InterSTELLAR first builds undirected graphs

per sample to represent topological relationships between cells. In these graphs, a single cell is denoted

as a node, and the edges between the cells establish the cell-cell communications. Thereafter, by aggre-

gating marker information (Supplementary Table 1) and interaction between cells, InterSTELLAR builds

a four-layer graph convolutional neural network to classify the breast cancer tissues as healthy, TNBC

and non-TNBC subtypes (Fig. 1B). In particular, the two graph convolutional layers not only learn from

the highly multiplexed cellular data, but also exploit the features from the cell interactions. This strategy

enables the identification of spatial domains related to specific clinical subtypes.

To achieve interpretable cell community learning, a self-attention pooling module is embedded between

the last hidden layer and the output layer. By adopting a weakly supervised strategy in [21] (Fig. 1C),

the network learns to assign attention scores to cells. This attention score quantifies the contribution of

cellular spatial groups to the final tissue type predictions (Fig. 1D). This metric of the attention score can

be interpreted with the tissue-scale aggregation rule of attention-based pooling, which computes the whole
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tissue representation as the weighted average of all cells in the tissue by their respective attention score.

In this sense, the higher the attention score, the greater the contributions of the corresponding cells to the

tissue representation will be, and vice versa. Therefore, the attention scores can quantify the diagnostic

value of cell communities to delineate tissue clinical types.

2.2 InterSTELLARachieves accurate clinical type classification and cell-scale char-

acterization

We first evaluated InterSTELLAR on clinical tissue subtype classification. From the data, 73 samples

were selected as a test set, and the remaining 293 tissue were trained with a 10-fold cross validation strat-

egy [22]. For reference, InterSTELLAR was benchmarked in comparison with a fully connected neural

network (FNN), Random Forest algorithm, and Support Vector Machine (SVM) algorithm (Methods). To

account for the label imbalance issue (83 healthy, 49 TNBC and 234 non-TNBC tissues), both balanced

accuracy and macro-averaged F1 score were used to evaluate the classification performance (Methods).

As demonstrated in Fig. 2A, InterSTELLAR outperforms the three comparator algorithms in both cross

validations and testing results. FNN most closely compares to InterSTELLAR of the three; however, FNN

lacks information about the relative spatial arrangement of cells within a tissue, so that only the marker fea-

tures are available in the learning task. Under this condition, some tissues with clinical outcome-relevant

spatial structures may be misclassified. As a result, the FNN approach cannot outperform InterSTELLAR.

For Random Forest and SVM, performances in cross validation are close to FNN; however, their accuracies

decline severely in the independent test set. We infer that the loss of cell-scale information results in the

poor performance of generalization of these two algorithms.

Subsequently, we analyzed the predicted cell-scale attention scores of InterSELLAR, and again bench-

marked performance to FNN. Random Forest and SVM are omitted from benchmarking, because they are

not feasible methods to predict tissue and cell-scale outcomes simultaneously, due to heterogeneous cell

number per field of view in the tissue data set. Both InterSTELLAR and FNN can construct cell-based

heatmaps through attention score values (Fig. 2B). However, with more homogeneous distribution of at-

tention scores, InterSTELLAR is superior than FNN on interested community identification. In fact, the

attention scores in the same community should be continuous due to the cell-cell communications, such

that the cells from the neighbourhood make similar contributions. That is, the attention score of a single
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cell should be spatial correlated with those of its neighbours. To evaluate the spatial cell correlation per tis-

sue, we benchmarked InterSTELLAR and FNN in terms of Moran’s I and Geary’s C statistics (Methods).

Moran’s I measures how one region is similar to other spots surrounding it. If the regions are attracted

by each other, it implies the regions are not independent. Therefore, it is positively correlated with the

spatial correlation relationship. Similar to Moran’s I , Geary’s C is also used for the evaluation of spatial

autocorrelation. Both the quantitative results of these two metrics in Fig. 2C validate that InterSTELLAR

achieves higher spatial correlation, which endorses its improved ability to identify interested communities.

With cell neighbourhood information integrated in training, we hypothesized that the latent embedding

features of InterSTELLAR could reflect biologically meaningful information about the tissue structure.

Therefore, we proposed to classify all the cells per cancer tissue to either tumor or stromal regions, and

then compared the segmentation results with manually labeled tumor region masks by Ilastik [4, 23] (Fig.

