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Prostate cancer (PCa) is the most frequently diagnosed malignant neoplasm in men. Despite the high incidence, the underlying
pathogenic mechanisms of PCa are still largely unknown, which limits the therapeutic options and leads to poor prognosis.
Herein, based on the expression profiles from The Cancer Genome Atlas (TCGA) database, we investigated the interactions
between long noncoding RNA (lncRNA) and mRNA by constructing a competing endogenous RNA network. Several
competing endogenous RNAs could participate in the tumorigenesis of PCa. Six lncRNA signatures were identified as potential
candidates associated with stage progression by the Kolmogorov-Smirnov test. In addition, 32 signatures from the coexpression
network had potential diagnostic value for PCa lymphatic metastasis using machine learning algorithms. By targeting the
coexpression network, the antifungal compound econazole was screened out for PCa treatment. Econazole could induce growth
restraint, arrest the cell cycle, lead to apoptosis, inhibit migration, invasion, and adhesion in PC3 and DU145 cell lines, and
inhibit the growth of prostate xenografts in nude mice. This systematic characterization of lncRNAs, microRNAs, and mRNAs
in the risk of metastasis and progression of PCa will aid in the identification of candidate prognostic biomarkers and potential
therapeutic drugs.

1. Introduction

Prostate cancer (PCa) is the most frequently diagnosed
malignant neoplasm and second leading cause of death in
men worldwide [1]. Tumor metastasis is responsible for
the majority of deaths [2]. Lymph node metastasis
(LNM) is the most important risk factor for treatment in
early-stage PCa [3]. However, the underlying pathogenic
mechanisms of PCa are still largely unknown, which limits
prognosis and therapy. The identification of new potential

biomarkers and therapeutic targets for the progression of
PCa would help overcome these serious clinical challenges
and improve alternative therapies.

Noncoding RNAs (ncRNAs) have become recognized as
important molecules in many types of cancer. They are
potential biomarkers and can reveal uncharacterized aspects
of tumor etiology. Accumulated evidence indicates that long
ncRNAs (lncRNAs) participate in cellular processes of PCa.
Relevant lncRNAs include PCAT1, PCAT5, PCA3,
PCGEM1, MALAT1, PRNCR1, CTBP1-AS, TRPM2, and
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SCHLAP1 [4–11]. However, few PCa-related or specific
lncRNAs have been well characterized. PCAT1 (prostate
cancer-associated transcript 1) is a prostate-specific tran-
scriptional repressor of cell proliferation and a target of the
polycomb repressive complex 2 (PRC2) [4]. PCA3 (prostate
cancer-associated 3) is a prostate-specific lncRNA that is
involved in the control of cell survival, via the modulation
of androgen receptor (AR) signaling [9]. MALAT1 (metasta-
sis-associated lung adenocarcinoma transcript 1) is overex-
pressed during the progression of PCa and plays a vital role
in enhancing zeste homolog 2- (EZH2-) promoted migration
and invasion in castration-resistant PCa cell lines [10].
lncRNAs can also act as competing endogenous RNAs (ceR-
NAs) for competing microRNA (miRNA) involved in tumor
etiology [12]. However, the mechanism of ceRNAs in PCa
has not been extensively studied [13].

With the development of high-throughput sequencing
technology, multiomics analyses have been successful in
generating copious sequencing data and databases. This
has created the need for informatics approaches to analyze
and interpret relevant multiomics data. The approaches
include support vector machine and random forest [14].
The machine learning approach has been rarely used to
predict prostate metastasis risk and progression, and the
prevalent methods of identifying molecular biomarkers
need to be improved. Advances in genomics and bioinfor-
matics have made drug repositioning a powerful alternative

strategy to discover and develop novel anticancer drug can-
didates from existing drugs in silico [15]. For example,
niclosamide, a Food and Drug Administration- (FDA-)
approved antihelminthic drug, can inhibit the expression
of AR variants and overcome enzalutamide resistance in
CRPC [16].

