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Abstract
Schizophrenia (SCZ) is a chronic and severe mental disorder with a complex molecular aetiology. Emerging evidence indi-
cates a potential association between the gut microbiome and the development of SCZ. Considering the under-representation 
of African populations in SCZ research, this study aimed to explore the association between the gut microbiome and SCZ 
within a South African cohort. Gut microbial DNA was obtained from 89 participants (n = 41 SCZ cases; n = 48 controls) and 
underwent 16S rRNA (V4) sequencing. Data preparation and taxa classification were performed with the DADA2 pipeline 
in R studio followed by diversity analysis using QIIME2. Analysis of Compositions of Microbiomes with Bias Correction 
(ANCOM-BC) was utilised to identify differentially abundant taxa. No statistically significant differences were observed 
between SCZ patients and controls in terms of alpha-diversity (Shannon q = 0.09; Simpson q = 0.174) or beta-diversity 
(p = 0.547). Five taxa, namely Prevotella (p = 0.037), Faecalibacterium (p = 0.032), Phascolarctobacterium (p = 0.002), 
Dialister (p = 0.043), and SMB53 (p = 0.012), were differentially abundant in cases compared to controls, but this obser-
vation did not survive correction for multiple testing. This exploratory study suggests a potential association between the 
relative abundance of Prevotella, Faecalibacterium, Phascolarctobacterium, Dialister, and SMB53 with SCZ case–control 
status. Given the lack of significance after correcting for multiple testing, these results should be interpreted with caution. 
Mechanistic studies in larger samples are warranted to confirm these findings and better understand the association between 
the gut microbiome and SCZ.
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Introduction

Schizophrenia (SCZ) is a complex, multifactorial psychiatric 
disorder with an estimated prevalence of 0.5–1% in South 
Africa [1, 2]. To date, no single cause for SCZ has been 
established [3, 4] as both genetics [5] and the environment 
contribute to the disorder’s aetiology [6]. One way to assess 
the possible association between host genes and the environ-
ment could be through the gut microbiome as alterations 
in the gut microbiome are influenced by both genetics [5, 
7] and environmental factors such as diet, medication, age, 
gender, lifestyle, geography, and population demographics 
[8, 9].

The gut microbiome plays a vital role in maintaining 
intestinal barrier integrity, modulating the immune system, 
and communicating with the central nervous system (CNS)
[10]. Communication with the CNS is bidirectional and 
occurs via the microbiota-gut-brain (MGB) axis through the 
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involvement of the vagus nerve and bacterial metabolites 
such as neurotransmitters, short-chain fatty acids (SCFA), 
and lipopolysaccharides (LPS) [11–13]. Alterations in the 
diversity and composition of the gut microbiome could 
influence immune responses [11] and may potentially lead 
to chronic systemic inflammation through altered levels of 
bacterial products including, but not limited to, LPS and 
SCFA [5, 10, 14]. Increased inflammation and disruptions 
in SCFA production by commensal bacteria, which could 
further exacerbate inflammation by compromising gut bar-
rier integrity, have previously been associated with SCZ [4, 
15]. A compromised gut barrier integrity could facilitate 
the translocation of bacterial metabolites across the gut epi-
thelial barrier to promote chronic low-grade inflammation 
in individuals with SCZ by stimulating the expression of 
proinflammatory cytokines [9, 10, 14].

Differences in the diversity and composition of the gut 
microbiome and production of bacterial metabolites can 
indirectly affect brain networks, neurodevelopment, neu-
roendocrine and neurotransmission processes that contrib-
ute to SCZ aetiology [5, 15]. Further, mediation analyses 
have shown structural and functional brain networks to be 
associated with the gut microbiome in SCZ cases [16]. The 
increased translocation of LPS from the gut to the blood 
[17] and the decreased SCFA concentrations may affect 
the permeability of the blood–brain barrier (BBB) [9]. A 
compromised BBB enables the passage of pathogens and 
proinflammatory mediators, including LPS, into the brain 
[9]. This can activate microglial cells to release nitrogen and 
oxygen species that could further compromise the integrity 
of the BBB [18, 19]. In addition, overactivation of microglia 
could result in inflammation in the brain, often referred to as 
neuroinflammation [20]. Increased neuroinflammation has 
been associated with impaired social and cognitive behav-
iour, both of which are known to be symptoms of SCZ [21].