2D). Specifically, a K-means clustering algorithm with K=2 was utilized to cluster the latent cell embed-

ding features from the last hidden layers of the trained InterSTELLAR network (the input features to the

attention pooling module). As a reference, the latent cellular features from the FNN were also clustered

with the same approach. Visual inspection and quantitative evaluation confirm InterSTELLAR is superior

at capturing tumor regions in both TNBC and non-TNBC tissues (Fig. 2E and F). Indeed, the assembled

tumor organizations from InterSTELLAR are much closer to the manual annotations. Interestingly, the

FNN has a particular weakness for errantly identifying isolated epithelial cells as tumor cells within the

stromal region. Together, these analyses reveal the capabilities of InterSTELLAR over reference methods

to identify and interpret class-level features.

2.3 Attention Mapping by InterSTELLAR Across Cancer Tissue Types

Pathological categorization of breast cancer is critical for patient care and is typically accomplished with

well-established markers for hormone status, HER2 expression and tissue morphology. We next investi-

gated whether InterSTELLAR enables microenvironment characterization for pathologically distinct clin-

ical types of breast cancer from the same IMC dataset. We defined high- and low-attention regions by

segmenting the attention heatmaps with the median attention score of each sample (Fig. 3A). With these

binary masks, we calculated the percentages of immune, stromal and epithelial cells in high- and-low atten-

tion regions for healthy, TNBC, and non-TNBC patient tissues. The attention regions for each tissue type

show distinguishing compositions for these cell types (Fig. 3B). First, we observed that healthy tissues have
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higher stromal cell proportion in both attention regions than any cancer tissues. Importantly, high-attention

regions within cancer tissues contain more epithelial cells than of all the remaining regions. Compara-

tively, the low-attention regions correspond with an increased stromal cell presence than the high-attention

regions from the same tissues. Low-attention regions from all three clinical types contain similar portions

of epithelial cells. Interestingly, TNBC tissues had the highest proportion of immune cells compared to

healthy or non-TNBC tissues, revealing higher immune activity in the TNBC tissue microenvironment. In

non-TNBC specimens, low-attention regions have a higher proportion of immune cells than healthy tissues,

but there are no appreciable differences in immune cell percentages of the high-attention regions. In sum,

the variations of cell composition by attention scores can distinguish the microenvironments from different

clinical subtypes of breast cancer.

Next, we calculated the percent of tumor cells in high- and low-attention regions from cancer tissue

specimens (Fig. 3C). As expected, high-attention regions are occupied by a greater number of tumor cells

than low-attention ones. As an example, previous reports have suggested that tumor-infiltrating lympho-

cytes may be an indication of TNBC [24]. Additionally, high-attention regions have higher ratios of tumor

cells in non-TNBC tissues than TNBC, which is inversely related to the immune cell ratios for these tissues.

This suggests more frequent immune-tumor cell interactions in TNBC tissues. Moreover, we calculated

the median distance of immune cells from both high- and low-attention regions to their nearest tumor cells

(Fig. 3C). The results reveal that immune cells in high-attention regions are in closer proximity to tumor

cells. Therefore, more frequent immune- tumor interactions, such as tumor-infiltrating lymphocytes, are

expected in these regions.

2.4 InterSTELLAR captures tissue microenvironmental features from different

clinical subtypes

Different clinical types of breast tissue are characterized by distinctive cell phenotypes compositions, for

example, myoepithelial cells in healthy tissues and extensive proliferative cells in TNBC. Now, we ask

whether distinct attention regions can also be characterized by distinct cell-type compositions, even in the

same tissue. We adopted a cell phenotype approach for breast cancer tissues as previously described [4]. To

conduct more detailed phenotype analysis, we calculated the cell density per phenotype for all the attention

regions (Supplementary Fig. 1). The normalized distributions of the mean cell density of each phenotype
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are summarized in Fig. 3D. This demonstrates that in TNBC high-attention regions there are more Basal

CK and Epitheliallow cells, but fewer myoepithelial cells, compared to TNBC low-attention counterparts.

To quantify such differences, we calculated the Kullback–Leibler (KL) divergence of the phenotype dis-

tributions between high- and low-attention regions per sample (Fig. 3E). The results reveal that almost all

the KL divergence values are away from 0, indicating that cell phenotype compositions enable expected

attention score differentiation. Interestingly, more diverse distributions are noticed in healthy tissues rather

than cancer types. We inferred that this reveals more heterogeneity in the microenvironments in healthy

tissues.