The present study investigates the altered regulatory rela-
tionships of lncRNAs, miRNAs, and mRNAs between PCa
patients and normal samples by constructing a competing
endogenous RNA (ceRNA) network. This strategy identified
several novel lncRNAs as functional ceRNAs with key roles
in the pathogenesis of PCa and identified six stage-
associated lncRNA signatures for PCa progression. Then,
based on machine learning algorithms and hub genes from
the coexpression network established by weighted gene coex-
pression network analysis (WGCNA) [17], we constructed
four classifiers for the prediction of PCa prostate lymphatic
metastasis: logistic regression (LR) [18], random forest (RF)
[19], k nearest neighbors (kNN) [20], and naive Bayesian
(NB) [21]. By targeting the coexpression network within
PCa metastasis, the antifungal compound econazole was
identified as a repositioning candidate on the basis of the
putative pattern of action in the connectivity map (CMAP)
[22]. Finally, we were the first to investigate the effects of eco-
nazole on the apoptosis, cell cycle, migration, invasion, and
cell adhesion of PC3 and DU145 cell lines in vitro and its
therapeutic effects against PCa xenografts in nude mice.
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Figure 1: The workflow for systematic analysis of the characterization of lncRNAs, miRNAs, and mRNAs in the risk of metastasis and
progression of prostate cancer, identifying new potential biomarkers, and therapeutic compound based on drug repositioning strategy.
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The workflow was summarized in Figure 1, which made a
substantial strategy for understanding the roles of lncRNAs,
miRNAs, and mRNAs in tumorigenesis and progression of
PCa and contributed to the discovery of new potential bio-
markers and therapeutic drugs.

2. Materials and Methods

2.1. Data Collection and Processing. The mRNA, lncRNA,
and miRNA transcriptome profiling of 489 PCa patients
and 52 normal samples (adjacent to tumors) was retrieved
from The Cancer Genome Atlas (TCGA) data portal
(version October, 2017). The expression data of miRNA
(miRNA-seq), lncRNA, and mRNA (RNAseqV2) were
obtained using the Illumina HiSeq platform considering
level 3. According to the TNM stage, 75 samples were
identified as LNM and 292 samples were obtained from
PCa tissue with non-LNM. There were three stages of
PCa diagnosis recorded in the TCGA database: stage II
(n = 116), stage III (n = 238), and stage IV (n = 8). In addi-
tion, mRNA and lncRNA annotation and extraction were
performed using the ENSEMBL genome database. After
background correction and quantile normalization, 17866
mRNAs, 7997 lncRNAs, and 696 microRNAs were further
analyzed. In this paper, we mainly used the program code
written in Perl and R language to analyze and deal with
RNA data. Differential expression analysis of mRNAs,
lncRNAs, and miRNAs was conducted using edgeR with a
false discovery rate (FDR) threshold < 0 05 and an absolute
value of log2FC > 1 5 to judge the significance of the gene
expression differences.

2.2. Construction of the ceRNA Network. We integrated the
expression data of lncRNAs, miRNAs, and mRNAs with
its related database information to construct the ceRNA
network. To further improve the ceRNA network reliabil-
ity, we retained lncRNAs, miRNAs, and mRNAs included
in different expression of RNAs between tumor tissues
and normal tissues. The miRNA-lncRNA interactions
were predicted according to the miRcode database
(http://www.mircode.org/), which is a comprehensive
searchable map of putative miRNA target sites across the
complete GENCODE-annotated transcriptome, including
>10000 lncRNA genes [23]. Next, to retrieve miRNA-
targeted mRNAs, we integrated the information from
miRDB, TargetScan, and miRTarBase databases. miRDB
(http://mirdb.org) is an online database for miRNA target
prediction and functional annotations that includes 2.1 mil-
lion predicted gene targets regulated by 6709 miRNAs,
which is based on high-throughput studies, and also com-
bines computational analyses and literature mining [24].
TargetScan (http://www.targets.org) predicts miRNA target
interactions by seeking existing and conserved 8mer, 7mer,
and 6mer sites that match the seed region of each miRNA
[25]. miRTarBase (http://miRTarBase.mbc.nctu.edu.tw/) pro-
vides information about experimentally validated miRNA
target interactions. The intersection of prediction results from
the three databases was utilized to establish miRNA-mRNA

interactions [26]. Cytoscape 3.6.0 software was used to visu-
alize the ceRNA network.

According to the ceRNA hypothesis, when the lncRNA
and mRNA competed for the same miRNA, the lncRNA-
miRNA-mRNA triplet was regarded as a potential ceRNA
triplet. We next calculated the mutual information (MI)
and conditional mutual information (CMI) to identify
ceRNA triplets [27]. The quantities and their associated
statistical significance were computed based on lncRNA,
miRNA, and mRNA expression profiles. The possibility
of lncRNA and mRNA interaction was computed by the
following equation [28]:

ΔI = I miRNA ; mRNA ∣ lncRNA − I miRNA ; mRNA
1

I miRNA ; mRNA represents the MI between miRNA
and mRNA, which shows the relationships between
miRNA and mRNA; I miRNA ; mRNA ∣ lncRNA repre-
sents the CMI of miRNA and mRNA after adding the
variable lncRNA; and ΔI denotes the significance of
lncRNA acting as a miRNA sponge. Mimic ΔI values were
calculated by random permutation of the lncRNA expres-
sion across samples 500 times. By comparing the real and
mimic ΔI values, a P value was calculated.