Several 16S rRNA studies have reported gut microbial 
differences between individuals with and without SCZ [3, 
4, 9, 10, 14, 22]. Whilst some [23], but not all [22, 24–28], 
studies have observed alterations in alpha-diversity of the 
gut microbiome in individuals with SCZ, differences in beta-
diversity are more consistently reported between individuals 
with SCZ and controls [3, 4, 10, 14, 22, 29, 30]. Despite 
this, it has proved difficult to identify a single microbial 
profile associated with the disorder [31]. Previous reports 
have highlighted the possible involvement of Prevotella [3], 
Collinsella [32], Roseburia [26], Faecalibaterium [10, 14], 
Clostridium [4], Lactobacillus [10], Ruminococcus [4, 14, 
26], and Haemophilus [32]. In general, alterations in these 
gut bacteria point to the involvement of SCFA production, 
immune response modulation, and intestinal barrier perme-
ability potentially playing a role in SCZ. Additionally, faecal 
microbial transplants from SCZ patients to germ-free mice 
have demonstrated the importance of the gut microbiome in 

disorder, as altered microbial communities could contribute 
to altered neurotransmitter levels and SCZ-like behaviours 
[26, 32, 33].

To date, no reported studies have investigated the gut 
microbiome and SCZ in South Africa. Our study sought to 
investigate whether the gut microbial profile of individuals 
with SCZ differed from those without SCZ within a South 
African population and represents the first of its kind to be 
conducted in a South African population.

Materials and methods

Data available and recruitment

Data from 41 SCZ cases and 48 controls were available 
from the parent study, Shared Roots of Neuropsychiatric 
Disorders and Cardiovascular Disease Project (SR; HREC 
no. N13/08/115). The overarching aim of the parent study 
was to interrogate signatures (i.e., genomic, neural, cellular, 
and environmental) common to neuropsychiatric disorders 
and cardiovascular disease risk that could contribute to co-
morbidity, symptom severity, and treatment outcomes.

Control participants were recruited through advertise-
ments (i.e. print, radio and web), active recruitment within 
communities by a registered nurse, and word-of-mouth. 
Cases consisted of first-episode SCZ (FES total n = 24; 
recently diagnosed n = 8; within 5 years of diagnosis and 
treatment n = 16) and chronic SCZ cases (long-term and 
continuous presence of SCZ symptoms and/or treatment, 
n = 17). The FES cases were recruited from general and 
psychiatric hospitals and community health centres within 
the study catchment area following their first psychotic epi-
sode. The chronic schizophrenia cases were contacted and 
invited to participate in SR. Cases comprised individuals 
with a diagnosis of SCZ, schizophreniform, or schizoaffec-
tive disorder based on the Structured Clinical Interview for 
the Diagnostic and Statistical Manual of Mental Disorders, 
fourth edition (SCID-IV) [34], without intellectual disabil-
ity. Symptoms and severity of SCZ were assessed using the 
Structured Clinical Interview for DSM-IV (SCID) and Posi-
tive and Negative Syndrome Scale (PANSS) [35].

The Mini International Neuropsychiatric Interview 
(MINI) version 6 [36] was used to exclude participants 
with other major psychiatric disorders or substance abuse. 
Additional exclusion criteria included antibiotic use four 
weeks prior to stool sampling, intellectual disability, severe 
physical illness, any neurological disorder, and FES cases 
treated with a long-acting depot antipsychotic medica-
tion. Childhood trauma was assessed using the Childhood 
Trauma Questionnaire (CTQ) [37] and total scores were cal-
culated by adding scores from physical abuse, sexual abuse, 
emotional abuse, emotional neglect, and physical neglect. 
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Participants with a total score of > 41 (representing the low-
est level score indicative of neglect or abuse for each sub-
scale included) were classified as having childhood trauma, 
as previously used by our research group [38].