2.5 InterSTELLAR uncovers single-cell pathology groups associated with patient

survival

Beyond the microenvironment and spatial characterization for various clinical types, we were curious

whether InterSTELLAR could benefit single-cell pathology (SCP) analysis. Using the unsupervised Pheno-

graph algorithm [25,26], we grouped patient cancer tissues on the basis of cell phenotype densities within

high-attention regions and identified 8 SCP subgroups (Methods), which are named according to their

dominant phenotypes (Fig. 4A and Supplementary Fig. 2). The dimensions of the density data were also

reduced by uniform manifold approximation and projection (UMAP) algorithm for visualization (Meth-

ods). Through inspection, the tissues are clustered by their distinct phenotype compositions (Fig. 4B).

Importantly, the presence of these subgroups have significantly different clinical outcomes in overall

survival (Fig. 4C), validated by a log-rank test with P=0.0425 on Kaplan-Meier curves (Methods). In

particular, the CK7+CK+ subset in high attention regions defined patients with favorable clinical outcome,

while the presence of proliferative CKlowHRlow was associated with adverse overall survival. Hormone

receptor and HER2 subtypes and tumor grade were associated with prognosis, as expected (Supplementary

Fig. 3). Most remarkably, SCP features identified cohorts that were independent from clinical subtype

or tumor grade (Supplementary Fig. 3A) with distinct survival results (Supplementary Fig. 3B). Also

compared to clinical subtype and tumor grade results, SCP subgroup analysis with InterSTELLAR allows

a higher-resolution tissue characterization paradigm (4 and 3 vs 8).

Based on the observation that SCP analysis within high-attention regions appeared associatedwith clini-

cally significant outcomes, we examined whether this association was also present for low-attention regions
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or whole tissue analysis. Applying the approach above for low-attention regions (P = 0.8424) or whole

regions (P=0.1381), there was no statistically significant difference in assessing outcome (Supplementary

Fig. 4 and Supplementary Table 2). We conclude that high-attention regions have greater diagnostic value

such that they are more relevant to contribute to patient outcomes. Since high-attention regions contain a

higher proportions of epithelial cells, we used the same unsupervised clustering approach (Methods) based

on only epithelial cells from high-attention regions, or clustering using epithelial cells from the entire tis-

sue sample (Supplementary Fig. 4 and Supplementary Table 2). Both of these approaches based on using

only epithelial cells did not reach the significance of all cell types in the high-attention region, indicating

that indeed the spatial organization of multiple cell types are essential in microenvironment analysis and

interpretation.

Inspecting the subgroups identified through SCP analysis of high-attention regions, prognostic groups

become apparent (Supplementary Fig. 5). SCP Group 4 Proliferative & CKlowHRlow has very poor progno-

sis with less than 70 percent overall survival at 5 years (Cox proportional hazard HR=2.36, CI: 1.13–4.99,

Fig. 4D), while SCP Group 5 Epitheliallow (HR=1.68, CI: 0.74–3.76) and Group 2 Immune Enriched

(HR=1.36, CI: 0.63–2.93) are moderately unfavorable. In contrast, SCP Group 7 CK7+CK+ exceeds 90

percent overall survival beyond 10 years (HR=0.29, CI: 0.05–1.07). SCP Groups 1, 3, 6 and 8 have in-

termediate risk. Alternatively, when analyzing each single cell phenotype within the high-attention region

but without clustering by tissue composition, no individual cell type was directly correlated with outcomes

(Fig. 4E). Thus, SCP subgroups clustered by the tissue composition from high-attention regions provide

an innovative approach to inform prognosis.

3 Discussion

With the expansion of novel multiplexed technologies for the characterization of cellular context in health

and disease, graph-based deep learning algorithms have begun to be investigated on high dimensional single

cell data. In this work we present InterSTELLAR, a GNN framework that can predict patient tissue out-

comes and disease relevant communities simultaneously. We introduce and evaluate InterSTELLAR using

an open-source breast cancer IMC dataset. Cell microenvironments per tissue are first modeled as graphs,

and the nodes represent cells and the edges represent inter-cell communications. Then, graph convolu-

tional layers are applied to extract cell interaction features, followed by a self-attention pooling module
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to learn the cell-based contribution to clinical outcomes. InterSTELLAR achieves higher accuracy than

traditional machine learning algorithms, including Random Forest, SVM, and a FNN framework which

neglects spatial cell information. Moreover, InterSTELLAR performs better than FNN in terms of inter-

ested community identification. We infer that modeling cell communications is crucial to accurate tissue

characterization.