2.3. Pathway Enrichment and Progression of PCa Analysis. To
study pathological mechanisms of PCa and lymphatic metas-
tasis, the differentially expressed genes (DEGs) between tumor
tissues and normal tissues and between LNM and non-LNM
tissue from PCa were conducted Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analysis by the
clusterProfiler R package. The analysis and visualization
modules were obtained from the Bioconductor project. The
Kolmogorov-Smirnov (KS) test is a robust nonparametric
testing method that can be applied for comparison of multiple
groups without a known distribution pattern [29]. The KS test
was performed using the R package to analyze the pattern of
variability among stages II, III, and IV and to identify potential
biomarkers to predict the progression of PCa.

2.4. Weighted Gene Coexpression Network Analysis
(WGCNA). The coexpression network was constructed by
the WGCNA R package by calculating robust correlations
between all genes across all relevant LNM and non-LNM
samples. Based on scale-free topology criterion, the correla-
tion adjacency matrix was increased to the power of β = 12
to amplify the strong connections between genes and penal-
izing the weaker connections. The first principal component
is considered as the module eigengene (ME), which denotes
the highest percent of variance for all the genes in a module.
Module membership (kME) determines the correlations
between each gene and each ME [30, 31]. The within-
module connectivity for each gene is evaluated by computing
the connectivity of that gene with each other gene set in that
module. The hub genes with significant correlations with
MEs and high within-module connectivity were obtained
for further study.
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2.5. Establishment of Lymphatic Metastasis Prediction Models

2.5.1. Signature Screening. The hub genes from the coexpres-
sion network served as the descriptors for building the lym-
phatic metastasis prediction models. Pearson correlation
analysis was used to eliminate low correlation by calculating
the correlation coefficient between the metastasis state (non-
lymphatic metastasis and lymphatic metastasis samples are
marked “1” and “-1,” respectively) and descriptors. The
descriptor whose correlation coefficient with the metastasis
state was <0.1 was deleted. After filtration, the selected descrip-
tors served as signatures to establish the prediction models.

2.5.2. Establishment and Performance of Models. To discrim-
inate LNM from non-LNM for PCa, LR, RF, kNN, and NB
machine learning classifiers were used. LR provides a deter-
ministic model yielding weighting factors for each contribut-
ing variable. However, unlike linear discriminant analysis, it
does not require the independent variables to be normally dis-
tributed, linearly related, or of equal variance within each
group [18, 32]. RF utilizes an ensemble of unpruned decision
trees [19], each of which is constructed on a bootstrap sample
of the training data using a randomly selected subset of
variables [33]. The input data were divided into two subsets
based on a particular molecular descriptor and corresponding
splitting value at each node of the decision tree. When there
were no more significant nodes, the splitting process was fin-
ished [34]. In data segmentation clustering methods, the most
widely used and well-known method is kNN. The kNN algo-
rithm could classify objects according to the closest examples
in the feature space [35]. An object is classified by a majority
vote of its neighbors, with the object being assigned to the class
most common among its k nearest neighbors. NB is widely
used as a probabilistic classification model [21]. The Bayesian
algorithm computes the posterior probability directly based
on the kernel function of the following equation [36]:

P A ∣ B = P B ∣ A ∗
P A
P B

2

P A ∣ B represents the probability of A assuming that B is
true, which is the posterior probability of the model; P A is
the prior probability and refers to the probability in the
hypothesis space; and P B ∣ A is the likelihood of the model.

LR, RF, kNN, and NB were performed in Orange canvas
3.4.1. 75 LNM and 292 non-LNM samples were used as the
training set for model building. The performance of the classi-
fication algorithms was estimated by 5-fold cross-validation,
random sampling (n = 10), and leave-one-out validation.

2.6. Screening of Drug-Like Small Molecules. CMAP (http://
www.connectivitymap.org/cmap/) [37] was used to collect
the genome-wide transcriptional expression data from cul-
tured human cells treated with bioactive small molecules
and simple pattern-matching algorithms that together
facilitate the discovery of functional connections between
drugs, genes, and diseases. The hub genes for lymphatic
metastasis and DEGs in PCa samples compared with nor-
mal tissues were divided into two groups of upregulated

and downregulated genes and uploaded as an input set in
CMAP. By comparing the expression pattern similarities of
the differential genes and genes perturbed by compounds in
CMAP, small molecules involved in the lymphatic metastasis
of PCa were identified.