The WHO STEPwise approach to Surveillance (STEPS) 
instrument [39] was used to examine body mass index 
(BMI). The medical history questionnaire determined smok-
ing and alcohol habits. Participants were considered current 
smokers or current alcohol consumers if they smoked or 
used alcohol in the past 6 months. The harmonised Joint 
Interim Statement (JIS) criteria were used to assess meta-
bolic syndrome (MetS) in participants [40].

Sample collection and microbial DNA extraction

The collection of stool samples and subsequent DNA extrac-
tion was performed as previously described [41]. Briefly, 
stool samples were self-collected in pre-analytical sample 
processing (PSP) collection tubes (Stratec, Molecular, Birk-
enfeld, Germany) and stored at −20 °C in the Neuropsy-
chiatric Genetics Laboratory (Department of Psychiatry, 
Faculty of Medicine and Health Sciences, Stellenbosch 
University, Cape Town) prior to microbial DNA extraction.

Microbial DNA extraction was done using the PSP Spin 
Stool DNA Plus kit (Stratec Molecular, Birkenfeld, Ger-
many). For each batch of microbial DNA extraction per-
formed, a negative (non-template buffer to control for large-
scale cross-contamination) and positive (ZymoBIOMICS 
microbial mock community standards of known composi-
tion to assess the accuracy of results, Zymo Research, Cat # 
D6300) control was added to the microbial DNA extraction 
run. Quantity and quality of the microbial DNA were deter-
mined using an ultraviolet–visible (UV–Vis) Spectrometer 
Nano-Drop 2000 (Thermo Scientific, USA), and the Qubit 
4 Fluorometer (Invitrogen, ThermoFisher Scientific, Massa-
chusetts, USA). The fourth hypervariable region (V4) of the 
16S rRNA gene was amplified using the following primer 
pair [42]:

515 F (5’ TCG TCG GCA GCG TCA GAT GTG TAT AAG 
AGA CAG GTG YCAGCMGCC GCG GTAA)

806 R (5’ GTC TCG TGG GCT CGG AGA TGT GTA TAA 
GAG ACA GGG ACTACNVGGG TWT CTAAT).

The library preparation and sequencing were done at the 
Centre for Proteomic and Genomic Research (CPGR, Cape 
Town, South Africa). Illumina sequencing adapters and the 
dual-index barcodes were attached using the Nextera XT v2 
Index Kit (Illumina Inc., San Diego, CA, USA). Sequenc-
ing libraries were pooled and diluted to 5 pM. The libraries 
were then sequenced with 250 bp pair-end reads on the Illu-
mina MiSeq sequencing instrument using a MiSeq Reagent 
v2 Kit. The expected fragment size of the V4 amplicon is 
approximately 250–300 bp. Samples (depth = 60 000 reads) 
were converted to FASTQ files (forward, reverse and index) 

after sequencing using the BCL-to-FASTQ file converter 
bcl2fastq (ver. 2.17.1.14, Il-lumina, Inc.).

Data preparation and taxa classification

The data preparation, quality control and taxa classification 
were done as previously described [41] in R Studio [43] 
using the DADA2 pipeline (https:// github. com/ benjj neb/ 
dada2) [44]. Quality control of the sequences consisted 
of assessing read quality profiles, filtering and trimming 
while maintaining overlap between the forward and reverse 
sequences. Error rates and inference of sample composition 
were estimated by a parametric error model, after which the 
sample inference algorithm was applied to the data to reduce 
redundancy and determine the number of unique sequences. 
Reads were merged with at least 12 bases in the overlap 
region [45]. After generating the amplicon sequencing vari-
ant (ASV) table and removing chimeras, a naïve Bayesian 
classifier method [44] was implemented to taxonomically 
classify the ASVs, using the Ribosomal Database Project 
(RDP) as a reference database [46]. The ASV table consisted 
of 3,628,011 reads, 12,204 taxa, and sparsity of 94.3%. Taxa 
observed in fewer than 15% of samples were eliminated from 
the ASV table as per a previous study [41].