We performed validation studies indicating that InterSTELLAR can capture distinct tissue microenvi-

ronment features from healthy and breast cancer tissues. With high- and low-attention regions segmented

by median attention score values, we observed disease-specific composition of immune, stroma and ep-

ithelial cells per tissue. This approach removes manual segmentation of regions of interest by an expert

pathological reader to identify regions within a field of view of high (and low) value for correlating with

microenvironmental subclasses. Our analyses revealed that greater numbers of tumor cells are localized

in high-attention regions of cancer tissues, which potentially distinguish communities by diagnostic value.

Propinquity of immune and tumor cells from high-attention regions is indicative of active immune-tumor

interactions in these domains. Furthermore, the heterogeneity of low- and high-attention regions based on

cell phenotypes reveals the ability of InterSTELLAR to discriminate clinically important aspects of the

tumor microenvironments.

Through SCP subgroup analysis, we find that InterSTELLAR can establish a mapping relationship

between tissue microenvironment and breast cancer patient prognosis. Specifically, each subgroup has

unique cell community features in high attention regions, which are significantly associated with the sur-

vival outcomes. By contrast, other attention regions or areas of epithelial cells do not have this association.

Moreover, both Kaplan-Meier curves and Cox proportional hazards modeling suggest distinct survival out-

comes of the subgroups.

The results discussed in this work demonstrate the value of InterSTELLAR for high-dimensional spa-

tial cell data to investigate cellular communities of interest. A particular strength of the INTERSTELLAR

approach is the flexibility to apply this method across multiple platforms for highly multiplexed imaging,

because it is capable of extracting cell marker features and tissue graphs independent of the imaging modal-

ity. As a supervised learning framework, InterSTELLAR requires substantial training data to guarantee the

generalization of the trained model and careful minimization of batch effects on marker staining to avoid

overfitting and to prevent degradation of prediction performance. The current study analyzes a large, re-

cent cohort of patient tissue data, but still remains limited in providing sufficient size for validation of the
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intriguing findings suggested by SCP analysis. Future advances in imaging platforms and staining methods

that improve the ability to generate affordable, very large data sets will be an exciting opportunity for wider

implementation of the InterSTELLAR approach. The proposed framework can be applied to other highly

multiplexed imaging techniques and diseases for enhanced downstream analysis. To conclude, InterSTEL-

LAR is a versatile GNN framework for highly multiplexed imaging data that simultaneously classifies

tissue types by clinical classes and predicts disease-relevant cell communities. Most importantly, by ex-

ploiting cell communities with high diagnostic values, it enhances the characterization of patient tissue

microenvironments.

4 Methods

4.1 Dataset description and pre-processing

We applied the InterSTELLAR framework on an open-source breast cancer IMC dataset [4]. The dataset

consists of 381 tissues with 35 cell markers, as well as segmentation masks, single cell data, cell phenotypes

and tumor-stroma masks as well as tissue clinical subtype and patient survival information. To focus on the

effects of antibody markers and to increase robustness, DNA markers and tissues with too few cells (less

than 50) were removed, leaving 366 tissues with 30 markers (Supplementary Table 1). Specifically, there

are 83 healthy, 49 TNBC and 234 non-TNBC tissues.

For a specific cell marker c, denote the single cell data x(k)
i as the mean expression value of each cell i,

and the array of all expression values {s(c)1 , s
(c)
2 , ...} as S(c). We then normalized the single cell data using

log transformation:

f(s
(c)
i ) = log(s(c)i + ϵ) (1)

where ϵ represents a small value. Here, we set it as 10−4. Next, we calculated the z-score of the normalized

expression value:

z(s
(c)
i ) =

f(s
(c)
i )−MEAN(f(Sc))

SD(f(Sc))
(2)

After normalization per marker, for each tissue we obtained a cell-by-marker expression matrix ZN×F

filled with pre-processed expression values z(s(c)i ), in which N is the total cell number for the tissue, and

F is the marker number.
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4.2 Graph construction

InterSTELLAR is built upon undirected graphs. To construct graphs from tissues, the set of cells are

represented by a set of discrete points located at cellular centroids. The 2D coordinates of these cellular

centroids (x, y) are determined by the segmentation masks of the corresponding cells. Then, we regard

each tissue as a single graph, in which each cell is a node of the graph. The node features are the matrix of

marker expressions ZN×F . The edge between any two nodes determines whether the nodes are connected.