2.7. Validation of Drug Repositioning in PCa

2.7.1. Reagents and Antibodies. Econazole (CAS no. 24169-
02-6) was purchased from MedChemExpress Company
(Beijing, China). Fetal bovine serum (FBS), RPMI 1640
medium, and penicillin/streptomycin were obtained from
Gibco/Life Technologies (Gaithersburg, MD, USA). The
CCK-8 Assay Kit was purchased from Japan Tongren Chem-
ical Co. (Kyushu Island, Japan). The EdU Cell Proliferation
Assay Kit was purchased from Beijing Solaibao Technology
Co. Ltd. (Beijing, China). The JC-1 Mitochondrial Mem-
brane Potential Detection Kit and Cell Cycle Assay Kit were
purchased from Beyotime Biotechnology (Jiangsu, China).
The Annexin V-fluorescein/propidium iodide (FITC/PI)
Apoptosis Detection Kit was obtained from Absin Bioscience
Inc. (Shanghai, China). Matrigel matrix and Transwell cham-
bers were purchased from Corning Inc. (Corning, NY, USA).
Bovine serum albumin (BSA), dimethyl sulfoxide, and ribo-
nuclease (RNase A) were purchased from Sigma-Aldrich
(St. Louis, MO, USA). Pierce™ BCA, protein assay kit, prote-
ase inhibitor cocktail, and SuperSignal West Pico Chemilu-
minescent Substrate detection kit were purchased from
Thermo Fisher Scientific (Waltham, MA, USA). Polyvinyli-
dene difluoride membranes were purchased from Millipore
(Billerica, MA, USA). RIPA lysis buffer and antibodies to
phosphor-Rb (P-Rb), CyclinE, p53 upregulated modulator
of apoptosis (PUMA), myeloid leukemia cell differentiation
protein-1 (MCL-1), B-cell lymphoma 2 (BCL-2), poly
(ADP-ribose), PARP, caspase 9, and glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) were obtained from
Cell Signaling Technology Inc. (Beverly, MA, USA).

2.7.2. Cell Culture and Proliferation Assay. PC3 and DU145
cells were purchased from the Institute of Basic Medical
Sciences, Chinese Academy of Medical Sciences. The cells
were cultured in RPMI 1640 medium supplemented with
10% FBS in a humidified atmosphere with 37°C and 5%
CO2. The PC3 and DU145 cells (4 × 104 cells/mL) were
incubated with different concentrations of geldanamycin,
6-bromoindirubin-3′-oxime (BIO), and rilmenidine for
72 h. The concentration of geldanamycin was 0, 0.15, 0.46,
1.37, 4.12, 12.35, 37.04, 111.11, 333.33, or 1000 nM, and the
concentrations of BIO and rilmenidine ranged from 0 to
~20μM and 0 to ~80μM, respectively, by double dilution
method. The PC3 and DU145 cells (4 × 104 cells/mL) were
incubated with 0, 1.25, 2.5, 5, 10, 20, 40, 60, or 80μM econa-
zole in 96-well plates for 12, 24, 48, and 72 h. Viable cells were
measured by the CCK-8 assay. The absorbance value of each
well was determined using a SpectraMax M5 ELISA micro-
plate reader (Molecular Devices, Sunnyvale, CA, USA).
Based on the specific reaction of Apollo® fluorescent dye
and EdU, the replication activity of DNA could be
directly and accurately detected, which reflected the effect
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of econazole on cell proliferation. Transfected cells
(6 × 104 cells/mL) were plated into 96-well plates with vari-
ous concentrations of econazole (0, 5, 10, 20, and 40μM)
for 24 h and 48h. The samples were examined using the pro-
tocol of Cell-Light™ EdU Apollo® 488 in vitro Imaging Kit.
The fluorescence intensity was detected and analyzed with
a Cellomics ArrayScan VTI HCS Reader (Cellomics Inc.,
Pittsburgh, PA, USA) with the Morphology Explorer BioAp-
plication software. The mean fluorescence intensity was
assessed based on the EdU fluorescence, and the ratio of
the mean fluorescence intensity of Edu that decreased fol-
lowing treatment with econazole was computed with the
value of the control group designated as 100%.

2.7.3. Cell Cycle Arrest and Apoptosis. PC3 and DU145 cells
in the exponential phase of growth were digested into single
cell suspension, and 2mL was added to 6-well plates at a
density of 1 × 105 cells/mL. After the cells were completely
attached, the serum-free medium was cultured for 18-24 h.
After treatment with different concentrations of econazole
for 48h, the cells of the six-well plates were separately col-
lected, washed once with precooled PBS, resuspended in
70% ethanol precooled at -40°C, and fixed at 4°C overnight.
The cells were centrifuged at 1500 rpm for 5min, and the
supernatant was discarded. After washing twice, 200μL of
PI staining solution was added and staining proceeded at
room temperature for 30min in the dark. The cells were
filtrated through 400-mesh nylon mesh prior to detection
of the cell cycle. For the analysis of apoptosis, PC3 and
DU145 cells were seeded at a density of 5 × 105 cells/mL.
The Annexin V-FITC/PI Apoptosis Detection Kit was used
to stain the cells following the manufacturer’s instructions.
Cell cycle and apoptosis analyses were performed using Flow
Draw 10.0 software (https://www.draw.io). To further inves-
tigate the mechanism of econazole-induced cell cycle arrest
and apoptosis in PCa cells, we examined the expression of
cell cycle- and apoptosis-related proteins by western blotting.
The targets were P-Rb, CyclinE, PUMA, P53, Bcl-2, Mcl-1,
PARP, and cleaved PARP.