Statistical analysis of metadata

Statistical differences in metadata variables between cases 
and controls were assessed prior to diversity analysis. Cat-
egorical metadata included sex, MetS, childhood trauma, 
current alcohol consumption, and current smoker status. To 
assess the difference between cases and controls for categor-
ical metadata variables, the Chi-square (χ2) test was used. 
The results were expressed in the form of numbers (N) and 
percentages (%). According to Shapiro–Wilk’s normality 
test, age and BMI were not normally distributed. Therefore, 
Mann–Whitney U-test (U test)[47] was used to assess differ-
ences between cases and controls with the results expressed 
as medians and interquartile ranges (IQR). Significance was 
defined as p < 0.05.

Diversity data analysis

Alpha- and beta-diversity analyses were conducted using 
the QIIME2 q2-diversity plugin [48], and differential taxa 
abundance testing was done using Analysis of Composi-
tions of Microbiomes with Bias Correction (ANCOM-
BC) [49] in QIIME2, using the q2-composition plugin 
[48]. P-values were adjusted for multiple testing accord-
ing to Benjamini-Hochberg’s procedure [50] and repre-
sented as q-values. The statistical significance level was 
set at α = 0.05 for all tests.

https://github.com/benjjneb/dada2
https://github.com/benjjneb/dada2
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Alpha‑diversity analysis

Alpha-diversity measures were calculated to assess the 
microbial diversity within individual samples in groups. 
The Shannon and Simpson diversity estimators [51] were 
used to estimate species richness and evenness, with 
Shannon being more sensitive to species richness whereas 
Simpson is more sensitive to species evenness [52].

Covariate selection for beta‑diversity

The Multivariate Association with Linear Models 2 
(MaAsLin2) package [53] in R Studio [43] was used to 
determine the association between metadata variables and 
microbial community abundance. All the potential covar-
iates were assessed through the multivariate MaAslin2 
function using the case–control status (“Control”) as a 
reference. Metadata variables were included as covariates 
in subsequent analyses of beta-diversity if a statistically 
significant result for MaAsLin2 was observed (q < 0.05).

Principal Coordinates Analysis (PCoA)

A principal coordinates analysis (PCoA) was used to 
assess ordination and visualize the variance and dis-
similarity of taxa composition between samples based 
on Euclidean distances [54]. The first three principal 
coordinates were utilized, as they represent the largest 
eigenvalues for a three-dimensional PCoA plot [54]. The 
ordination plot was used to examine any potential clusters 
based on case–control status and covariates.

Permutational multivariate analysis of variance 
(PERMANOVA) tests

The permutational multivariate analysis of variance (PER-
MANOVA) adonis test [55] was performed to determine if 

there were differences between microbial community sam-
ples (permutations = 999; α = 0.05). Pairwise comparisons 
between cases and controls were conducted to determine 
specific associations.

Differential abundance analysis

Taxa associated with case–control status was assessed with 
ANCOM-BC [49], using control status as the reference. 
Microbial taxa were considered significantly differentially 
abundant at q < 0.05. The associated log-fold change was 
calculated during the ANCOM-BC diversity analysis [49].

Results

Cohort description

There were no statistically significant differences between 
the SCZ case and control groups for n sex (p = 0.093), age 
(p = 0.332), BMI (p = 0.283), MetS (p = 0.061), childhood 
trauma (p = 0.123), alcohol consumption (p = 0.083), or 
smoking (p = 0.253), as shown in Table 1. SCZ cases were 
all on psychotropic medication, comprising different medi-
cation combinations and dosages. Five control participants 
reported current use of medication for depression (n = 2), 
anxiety (n = 2) and appetite suppression (n = 1).

