
DD = death domain; FADD = Fas-associated death domain protein; IKK = I-kB kinase; IL = interleukin; IRAK = IL-1 receptor-associated kinase; 
JNK = c-jun amino-terminal kinase; LPS = lipopolysaccharide; M-CSF = macrophage-colony stimulating factor; NF-κB = nuclear factor-kappa B;
OCIF = osteoclastogenesis inhibitory factor; ODAR = osteoclast differentiation and activation receptor; ODF = osteoclast differentiation factor;
OPG = osteoprotegerin; OPGL = osteoprotegerin ligand; PDK = PI3 kinase-dependent kinase; PGE2 = prostaglandin E2; PI3 = phosphatidyl-
inositol 3; PIP3 = phosphatidylinositol-(3,4,5)-triphosphate; PTH = parathyroid hormone; RA = rheumatoid arthritis; RANK = receptor activator of
NF-κB; RANKL = receptor activator of NF-κB ligand; RIP = receptor-interacting protein; RZF = RING(C3HC4)-zinc finger; TIM = TRAF interaction
motif; TIR = Toll/IL-1/IL-18 receptor; TLR = Toll-like receptor; TNF = tumor necrosis factor; TNFR = TNF receptor; TRADD = TNFR-associated
death domain protein; TRAF = TNF receptor-associated factor; TRANCE = TNF-related activation-induced cytokine.
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Introduction
The pathogenesis of focal bone loss in inflammatory
processes such as rheumatoid arthritis (RA) is a subject of
recent interest. Osteoclasts are known to contribute to
focal bone erosion in RA [1–3] and in animal models of
arthritis [4–6]. The role of osteoclasts in normal physio-
logic bone remodeling is well established. During this
process, focal areas of bone are resorbed by osteoclasts
and repopulated by osteoblasts, which synthesize new
bone matrix [7]. The focal net loss of bone at sites of
inflammation in conditions such as RA suggests that there

is an imbalance in favor of bone resorption. Considerable
effort has been made in elucidating the factors responsi-
ble for this increased bone resorption and in defining the
mechanisms involved in the differentiation and activation
of osteoclasts at sites of inflammation. This review focuses
on a newly described and essential factor for osteoclast
differentiation-ODF, a member of the TNF ligand family of
cytokines [8]. ODF was independently identified as
RANKL [9]. We will refer to this factor as RANKL/ODF. Its
cognate receptor is RANK. The role of this receptor–
ligand pair in bone resorption is reviewed, and the signal
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Abstract

The contribution of osteoclasts to the process of bone loss in inflammatory arthritis has recently been
demonstrated. Studies in osteoclast biology have led to the identification of factors responsible for the
differentiation and activation of osteoclasts, the most important of which is the receptor activator of
NF-κB ligand/osteoclast differentiation factor (RANKL/ODF), a tumor necrosis factor (TNF)-like
protein. The RANKL/ODF receptor, receptor activator of NF-κB (RANK), is a TNF-receptor family
member present on both osteoclast precursors and mature osteoclasts. Like other TNF-family
receptors and the IL-1 receptor, RANK mediates its signal transduction via TNF receptor-associated
factor (TRAF) proteins, suggesting that the signaling pathways activated by RANK and other
inflammatory cytokines involved in osteoclast differentiation and activation are interconnected.
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transduction pathways involved in signaling through the
RANK receptor are discussed in relation to common and
interconnected pathways activated by other receptors.

The role of RANKL/ODF in osteoclast
differentiation and activation
RANKL/ODF was originally cloned as an essential factor for
osteoclastogenesis by two independent research groups
[8,10], who named it, respectively, ‘osteoclast differentiation
factor’ (ODF) and ‘osteoprotegerin ligand’ (OPGL). Using
models of osteoclast differentiation in vitro, it has been
shown that many of the factors that enhance osteoclast for-
mation or activity, including 1,25(OH)2D3, parathyroid
hormone (PTH), interleukin (IL)-11, and prostaglandin E2
(PGE2), mediate these effects at least in part by inducing
the expression of RANKL/ODF by osteoblasts and/or bone
lining cells [11–14]. Interestingly, RANKL/ODF had also
previously been independently identified as TNF-related
activation-induced cytokine (TRANCE) [15], a T cell
product upregulated after T cell-receptor stimulation.
TRANCE enhances the proliferation of naïve T cells through
interactions of T cells with dendritic cells [16].