2.7.4. Determination of Mitochondrial Membrane Potential
(MMP). JC-1 is a lipophilic cationic dye that accumulates in
mitochondria depending on the MMP. Increasing MMP
results in progressive accumulation of JC-1 in the mitochon-
dria. PC3 and DU145 cells were cultured in 6-well plates
overnight. The cells were treated with 0, 5, 10, 20, and
40μM econazole for 48 h. The cells were harvested, washed
with PBS, and resuspended in PBS. JC-1 was then added
to each sample. The samples were incubated in the dark
for 30min. Then, the cell pellets were obtained by centri-
fugation at 1000 rpm for 5min and the cells were washed
with PBS, resuspended in PBS, filtered, and examined
using flow cytometry.

2.7.5. Cell Migration and Invasion. PC3 and DU145 cells
(5 × 104) cultured with 0, 5, 10, 20, and 40μM econazole were
suspended in 200μL serum-free medium and added to the
upper chambers of Transwell devices. The lower chamber
of each device contained 600μL of 10% FBS RPMI 1640 as

a chemoattractant. After incubation for 12-18 h, cells that
had not migrated to the lower chamber were carefully
removed from the membrane exposed to the upper chamber
using a cotton swab. The cells that had invaded to the lower
chamber in response to the chemoattractant were fixed with
4% formaldehyde and stained using crystal violet for 10min.
A minimum of five separate fields was examined by fluores-
cence microscopy.

2.7.6. Cell Adhesion Assay. Ninety-six-well culture plates
were coated with 50μL of fibronectin. Three wells were
coated with 1% BSA solution as a minimal adhesion control.
The plate was placed at 4°C overnight. Cells were harvested
and seeded at 2 × 105 cells/mL and treated with 0, 5, 10,
20, and 40μM econazole in wells of precoated 96-well
plates. After 2 h of incubation at 37°C, adherent cells were
fixed with 4% paraformaldehyde for 30min, washed with
PBS, and stained with crystal violet overnight. The optical
density value at 590nm was determined using an ELISA
microplate reader.

2.7.7. Xenograft Experiment. BALB/c nude mice were
obtained from Beijing Vital River Laboratory Animal Tech-
nology and were maintained in pathogen-free conditions.
The mice were randomly classified into four groups (n = 8
mice per group). A 100μL suspension of logarithmic
growth-phase PC3 cells (1 × 107 cells/mL) was inoculated
subcutaneously in the left groin of each mouse.

The tumor-bearing nude mice were fed in the barrier
system and maintained until the tumor volume, determined
as described below, reached 50mm3. The mice were ran-
domly allocated to the vehicle control group or one of the
three econazole groups (20, 40, or 80mg/kg). Each dose of
econazole was administered by intraperitoneal injection once
a day for 21 days. The body weight of each mouse was mea-
sured every 4 days. The longest and shortest diameters (mm)
of the subcutaneous tumor of each nude mouse were
measured using a vernier caliper, and the tumor volume
was calculated as 0 52 × longest diameter × vertical diameter
[2]. The mice were sacrificed on day 21, and the tumors were
harvested and weighed. Immunohistochemical staining
expression of Ki67 protein was done to evaluate the effect
of econazole on tumor proliferation. The experimental
protocol was approved by the Ethics Committee of Peking
Union Medical College (Beijing, China). This study was
implemented in accordance with the recommendations in
the Guide for the Care and Use of Laboratory Animals of
the National Institutes of Health.

2.7.8. Statistical Analyses. Data are presented as the mean ±
standard deviation (SD) from at least three independent
experiments. Statistical analyses and graph presentation
were carried out using GraphPad Prism software version
6.0 (GraphPad Software, La Jolla, CA, USA). The signif-
icance of differences between groups was assessed by
Student’s t-test or one-way ANOVA. P values of statisti-
cal significance are represented as ∗P < 0 05, ∗∗P < 0 01,
and ∗∗∗P < 0 001.
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3. Results