Most cases (n = 24, 58.5%) had FES (recently diagnosed 
n = 8; within 5 years of diagnosis and treatment n = 16). The 
remaining cases (n = 17, 41.5%) had chronic SCZ. These 
subgroups were analysed together to improve statistical 
power. Additionally, a combined analysis could improve the 
generalizability of the results, making it more applicable to 
the broader SCZ population.

Table 1  Clinical and 
demographic characteristics of 
cohort

BMI body mass index, MetS metabolic syndrome, n number, IQR interquartile range (Q3 – Q1)
χ  Chi-square; U Mann–Whitney U test
* p < 0.05

Variables Cases (n = 41) Controls (n = 48) p-value

Sex (female n, %) 14 (34.2) 26 (54.2) 0.093 χ

Age (years)(median, IQR) 27.50 (10.46) 27.33 (9.48) 0.332 U

BMI (median, IQR) 23.97 (9.89) 23.765 (7.29) 0.283 U

MetS (yes n, %) 11 (26.8) 5 (10.4) 0.061 χ

Childhood trauma (yes n, %) 28 (68.3) 26 (54.2) 0.123 χ

Current alcohol consumption (yes n, %) 14 (34.2) 27 (56.3) 0.083 χ

Current smoker (yes n, %) 23 (56.1) 18 (37.5) 0.253 χ
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Alpha‑diversity analysis

No significant association was found between alpha-diver-
sity measures and case–control status (Shannon q = 0.090; 
Simpson q = 0.174).

Beta‑diversity analysis

Covariates for beta‑diversity analysis

MaAsLin2 assessed the association between metadata varia-
bles (sex, age, BMI, MetS, childhood trauma, current alcohol 
consumption, and current smoking status) and the relative 
abundance of taxa in cases and controls. Metadata variables 
with a statistically significant microbial abundance differ-
ences included sex (Subdoligranulum, q = 0.041), current 

alcohol consumption status (Dehalobacterium, q = 0.041; 
Enterobacteriaceae, q = 0.037) and current smoking status 
(SMB53; q = 0.041). Therefore sex, current alcohol con-
sumption status, and current smoking status were included 
as covariates when investigating beta-diversity.

Permutational multivariate analysis of variance analysis 
of beta‑diversity

Gut microbial communities were not significantly different 
between cases and controls (p = 0.547) after correcting for 
the contribution of sex, current smoking status, and cur-
rent alcohol consumption (Table 2). Current smoking sta-
tus significantly contributed to variance between samples 
in the cohort (p = 0.036) and was subsequently included in 
the PCoA plot.

Principal coordinates analysis

Current smoking status was included in the PCoA plot as 
it significantly contributed to variance between samples 
(p = 0.036). The PCoA showed no statistically significant 
difference in the variance or dissimilarity of the micro-
bial composition between case and control participants 
(q = 0.124). In Fig. 1, the distance between the symbols 
represents an approximation of the dissimilarity between 
samples. Axis 1 explained 7.825% of the variance, while 
axes 2 and 3 explained 4.968% and 2.915%, respectively. 
Gut microbial composition variance was primarily driven by 

Table 2  Results of the adonis test

Status: case or control
* p < 0.05

Model R2 P-value

Status 0.011 0.547
Sex 0.013 0.063
Current alcohol consumption 0.013 0.090
Current smoker 0.015 0.036*
Residuals 0.948 NA
Total 1.000 NA

Fig. 1  Principal coordinates analysis plot illustrating genus-level gut 
microbial community and composition analysis for SCZ cases and 
controls. PCoA was used to assess the community variance (sym-
bols) and compositional variance (vectors) of SCZ cases and controls. 
The distance between the symbols approximates the dissimilarities 

between the microbial communities of samples (q = 0.124), while 
the vectors indicate the taxonomic variance driven by Bacteroides, 
Prevotella, and Succinivibrio. Axis 1 explained 7.825% of the vari-
ance, while axes 2 and 3 explained 4.968% and 2.915%, respectively



 Neurogenetics           (2025) 26:34    34  Page 6 of 10

Bacteroides, Prevotella, and Succinivibrio as shown by the 
red, blue, and orange arrows, respectively (Fig. 1).