The Euclidean distance between any two nodes u and v is calculated as:

d(u, v) =
√

(xu − xv)2 + (yu − yv)2 (3)

Considering any two cells in a tissue, the longer their distance, the less their inter-communications will

be. We define the weight of each edge (u, v), which is negatively associated with their distance d(u, v):

w(u, v) =


exp(−d(u,v)2

l
) when d(u, v) < T

0 else
(4)

In Eq. (4), the hyperparameter l and T determines how rapidly the weight decays as a function of dis-

tance. Here, we set T as 40 µm. This is approximately twice the size of a regular cell as it assumes that cells

have to be within reach to each other to interact [14]. l is empirically set as 1600
log40 so that w(u, v) approaches

1
40
when d(u, v) approaches the threshold. Therefore, the graph adjacency matrix AN×N with a shape of

N × N is built, in which w(u, v) is the matrix element. Finally, there are a node feature matrix ZN×F , a

graph adjacency matrix AN×N and a clinical type label Y ∈ {Healthy, TNBC, Non-TNBC cancers} per

graph as inputs to InterSTELLAR.

4.3 Network structure

For each constructed graph, a collection of (ZN×F , AN×N , Y ) are fed into InterSTELLAR. The inputs

ZN×F andAN×N first pass through two graph convolutional modules, and the node feature matrix is trans-

formed as hN×F1
1 and hN×F2

2 , respectively. Each module consists of a graph convolutional layer [27], a

layer normalization module [28] and a scaled exponential linear unit (SELU) [29]. Subsequently, hN×F2
2 is

fed into a fully connected layer followed by another SELU module, and the output is hN×F3
3 .
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To achieve tissue-scale classification and cell-scale interpretable learning, a self-attention pooling mod-

ule, modified from [21], is embedded between hF3×N
3 (the transpose of hN×F3

3 ) and the final output. The

attention score of the i-th cell is defined as Eq. (5). As a result, the tissue-scale representation aggregated

per the attention score distribution is defined as Eq. (6), in which ⊗ denotes element-wise multiplication.

ai =
exp{W 1×F4

1 (tanh(W F4×F3
2 hF3×1

3,i )⊗ sigmoid(W F4×F3
3 hF3×1

3,i ))}∑N
i=1 exp{W

1×F4
1 (tanh(W F4×F3

2 hF3×1
3,i )⊗ sigmoid(W F4×F3

3 hF3×1
3,i ))}

(5)

hF3×1
4 =

N∑
i=1

aih
F3×1
3,i (6)

The attention score ai is the cell-scale contribution to the final tissue-scale output. Therefore, ai is

positively correlated with the diagnostic value per cell. Finally, hF3×1
4 is further transformed as hK×1

5 =

softmax(WK×F3
4 hF3×1

4 ), and cross entropy is set as the loss function Ltissue between the tissue-scale pre-

diction and the label Y , in which K is the tissue class number.

In the attention pooling module, an additional binary clustering objective is introduced so that class-

specific features can be learnt [21]. During training, a collection of (ai, hF3×1
3,i ) is sorted according to the

value of ai, in which i = 1, 2, ..., N . Then, the pairs of (ai, hF3×1
3,i ) with Q top highest and lowest ai are

selected. Next, K separate fully connected layers are utilized to process the selected hF3×1
3,i for each class,

respectively (k = 1, 2, ..., K):

h2×1
6,i,k = W 2×F3

5,k hF3×1
3,i (7)

Regarding the training of each classifier, the h2×1
6,i,k with the Q top highest ai are attached with positive

labels (+1) while those with the Q top lowest ai are attached with negative labels (-1). The smooth top-1

SVM loss is selected as the loss function Lcell for this cell-scale learning task, because it has been em-

pirically shown to reduce over-fitting under the conditions of noisy data labels or limited data [30]. Note

that the labels are independently generated in each iteration. Intuitively, the sub-training task in each of

the K classes is supervised by the corresponding tissue-scale label. Consequently, the cell communities

with high attention scores are expected to be positive evidence for its current tissue label; By contrast, the

communities with low attention scores are the negative evidence. Therefore, this sub-training task can be

regarded as a constraint for the cell-scale feature hF3×1
3,i , such that the features favoring the correct outcome

are linearly separable from those uncorrelated ones. The overall loss function L, as Eq. (8) shows, is the

12

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 28, 2023. ; https://doi.org/10.1101/2023.03.26.534306doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.26.534306
http://creativecommons.org/licenses/by-nd/4.0/


weighted sum of Ltissue and Lcell, in which η ∈ [0, 1] is the tissue-scale weight.