3.1. Functional Characterization of the ceRNA Network of
PCa. This study investigated the expression levels of mRNA,
lncRNA, and miRNA in tumor and normal tissues. Differen-
tially expressed RNAs were filtered using the criteria of
logFC = 1 5 and corrected P value FDR < 0 05 using the
edgeR package. These criteria identified 660 upregulated
and 739 downregulated mRNAs, 441 upregulated and 361
downregulated lncRNAs, and 43 upregulated and 16 down-
regulated miRNAs in tumors compared to normal tissues.
Volcano plots were generated (Figure 2). KEGG pathway
enrichment was performed for differentially expressed genes
(DEGs). Neuroactive ligand-receptor interaction was the
most significantly enriched, with the calcium signaling
pathway and metabolism-related pathway also being appre-
ciably enriched (Figure 3(a)). Similar results were observed
in PCa lymphatic metastasis-related pathway enrichment
(Figure 3(b)). Neuroactive ligand-receptor interaction, espe-
cially the GABAergic system, has significant effects on the
progression of PCa. The GABAergic system is enriched in
neuroendocrine cell- (NE-) like cells [38] and contributes to
PCa progression due to the secretion of neuropeptides [39].

To clarify the roles of differentially expressed lncRNAs
and the regulatory interactions of ceRNAs presented in nor-
mal and PCa tissues, we constructed the lncRNA-miRNA-
mRNA network of PCa. We first used the miRcode database
to retrieve the differentially expressed lncRNAs and the
potentially related miRNAs. Then, the Perl program was
used to extract 1643 pairs of interacting lncRNAs and miR-
NAs. After excluding the miRNAs that were not differentially
expressed, an interaction of 182 pairs of lncRNAs (n = 46)
and miRNAs (n = 13) was obtained. Next, the targeted
mRNAs of these miRNAs were retrieved from the miRTar-
Base, miRDB, and TargetScan. A total of 18 differentially
expressed mRNAs were common to the three databases.
These were used to construct the ceRNA regulatory network
of PCa by incorporating 46 lncRNAs, 18 mRNAs, and 13
miRNAs (Figure 4). The ΔI values for the ceRNA triplets
were calculated. The permutation test was used to compute
the P value of the triplets. Three triplets with P < 0 01

were identified: XIST-miR 372-DUSP2, LINC00336-miR
96-PRDM16, and EMX2OS-miR 508-SNAI2.

3.2. Prognostic lncRNA Biomarkers Associated with
Progression of PCa. Accumulating evidence indicates that
long lncRNA may affect the progression of PCa. We utilized
the KS test to determine the prognostic value of lncRNAs in
PCa. UCA1 and OSTN-AS1 were the key lncRNAs in the
ceRNA network of PCa (both P < 0 05; Figure 4 and
Figure S1). UCA1 was downregulated in PCa tissue from
the ceRNA network, but expression gradually increased
with the progression of PCa. More importantly, UCA1 was
also upregulated in PCa lymphatic metastasis. Therefore,
UCA1 was a highly sensitive signature for the prediction
of the progression of PCa. In addition, SCHLAP1,
LINC01141, CTD-2521M24.5, and RP11-245J24.1 were
identified as being important indicators of the progression
of PCa-related lncRNAs (all P < 0 01; Supplement figure).
Three genes (ANPEP, CXCL5, and GABRG1) also displayed
significant relationships with clinical stages (all P < 0 01;
Figures 5(a)–5(c)).

3.3. Dysfunctional Coexpression Network Construction in
PCa Lymphatic Metastasis. To understand the mechanism
of LNM and prognostic signs for the dissemination of PCa,
we compared the gene expression profiles of lymphatic
metastasis samples (n = 292) and nonlymphatic metastasis
samples (n = 75) in PCa. WGCNA was used utilizing edgeR
to analyze the coexpression of the DEGs. The adjacency
cutoff value of WGCNA was set to 0.8. Based on WGCNA
convection, the top two enriched modules depicted in tur-
quoise and blue displayed good distribution, as did brown
modules (Figure 6). Hub genes were evaluated by computing
the degree to determine the connectedness. The hub gene
with a degree > 10 (226 nodes) was selected to establish the
PCa lymphatic metastasis models.

3.4. Establishment and Evaluation of Lymphatic Metastasis
Models. The 226 nodes from the coexpression network were
used as primary signatures for lymphatic metastasis predic-
tion. We calculated the Pearson correlation coefficient
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Figure 3: KEGG pathway enrichment for DEGs. (a) Enriched pathways for DEGs between PCa and normal samples. (b) Enrichment analysis
after comparing DEGs of PCa lymphatic metastasis and nonmetastasis tissues.
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between the 226 signatures with the state of lymphatic metas-
tasis. After screening, 32 significant signatures (P < 0 05)
were used as the input variables to establish the lymphatic
metastasis models. They included CLDN2, CRISP1, UCA1,
PATE2, HOXB8, EMX2, SERPINA5, SPINT3, PAEP,
ELSPBP1, AQP2, UGT2B7, EDDM3B, TEDDM1, GABRG1,
XIST, EDDM3A, PATE1, WNT9B, POU3F3, HOXB6,
GDPD2, PAX2, SULT2A1, ACSL6, EMX1, ANPEP,
SCHLAP1, CXCL5, TFAP2B, SIM1, and MUC6. Among
these signatures, GABRG1, ANPEP, SCHLAP1, and CXCL5
were highly associated with the clinical stage (P < 0 01;
Supplement figure and Figure 5).