Differential abundance of taxa associated 
with schizophrenia

The relative abundances of Prevotella (p = 0.037; q = 0.778), 
Faecalibacterium (p = 0.032; q = 0.778), Phascolarctobacte-
rium (p = 0.002; q = 0.279), Dialister (p = 0.043; q = 0.778), 
and SMB53 (p = 0.012; q = 0.513) were associated with 
SCZ case–control status. However, these associations did 
not withstand correction for multiple testing. All relative 
taxa abundances, except for Phascolarctobacterium, were 
depleted in SCZ cases compared to controls (Fig. 2).

Discussion

In the current study, we investigated potential associations 
between microbial taxa and SCZ in a South African cohort. 
We found no statistically significant differences in alpha- or 
beta-diversity between cases and controls. However, we did 
observe individual differences in relative taxa abundance 
between SCZ cases and controls, including the reduced rela-
tive abundances of Prevotella, Faecalibacterium, Dialister 
and SMB53, and the enriched relative abundance of Phas-
colarctobacterium in SCZ cases versus controls. However, 
these associations did not withstand correcting for multiple 
testing.

Previous reports on alpha-diversity in SCZ investigations 
are inconsistent [24], with observations of both decreased 
[28] and increased alpha-diversity [23] in SCZ cases ver-
sus controls. The majority of studies, however, report no 
difference in alpha-diversity [4, 22, 25, 27, 29, 56], in 
line with our observation. Alpha-diversity has previously 
been associated with external factors, such as medication 
or environment (e.g. diet and geography), which may con-
tribute to these discrepancies in results among studies [24, 

57]. Differences in beta-diversity in SCZ cohorts are more 
consistently reported by previous studies [24], which is in 
contrast to our observation of no statistically significant dif-
ference in beta-diversity. The discrepancies between our 
results with other studies may be due to sample size lim-
iting statistical power to detect differences between cases 
and controls. Additionally, discrepancies could be due to 
environmental factors, cohort characteristics or covariates 
included in the analysis ta.

In unadjusted analysis, relative abundance differences 
in individual taxa between cases and controls align with 
previous studies that have reported an association between 
Faecalibacterium [22, 28, 57–59] and Dialister [23, 60] 
and SCZ. Our observation of reduced relative abundance 
of Prevotella in SCZ cases contrasts with findings from 
some previous studies [22, 28, 60–62]. However, our results 
should be interpreted with caution as our observations did 
not survive correction for multiple testing. Differences in the 
relative abundances of Prevotella, Phascolarctobacterium, 
Dialister and Faecalibacterium were found to be associated 
with several neurological and psychiatric disorders in a 
recent study [63], suggesting that these taxa may be involved 
in disease aetiology. Potential mechanisms behind the asso-
ciations of Prevotella, Faecalibacterium, and Dialister with 
SCZ can be speculated based on SCFA produced by these 
taxa [57]. Prevotella is an acetate-producing taxon, whereas 
Faecalibacterium is a butyrate-producing taxon, and Dial-
ister produces propionate [64]. Alteration in their relative 
abundance may affect the availability of SCFA produced by 
these taxa. A decrease in SCFA availability, for example, 
has been suggested to be associated with increased risk for 
SCZ [16], considering that SCFA are known to play in gut 
barrier maintenance, immune response, and brain function 
[58, 65, 66]. Decrease in SCFA levels, particularly acetate, 
butyrate, and propionate, is associated with inflammation 
and neuroinflammation [58, 65, 66], which has been impli-
cated in SCZ [10, 23, 67]. Butyrate has been shown to have 
anti-inflammatory properties [58, 66], therefore, a decreased 