L = ηLtissue + (1− η)Lcell (8)

4.4 Model training

We preset that F = 30 andK = 3 for the breast cancer IMC dataset training task. Other hyper-parameters

were set as F1 = 40, F2 = 40, F3 = 20, F4 = 10 and Q = 8. The optimal η was found as approximately

0.85 so that the highest accuracy is achieved (Supplementary Fig. 6).

The networkwas trained using Pytorch [31] (version 1.10.2) and Pytorch-Geometric [32] (version 2.0.4)

on a single NVIDIA Quadro RTX 6000 GPU with 24 GB of VRAM. To mitigate the class imbalance in the

training set, the sampling probability of each tissue was inversely proportional to the frequency of its label.

Of the 366 tissues, 73 tissues were selected as test set, the remaining tissues were trained with a 10-fold

cross validation strategy. During the training, the model parameters were updated via Adam optimizer with

a learning rate of 3×10−4 and l1weight decay of 3×10−5. All the other parameters of the Adam optimizer

were utilized with default values. A step learning rate strategy was also applied so that the learning rate

was multiplied by 0.9 after each 5 epoches. The network was trained with 30 epoches with a batch size of

8. Each fold took approximately 166 seconds for training. The trained model with the highest validation

accuracy was saved for each fold.

4.5 Baseline methods

Baseline methods in this work include a fully connected neural network (FNN), a Random Forest classifier

and a Support VectorMachine (SVM) classifier. The FNNmethod is similar to InterSTELLAR– both tissue

and cell-scale predictions can be conducted. However, the two graph convolutional layers are replaced by

two fully connected layers. In this case, the spatial locations of cells are not taken into consideration so

that the adjacent matrix AN×N is neglected. Thus, FNN can only utilize the single cell data without the

information of spatial cell interactions.

Random forest and SVM algorithms are conducted on the basis of composition vector inputs, which

are the cell densities of each phenotype per tissue. There are 25 cell phenotypes of the breast cancer IMC

dataset (Supplementary Fig. 1). As a consequence, the input per tissue is a 25×1 vector. Before training and
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inference, the inputs are z-score normalized. Compared to InterSTELLAR and FNN methods, only tissue-

scale classification is available for Random Forest and SVM, due to the loss of cell-scale information. Note

that both random forest and SVM were implemented using scikit-learn [33] (version 1.0.2) with default

settings.

4.6 Single-cell pathology patient grouping

Patient cancer tissues were grouped on the basis of the cell densities of all the phenotypes in high attention

regions using Phenograph [25] with Leiden algorithm [26]. These algorithms were implemented by Scanpy

package [34] (version 1.8.2) with 20 nearest neighbours and resolution of 1. All the other parameters were

utilized with default settings. These parameters were chosen such that groups of patients from distinct cell

type compositions can be successfully separated without limiting statistical power for group comparisons.

Similar unsupervised clusterings were also conducted on the basis of the cell densities of all the pheno-

types in low attention and all regions, and epithelial cell densities from high attention and all regions. The

parameters of Phenograph kept unchanged. The random seeds for the individual runs were recorded.

4.7 Uniform manifold approximation and projection (UMAP)

For visualization, high-dimensional cell density data per tissue was reduced to two dimensions using the

non-linear dimensionality reduction (UMAP) algorithm [35]. This algorithmwas implemented by the umap

package (version 0.5.2) after all the inputs were z-score normalized. All the parameters were utilized with

default settings. The random seeds for the individual run was recorded.

4.8 Survival curves and Cox proportional hazard regression models

Kaplan-Meier survival curves and Cox proportional hazards survival regression models were generated

using Prism 9 (GraphPad Software Inc.). The overall survival of patients in different single-cell-defined

subgroups was analyzed. Both log-rank tests and Cox proportional hazards models were utilized to inves-

tigate the statistical significance of the patient subgroup classification.
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4.9 Accuracy metrics

To access the tissue-scale classification performance considering the label imbalance effect, balanced ac-

curacy and macro-averaged F1 score were implemented in Fig. 2A with scikit-learn package [33] (version

1.0.2). Segmentation performance for tumor regions in Fig. 2F was accessed by F1 score with scikit-learn

package.