All the classification models (LR, kNN, NB, and RF
algorithms) were built using Orange canvas 3.4.1. Subse-
quently, the 5-fold cross-validation and leave-one-out
methods were adopted to evaluate the performance of the
four classifiers. Additionally, the training sets randomly
were divided into 10 training and test sets with a 3 : 2 pro-
portion. The performance of all the single classifiers is
summarized in Table 1. The RF model displayed the best
performance with an area under the curve and precise
value of 0.840 and 0.842, respectively, in the 5-fold
cross-validation. The precise values for the leave-one-out
and random sampling for RF were 0.840 and 0.844,
respectively. In the calibration plot (Figure 5(d)), the RF
model best fits to the straight line, which suggested good
predictive accuracy.

3.5. Small Molecules Involved in PCa. Using the two up- and
downregulated gene groups as the input set for the CMAP
database, the top ten small molecules that were reversed
with the dysregulation of PCa were determined (Table 2).
Geldanamycin had the highest enrichment score in the
lymphatic metastasis group. The values of IC50 of geldana-
mycin were detected as 16.42 nM and 27.40 nM in PC3 and
DU145 cells, respectively. Figure S2 A, C showed the dose
response curve of geldanamycin. It was reported that
geldanamycin is an effective inhibitor of hsp90 for breast
cancer and PCa treatment [40, 41]. Geldanamycin also
induces degradation of hypoxia-inducible factor 1 alpha
protein via the proteasome pathway in PCa cells [42].
However, geldanamycin has not been used clinically
because of the toxicity associated with its solubility.
Figure S2 B, D showed the dose response curve of BIO, and
IC50 values in PC3 and DU145 cells were 0.50 and 1.35μM,
respectively. BIO is a glycogen synthase kinase 3 (GSK-3)
inhibitor and has neuroprotective and regenerative effects
[43]. Zhang et al. found that BIO significantly improves the
targeting of antisense oligonucleotides (ASOs) in both the
cell cytoplasm and the nucleus [44]. Furthermore, BIO
enhances ASO function and represses AR expression
through the inhibition of the two main GSK-3 isoforms:
GSK-3α and GSK-3β activity [44]. However, Kohler
et al. suggested that low-dose BIO induced increased
neovascularization, secondary to VEGF, a process that was
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accompanied by a partial dedifferentiation of endothelial
cells via β-catenin [45]. Therefore, BIO has double sides
due to the dose usage and BIO is a typical tool medicine of
the GSK-3 inhibitor, which is not applied in clinics. The
antitumor effects of rilmenidine on PC3 and DU145 cells
were poor, and both IC50 values were more than 60μM.
Econazole displayed the second highest enrichment score of
-0.956 in lymphatic metastasis and the highest score of
-0.972 in PCa samples. Econazole is used clinically as an
antifungal drug with many different in vitro effects. It was
reported that econazole inhibits phosphoinositide-3-kinase
activity and promotes apoptosis in non-small-cell lung
cancer cell lines, including H661 and A549, with an effect
on intracellular Ca2+ concentrations and the proliferation
of PC3 cells [46]. Econazole could stimulate endoplasmic
reticulum Ca2+ release and hyperpolarize the mitochondrial
membrane and cause a rapid increase in oxidative stress
(OS) in leukemia cells [47]. However, there has not been a

systematic evaluation of econazole on the apoptosis and
metastasis in human PCa lines. Therefore, we investigated
the effect of econazole on the induction of apoptosis in PCa
cells, inhibition of metastasis in vitro, and the antitumor
activity in vivo.

Econazole inhibited PC3 and DU145 cell proliferation in
time- and dose-dependent manners as determined in CCK-8
assays (Figure 7(a)). The EdU assay is an immunochemical
detection method that measures nucleotide analogue incor-
poration into newly replicated DNA. The result of EdU assay
was consistent with that from the CCK-8 assays. The relative
mean fluorescence intensity was significantly lower in cells
incubated with econazole, and it also showed time- and
dose-dependent effects (Figures 7(b)–7(d)).