Activated T lymphocytes also express membrane-bound
RANKL/ODF and can secrete a soluble form of
RANKL/ODF [17]. RANKL/ODF messenger RNA is
expressed at high levels in cells in trabecular bone and
bone marrow, including bone lining cells and osteoblasts,
as well as in lymph node, thymus, and Peyer’s patches
[8–10]. RANKL/ODF–/– mice exhibit a dramatic pheno-
type supporting the essential role of this factor in osteo-
clast differentiation. These mice have defective tooth
eruption and severe osteopetrosis associated with the
absence of osteoclasts [18].They also have no peripheral
lymph nodes, have defects in B cell and T cell maturation,
and have thymic hypoplasia, supporting the argument that
this factor plays a role in immune-cell differentiation.

The signaling receptor for RANKL/ODF, a member of the
TNF receptor (TNFR) family, was originally described as a
receptor on T cells and dendritic cells, and was named
RANK [also known as osteoclast differentiation and activa-
tion receptor (ODAR) and TRANCE receptor], because
binding of RANKL/ODF to this receptor leads to activation
of the transcription factor NF-κB [9,14,19]. In addition to
being expressed on T cells and dendritic cells, RANK is
also expressed on osteoclasts and osteoclast precursor
cells, and on certain B cells [9,19,20]. RANK–/– mice have
a phenotype similar to that of RANKL/ODF–/– mice, includ-
ing the presence of osteopetrosis, absence of peripheral
lymph nodes, and a deficiency of B cells [21,22].

Osteoprotegerin inhibits the actions of
RANKL/ODF
A decoy receptor for RANKL/ODF has been identified and
named osteoprotegerin (OPG) and osteoclastogenesis

inhibitory factor (OCIF) [23,24]. OPG is a secreted
member of the TNFR family that lacks a transmembrane
domain and is structurally distinct from RANK. It is active
as either a soluble monomer or a disulfide-linked homo-
dimer [25]. OPG binds RANKL/ODF with high affinity,
thereby preventing RANKL/ODF from interacting with its
cognate receptor (RANK) (Fig. 1). Overexpression of
OPG in transgenic mice blocks the activity of endogenous
RANKL/ODF, resulting in the development of osteopetro-
sis, although there does not appear to be a defect in lym-
phoid tissue development [23]. OPG–/– mice demonstrate
severe osteoporosis, which is a result of the unopposed
activity of endogenous RANKL/ODF, leading to excessive
osteoclast differentiation and activity [26,27]. Under physi-
ologic conditions and in disorders associated with dis-
turbed bone remodeling, osteoclast-mediated bone
resorption can be modulated by altering the balance
between OPG and RANKL/ODF. This has obvious impli-
cations for the development of therapeutic strategies for
controlling physiologic and pathologic bone loss [11].

Two classes of tumor necrosis factor
receptors regulate life and death
Binding of RANKL/ODF to RANK activates signal trans-
duction pathways that ultimately lead to osteoclast differ-
entiation and increased osteoclastic activity. It is useful to
review other members of the TNFR family and their associ-
ated signal transduction pathways to examine the
common and interconnected pathways by which these
receptors regulate diverse cellular activities. Members of
the TNFR family all share an extracellular ligand-binding

Figure 1

Simplified schematic view of the interactions between membrane-
bound RANKL on osteoblast/bone stromal cells and its receptor RANK
on osteoclast precursor cells. This interaction leads to the
differentiation of osteoclast precursor cells and the activation of
osteoclasts to resorb bone. OPG can inhibit this interaction by binding
to membrane-bound RANKL and blocking the RANKL–RANK
interaction. D3, vitamin D3; M-CSF, macrophage-colony stimulating
factor; OC, osteoclast.