Fig. 2  Statistically significant differences in the relative abundance of 
taxa between SCZ cases and controls, prior to correction for multiple 
testing. The relative abundance of taxa that were statistically different 
in SCZ cases compared to controls was assessed using ANCOM-BC. 
Enriched or depleted relative abundances in SCZ cases versus con-
trols were identified based on the log-fold change and considered sta-

tistically significant at a threshold of p = 0.05. Significantly decreased 
relative abundances of genera Prevotella (p = 0.037; q = 0.778), Fae-
calibacterium (p = 0.032; q = 0.778), Dialister (p = 0.043; q = 0.778), 
and SMB53 (p = 0.012; q = 0.513) were associated with SCZ, whilst 
the relative abundance of the genus Phascolarctobacterium was 
enriched in SCZ cases compared to controls (p = 0.002; q = 0.279)
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relative abundance of butyrate-producing taxa, such as Fae-
calibacterium [11], may lead to higher levels of low-grade 
systemic inflammation. Furthermore, acetate and propionate 
are known to have neuroprotective and anti-neuroinflamma-
tory effects [65, 68, 69], potentially affected by decreased 
SCFA levels. This suggests that there may be an association 
of these genera in inflammation due to the changes in SCFA 
levels in SCZ [4, 15, 70]. However, these hypotheses need 
to be tested as SCFA concentrations were not assessed in 
the current study. Furthermore, various species and strains 
within a single genus may produce varying concentrations 
of the same SCFA, or different SCFA altogether.

This is the first study investigating the gut microbiome 
and SCZ in South Africa. As previous studies have primarily 
been conducted in Asian, European, or American cohorts 
[24, 58], direct comparison is difficult as geographic location 
has been associated with gut microbial composition [24]. 
Discrepancies in findings across studies may also be influ-
enced by sample size, the lack of standardised pipelines of 
gut microbial analysis, specific population characteristics, 
and environmental factors such as lifestyle and medications 
[9], as the gut microbiome is highly dynamic and malle-
able [25]. To gain further insights into gut microbial profiles 
in SCZ, future studies will require larger samples, uniform 
study designs, consistent methodologies, and harmonisation 
of covariates known to affect the gut microbiome (e.g., stool 
consistency, medication, and diet) [71].

This study contributes to the current body of knowledge 
by providing preliminary insights into the potential asso-
ciations between the gut microbiome and SCZ in a South 
African population. Although the results were not statisti-
cally significant after correction for multiple testing, they 
hint at possible associations that align with reports from pre-
vious studies and lay the groundwork for future functional 
investigation of the gut microbiome and SCZ to improve our 
understanding of SCZ pathogenesis.

Limitations

The main limitation is the small sample size and subsequent 
lack of statistical power (power = 0.643, effect size (d) = 0.5, 
⍺ = 0.05) that could have contributed to Type II error (false 
negative results), necessitating replication in a larger inde-
pendent sample [72, 73]. Moreover, this study only assessed 
the relative abundance of taxa at the genus level as 16S 
rRNA gene sequencing lacks accurate species-level data. 
Future studies should therefore consider the use of shotgun 
metagenomic sequencing. The cross-sectional design limits 
our ability to infer causation. Additionally, there are many 
factors, such as diet and medication, which may affect the 
gut microbial composition but were not included in the cur-
rent study. We repeated the analysis after excluding the five 

control participants who reported current use of medication 
for depression (n = 2), anxiety (n = 2) and appetite suppres-
sion (n = 1). However, this did not affect the statistical signif-
icance of our findings. The effect of this medication use may 
have been too small to be detected. Furthermore, it would 
be important to stratify by FES and chronic SCZ cases, but 
the sample size did not allow this. Lastly, the SCZ patient 
sample was recruited from a localised region of the country 
and is not ethnically and culturally representative of all SCZ 
patients in SA. Larger studies that are more geographically 
representative are needed to validate and strengthen these 
findings.

Conclusion

Results suggest potential associations between SCFA-pro-
ducing genera and SCZ that warrant further investigation. 
Alterations in the gut microbiome composition in SCZ could 
lead to changes in SCFA production, potentially contributing 
to the pathophysiology of SCZ via the MGB axis. Longitudi-
nal studies in larger samples may advance our understanding 
of the MGB axis and its relevance to SCZ pathogenesis.
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