Because InterSTELLAR aims to detect the cell communities with high diagnostic values, the predicted

attention scores should be continuous through the cell neighbourhood, such that adjacent cells from same

communities make similar contributions to the final output. In another word, the attention scores of the

adjacent cells should be spatial correlated. We evaluated the correlation by Moran’s I [36] and Geary’s

C statistics. Moran’s I metric is a correlation coefficient that measures how one spot is similar to other

spots surrounding it. Its value ranges from -1 to 1. The higher the value, the higher the spatial correlation

relationship will be. For the given attention scores, we define the Moran’s I using the following formula,

I =
N

M

∑
i

∑
j[mij(xi − x)(xj − x)]∑

i(xi − x)2
(9)

where xi and xj are the autention scores of cells i and j, x is the mean attention score of a tissue, mij is

spatial weight between cells i and j calculated using the 2D spatial coordinates of the spots, andM is the

sum ofmij . For each cell, 4 nearest neighbours are selected based on the Euclidean distance between cells.

If cell j is the nearest neighbour of cell i,mij is assigned as 1; otherwise,mij = 0.

Geary’s C can be also used for the spatial autocorrelation evaluation, which is calculated as

C =
N

M

∑
i

∑
j[mij(xi − xj)

2]∑
i(xi − x)2

(10)

The value of Geary’s C ranges from 0 to 2. We transform it as C∗ = 1 − C so that its range will be

[−1, 1] [17]. Similar to Moran’s I , the higher the value of C∗, the higher the spatial correlation relationship

will be between cells in the same neighbourhood.

4.10 Statistical analysis

Other than specially stated, quantitative data are presented as box-and-whisker plots (center line, median;

limits, 75% and 25%; whiskers, maximum and minimum). The two-sided log-rank tests were implemented
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with Prism 9 (GraphPad Software Inc.). Statistical significance at P<0.05, 0.01 are donated by * and **

(Fig. 4C and Supplementary Figs. 4,5) or # and ## (Fig. 4C), respectively.

Data Availability

We applied InterSTELLAR on the breast cancer IMC dataset [4], which is publicly available. The data

links are provided in the corresponding paper. Besides, the pre-processed data is available at https:

//doi.org/10.5281/zenodo.7527814.

Code Availability

The InterSTELLAR code used in this study and the corresponding trained weights are publicly available