Arthritis Research    Vol 3 No 1 Gravallese et al

domain containing at least two repeats of a signature
module consisting of a disulfide-rich anti-parallel beta-
strand structure of approximately 40 amino acids. The
structural analysis of the ligand interaction reveals that a
trimeric ligand interacts intimately with two of these
modules from each of three receptors, resulting in a 3:3
complex [28] that leads to intracellular signal transduction.

With regard to intracellular signaling, the TNFR family can
be subdivided into two groups, those that directly induce
apoptosis (eg TNFRI/p55 TNF-α receptor and Fas), and
those that typically do not (eg RANK, TNFRII/p75 TNF-α
receptor, and CD40) (Fig. 2). The apoptotic response is
dependent upon the presence of death domains (DDs)
within the cytoplasmic region of the receptor. These
domains mediate protein–protein interactions resulting in
dimeric and tetrameric complexes among proteins contain-
ing nonidentical DDs [29]. The nonapoptotic TNFRs do not
contain DDs but, in contrast to the apoptotic forms, do
contain a short-sequence motif [30] necessary for the

recruitment of a family of related TRAFs essential for many
downstream intracellular signaling events [31,32]. These
sequence motifs are referred to here as TRAF interaction
motifs (TIMs). Activation of TRAFs appears to be dependent
upon membrane localization [33] and trimerization of amino-
terminal RING-zinc finger (RZF) domains mediated by the
carboxyl-terminal ligand-interaction region [34,35]. Although
apoptotic TNFRs do not contain any TIMs, they can recruit
TRAFs indirectly via DD-containing adapter molecules.

In the case of the apoptotic receptors, TRAFs appear to
be important for cell death, probably by supporting the
action of Fas-associated death domain protein (FADD),
which is critical for caspase-8 activation. As shown in
Fig. 2, the apoptotic TNFRs (eg TNFRI) have the potential
to induce both death and survival signals. The specific
outcome (ie survival versus death) appears to depend
upon mechanisms that shift the balance of cytoplasmic
signaling components. For example, the activation of
caspase-8 not only activates apoptosis, but also inhibits

Figure 2

Interrelationships among receptors that signal via TRAFs. Double-headed, dashed arrows indicate known direct protein–protein interactions; solid arrows
represent enzymatic and functional pathways. Emphasis is placed on distinctions between osteoclastogenesis and osteoclast activation. Abbreviations
and terms are defined in the text.



the NF-κB survival pathway by degrading receptor-inter-
acting protein (RIP). RIP is a DD kinase essential for
TNF-α-dependent activation of NF-κB [36], possibly
through the TRAF amino-terminal RZF domain, in a kinase-
independent manner [37].

Lipopolysaccharides and IL-1 receptors also
signal via TRAF
TRAF recruitment and activation are also mediated by the
Toll/IL-1/IL-18 receptor family (TIR), which is distinct from
the TNFR family and includes the homodimeric Toll-like
receptors (TLRs) that bind microbiological products (eg
the lipopolysaccharide receptor TLR4); the heterodimeric
IL-1 receptor (consisting of two related molecules, IL-1RI
and IL-1RAcP); and receptors for IL-18 (Fig. 2). The TIRs all
contain a specific domain structure (TIR domain) that is
critical for the recruitment of MyD88, an adapter molecule
that possesses both a TIR and a DD [38,39]. The MyD88
DD can recruit one or more IL-1R-associated kinases
(IRAKs) that bind TRAF6. The kinase function of IRAK
appears not to be important for TRAF recruitment but may
serve to facilitate receptor recycling [40]. Therefore, IL-1,
LPS, and TNF-α, which have long been known to have
overlapping functions, may mediate these shared activities
via the recruitment of TRAFs.

There are at least six distinct TRAF forms, not all of which
induce intracellular signaling. TRAF2, 5, and 6 have been
shown to be involved in TNFR and TIR downstream activa-
tion of NF-κB and the c-jun amino-terminal kinase (JNK),
whereas TRAF1, 3, and 4 have not. TRAF4 is restricted to
the nucleus, and TRAF1, which can heterotrimerize with
TRAF2, is deficient in an amino-terminal region necessary
for NF-κB activation [31]. TRAF3, however, which can be
activated by engineered membrane localization [33], binds
to the CD40 TNF receptor [34], and is required for T cell-
dependent immune responses [41]. Although the recep-
tor-binding specificities for TRAF2, 3, and 5 appear to be
similar, TRAF6 possesses a distinct binding specificity.
Therefore, although TRAF2, 3, and 5 bind either directly or
indirectly to most TNFRs, TRAF6 is unique in its ability to
bind directly only to IRAK, RANK, and CD40 [30].

RANK binds and activates a full complement
of TRAFs and activates Src
The cytoplasmic domain of RANK is unique in that it has
three independent TIMs, for binding TRAF2, 5, and 6 [42].
The membrane-proximal TRAF6 binding site appears to be
highly specific. The other two sites each bind TRAF2 and
5. However, the carboxyl-terminal site is most specific for
TRAF5 and the more amino-proximal site is most specific
for TRAF2 [43]. The amino-terminal RZF domain of TRAF2
and 6 has been shown to be capable of activating down-
stream signals to I-κB kinase (IKK), JNK, and p38 kinase
[35]. Osteoclast differentiation is blocked in mice deficient
in the p50 and p52 forms of NF-κB, demonstrating the

critical role of this factor [44,45]. However, RANK activa-
tion of both the JNK and p38 kinase pathways has also
been demonstrated to be important for osteoclast differen-
tiation and function [46,47]. TRAF2 and 5 appear to have
similar activities. Interestingly, TRAF2–/– mice do not
exhibit osteopetrosis [48], an observation indicating that
this TRAF is either not important for osteoclastogenesis
or, more likely, is complemented by other TRAFs.

The carboxy-terminal receptor-binding/trimerization domain
of TRAF6 is distinct from that of other TRAFs in that it
contains a short, proline-rich loop capable of binding to
the SH3 domain of the Src tyrosine kinase [42]. This loop
provides a means for the activation of Src, which, though
constitutively membrane-associated via amino-terminal
myristylation, is inhibited by intramolecular SH2 and SH3
interactions [49]. The activation of Src by TRAF6-medi-
ated SH3 competition provides a mechanism for the
reported activation of phosphatidylinositol 3-kinase (PI3
kinase) by both RANK [42] and IL-1R [39]. This activation
may not require involvement of the Src kinase function and
may depend only upon interaction between the SH3
domain of Src and the proline-rich sequence of the PI3
kinase p85 regulatory subunit [50]. This could explain how
src–/– mice, which exhibit a severe osteopetrotic pheno-
type [51], can be rescued by a kinase-defective Src [52].
The functional association between TRAF6 and Src is also
supported by the observation that both src–/– and
TRAF6–/– mice exhibit a similar phenotype of osteopetro-
sis in which there are abundant osteoclasts, but a defect
in osteoclastic bone resorption [52,53]. This is in contrast
to both the RANK–/– and RANKL/ODF–/– mice, which lack
osteoclasts [18,21].

Src is also capable of direct activation of the Stat3 tran-
scription factor via tyrosine phosphorylation as well as
indirect activation via Tec tyrosine kinases like Etk [54].
The tyrosine kinase Etk is activated by binding to phos-
phatidylinositol-(3,4,5)-triphosphate (PIP3), a product of
activated PI3 kinase, through an amino-terminal plextrin
homology domain [49]. The Src–Etk pathway could
provide a mechanism for the reported tyrosine phospho-
rylation-dependent activation of the Stat3 transcription
factor by IL-1 via the TRAF6-dependent IL-1R [39]. Also,
PI3 kinase phospholipid products can activate many
other kinases via PI3 kinase-dependent kinase (PDK) and
protein kinases A, B, and C. PI3 kinase may therefore
activate many pathways that are probably essential to
osteoclast development and activation, including apopto-
sis inhibition, cell proliferation, endocytosis, and vesicular
trafficking [55].