at https://github.com/PENGLU-WashU/InterSTELLAR.
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Figure 1. Overview of InterSTELLAR. (A) Highly multiplexed images are segmented, followed by high
dimensional single cell data extraction. Simultaneously, undirected graphs are constructed based on the
spatial cell locations per tissue. (B) Single cell feature matrix Z, adjacent matrix A and tissue label Y per
tissue are fed into InterSTELLAR. As a result, both single cell data and spatial cell interactions are taken
into consideration in the training process. (C) In the self-attention pooling module, single cell features
with top highest and lowest attention scores are extracted, labeled and trained by a binary classifier, such
that the features are linearly separable during inference. (D) A cell-based attention heatmap generated
by InterSTELLAR, in which the attention scores per cell are positively correlated with their contribution
to the tissue classification results. The rationale comes from the tissue-level aggregation of attention-
based pooling, which computes the tissue representation as xthe sum of all cells in the tissue weighted by
their respective attention score. Cells from the same neighbourhood share similar attention scores so that
functionally they form distinct communities. Scale bar: 172 µm.
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Figure 2. Evaluations of InterSTELLAR. (A) InterSTELLAR is more accurate than FNN, Random Forest
and SVM algorithms on tissue clinical type classification, validated by 10-fold cross validation (n = 30
per fold) and an independent test set (n = 73). (B) Highly multiplexed IMC images and the corresponding
attention heatmaps generated by InterSTELLAR and FNN. (C) Moran’s I and Geary’s C statistics indicate
InterSTELLAR achieves higher spatial correlation than FNN in terms of attention scores. (D) Schematic
of generating tumor and stroma masks. Embedded features are extracted from a trained network and then
classified by unsupervised clustering algorithms. Here, K-means clustering with K = 2 is utilized. (E)
Highly multiplexed IMC images and the corresponding tumor and stroma masks generated by manual
annotations, InterSTELLAR and FNN. (F) InterSTELLAR performs better than FNN on tumor region
identifications of both TNBC and non-TNBC tissues in terms of F1 score. Scale bar: (B) 145 µm; (E) 158
µm.
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Figure 3. InterSTELLAR characterizes the breast cancer tissue microenvironments from different clinical
subtypes. (A) Highly multiplexed IMC images of healthy, TNBC and non-TNBC tissues as well as their
corresponding attention heatmaps and segmented high attention region masks. (B) The percentages of
immune, stroma and epithelial cells in high and low attention regions from healthy, TNBC and non-TNBC
tissues. (C) The percentages of tumor cells and median distance of immune cells to their nearest tumor
cells in high and low attention regions from cancer tissues. (D) Mean cell density per phenotype from high
and low attention regions of all the tissues. (E) KL divergence between high and low attention regions
regarding distributions of cell density per phenotype. Scale bars in (A): Healthy: 195 µm; TNBC: 175
µm; Non-TNBC cancers: 183 µm.
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Figure 4. InterSTELLAR characterizes distinct clinical outcomes for SCP subgroups. (A) Mean cell
density per phenotype of high attention regions from various SCP subgroups. (B) UMAP plot of the tis-
sues labeled with their corresponding SCP indexes. (C) Kaplan-Meier curves of overall survival for each
subgroup (n = 283) on the basis of cell density per phenotype of high attention regions, with ∗P<0.05.
#P<0.05, ##P<0.01 represent the statistical significance of a single subgroup compared to all other sam-
ples. (D) P values for overall survival analysis from different clustering strategies. In (C, D), P values
were calculated through two-sided log-rank test. (E, F) Relative hazard ratios and 95% confidence intervals
of disease-specific overall survival for cell densities per phenotype and SCP subgroups estimated using a
Cox proportional hazards model. Reference group 1: Mixed for SCP subgroups.
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Supplementary Figures

Supplementary Figure 1. Box plots of cell density per phenotype in high- and low-attention regions from
healthy, TNBC and non-TNBC cancer tissues.
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Supplementary Figure 2. Box plots of cell density per phenotype in high-attention regions from each
single-cell patient subgroup.
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Supplementary Figure 3. Comparisons of the patient group classified by SCP subgroup, clinical subtype
and tumor grade. (A) UMAP plots of the tissues labeled with their corresponding SCP indexes, clinical
subtypes and tumor grades. (B) Kaplan-Meier curves of overall survival for each patient group on the basis
of SCP subgroup, clinical subtype and tumor grade.
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Supplementary Figure 4. Kaplan-Meier curves of overall survival from different clustering strategies and
their corresponding P values of log-rank tests.

Supplementary Figure 5. Kaplan-Meier curves of overall survival of each subgroup on the basis of cell
density per phenotype of high attention regions. The black curve represents the survival curve of all sam-
ples. Each P value represents the statistical significance of a single subgroup compared to all the other
samples. All the P values were calculated through two-sided log-rank tests.
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Supplementary Figure 6. The relationship between tissue-scale weight η and clinical type classification
performance.
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Supplementary Tables

Supplementary Table 1. Cell markers used in training and downstream analysis.

Metal Tag Target Metal Tag Target

141Pr Cytokeratin5 159Tb p53
142Nd Fibronectin 160Gd CD44
143Nd Cytokeratin19 162Dy CD45
144Nd Cytokeratin8/18 163Dy GATA3
145Nd Twist 164Dy CD20
146Nd CD68 166Er Carbonic Anhydrase IX
147Sm Cytokeratin14 167Er E/P-Cadherin
148Nd SMA 168Er Ki-67
149Sm Vimentin 169Tm EGFR
150Nd c-Myc 170Er S6
151Eu c-erbB-2-Her2 172Yb vWF
152Sm CD3 173Yb mTOR
155Gd Slug 174Yb Cytokeratin7
156Gd Rabbit IgG H L 175Lu panCytokeratin
158Gd Progesterone Receptor A/B 176Yb cleaved PARP

Supplementary Table 2. P values for overall survival analysis from different clustering strategies.

Cell Types Region P Value

All High attention 0.0425*
All Low attention 0.8424
All Whole 0.1381
Epithelial cells High attention 0.0599
Epithelial cells Whole 0.2310
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