Cross-talk between TNF and Toll/IL-1 receptors
probably modulates osteoclast action
The distinction between the activation of osteoclasts to
resorb bone and osteoclast differentiation (osteoclasto-
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genesis) is underscored by the observed differences
between, on the one hand, src–/– and TRAF6–/– mice
(which exhibit abundant but poorly functioning osteoclasts)
and, on the other hand, RANK–/– and RANKL/ODF–/– mice
(which lack osteoclasts). RANKL/ODF can support both
osteoclast differentiation and activation. In contrast, TNF-α,
primarily through TNFRI, supports osteoclast differentiation,
while both IL-1 and LPS can activate preformed osteo-
clasts to resorb bone [56–60]. Interestingly, TNFRI directly
recruits only TRAF2 via the TNFR-associated death domain
protein (TRADD) adapter [61], whereas both the LPS
TLR4 [38] and IL-1R recruit only TRAF6 via IRAK [31]
(Fig. 2). Therefore, because only TRAF6 activates Src,
TRAF6 (and receptor ligands that can effect its signaling)
may be a key component for the activation of osteoclasts
to resorb bone. In this model, RANK induction of osteo-
clast differentiation does not require TRAF6 when other
TRAFs are present. It is not yet clear whether TNF-α/TNFRI
can replace all of the osteoclastogenic activities of RANK.
Similarly, it is not yet known whether TRAF5 plays a distinct
role in osteoclast differentiation.

A recent publication supports the involvement of TNFRI
but not TNFRII in enhancing both basal and soluble
TNF-α-induced osteoclastogenesis in marrow cultures
[56], suggesting that TNF-α can synergize with RANKL.
Consequently, if differences exist between RANK- and
TNFRI-induced osteoclastogenesis, they may be due
either to another element in the pathway (such as RIP) or
to a dosage effect resulting from the activation of more
than one TRAF. Regardless, the ability to fine-tune osteo-
clast differentiation and activation by TNFRI and the
TRAF6-specific receptors for either IL-1 or LPS, which
can each act to deliver a portion of the complete signal
that is provided via activation of the RANK signal trans-
duction pathway, may be an important mechanism for reg-
ulating osteoclast-mediated bone resorption.

Potential contributions of RANKL/ODF to
bone erosions in rheumatoid arthritis
Given the critical role of RANKL/ODF in the regulation of
osteoclastogenesis in physiologic bone remodeling, the
potential role of interactions between RANKL/ODF and
RANK in the generation of bone erosions in RA has been
explored. We and others have shown that RANKL/ODF is
expressed in cultured synovial fibroblasts from patients
with RA [62,63]. This factor is also expressed in CD4+
and CD8+ T lymphocyte subsets in RA synovium [17,64]
and in activated CD4+ lymphocytes derived from RA syn-
ovium [62]. A potential direct role for RA synovial fibrob-
lasts and/or T lymphocytes in inducing osteoclast
differentiation is suggested by recent studies in which co-
culture of either synovial fibroblasts or T lymphocytes with
osteoclast precursors in the presence of cofactors
resulted in the generation of multinucleated cells with the
phenotypic features of osteoclasts [17,63,64].

Important evidence suggesting that RANKL/ODF plays a
role in the pathogenesis of osteoclastic resorption in
inflammatory arthritis comes from studies in the rat adju-
vant-arthritis model [17]. Arthritic rats treated with OPG at
disease onset had minimal loss of cortical and trabecular
bone, whereas bone loss was severe in untreated control
animals. A dramatic decrease in osteoclast numbers was
also observed in the OPG-treated animals [17]. OPG treat-
ment did not appear to decrease joint inflammation, sug-
gesting that the prevention of focal bone destruction was
related to a specific effect on osteoclast-mediated bone
resorption. These findings are important with respect to
treatment strategies that target RANKL–RANK signaling
pathways to prevent focal bone destruction in RA. The use
of OPG, which binds RANKL and prevents activation of the
RANK signaling pathway, represents one therapeutic
approach. Additional strategies could target signal trans-
duction pathways shared by TNF-α, IL-1, and RANKL, with
the goal of inhibiting more broadly both inflammatory cas-
cades and osteoclast-mediated bone resorption.
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