3.6. Validation of the Antitumor Activity of Econazole In
Vitro and In Vivo. PC3 and DU145 cells were used to
investigate the effects of econazole on the migration,
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Figure 5: The prognostic values of mRNAs in PCa were evaluated by KS test to analyze the pattern of variability among stages II, III, and IV. P
values of ANPEP (a), CXCL5 (b), and GABRG1 (c) were lower than 0.01. The calibration plot of four lymphatic metastasis models (d). The
relationship between measured values and predictive values can be observed visually by calibration plot. Among these classification models
(LR, kNN, NB, and RF algorithms), the RF model best fits to the straight line, which suggested good predictive accuracy.
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invasion, and cell adhesion in vitro, and the inhibition of
the growth of PCa xenografts in nude mice was further
studied in vivo.

3.6.1. Effect of Econazole on Cell Cycle and Apoptosis. Flow
cytometry analysis was used to survey the impact of econa-
zole on PC3 and DU145 cell cycle arrest. In Figure 8(a), we
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Figure 6: Dysfunctional coexpression network construction in PCa lymphatic metastasis. (a) Dendrograms produced by average linkage
hierarchical clustering of genes. Modules are defined as clusters of densely interconnected genes. Hierarchical clustering of module
eigengenes that summarize the modules found in the clustering analysis. Branches of the dendrogram group together eigengenes that are
positively correlated. The extent of gene conservation in the datasets was represented by the same module colors. The top two enriched
modules were presented as (b) turquoise and (c) blue. The genes of “highly connected gene” inside coexpression modules tend to be
hub genes.

Table 1: Performance of classification models by 5-fold cross-validation, random sampling, and leave-one-out validation.

Method
5-fold cross-validation Random sampling Leave-one-out
AUC Precise AUC Precise AUC Precise

Logistic regression (LR) 0.442 0.683 0.528 0.640 0.459 0.706

Random forest (RF) 0.840 0.842 0.815 0.844 0.775 0.840

k nearest neighbors (kNN) 0.581 0.712 0.648 0.753 0.571 0.719

Naive Bayesian (NB) 0.772 0.821 0.762 0.810 0.760 0.815
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could observe that the percentages of PC3 cells at the G1
phase increased to 46.1%, 52.5%, 58.7%, and 60.5%, after
the 48 h treatment with 5, 10, 20, and 40μM econazole,
respectively, compared with that of the control group
(G1 = 36 8%). For DU145 cells, treatment with the same
concentration of econazole increased the percentages of cells
in the G1 phase to 43.9%, 51.1%, 60.3%, and 65.9% for the
respective econazole concentrations. The observations indi-
cated that econazole could significantly increase the propor-
tions of PC3 and DU145 cells in the G0/G1 phase in a
dose-dependent manner. It was concluded that econazole
arrested cells at the G0/G1 phase. To further study the mech-
anism of cell cycle arrest, western blot analysis was per-
formed to detect the expression levels of key proteins at the
G1 phase, including P-Rb, CyclinE, PUMA, and P53. As
shown in Figure 8(b), econazole inhibited p-Rb and CyclinE
expression and induced PUMA protein expression in a
dose-dependent manner. The P53 protein expression level
remained stable in PC3 cells but increasing in DU145 cells
upon 5, 10, 20, and 40μM econazole treatment. Cell arrest-
mediated P53 might be different in DU145 cells (bearing
mutant p53) and PC3 cells (lacking p53). Econazole-
induced cell arrest in DU145 was associated with alteration
of p53 activation in DU145 cells via a dose-dependent
manner. Actually, flow cytometry analysis also showed that
the dose-dependent effect on cell arrest is more sensitive in
DU145 cells than PC3 cells.

Insight into the effect of econazole on cell apoptosis
was provided by flow cytometry analysis. Econazole obvi-

ously increased the apoptosis of PC3 and DU145 cells
(Figures 8(d) and 8(e)). These consistent findings in the
two cell types supported the idea that econazole induced
apoptosis of PC3 and DU145 cells in a dose-dependent
manner. We examined the expression of apoptosis-
related proteins by western blot. Econazole reduced the
expression of Bcl-2 and Mcl-1 and increased the expres-
sion of cleaved PARP in a dose-dependent manner
(Figure 8(c)). Decreased MMP is an early manifestation
of apoptosis and a hallmark of endogenous apoptosis.
The ratio of mitochondrial depolarization was evaluated
using the relative ratio of JC-1 polymer (red fluorescence)
to JC-1 monomer (green fluorescence). As shown in
Figure 9, the proportion of JC-1 monomers increased
gradually and the relative ratio of JC-1 polymer to JC-1
monomer gradually decreased, which indicated that econa-
zole can decrease the MMP levels of PC3 and DU145 cells.
Therefore, econazole can induce cell apoptosis in PC3 and
DU145 cells by activation of the endogenous apoptotic
pathway but the exogenous apoptotic mechanism needs
more investigations.

3.6.2. Effect of Econazole on Cell Migration, Invasion, and
Adhesion. To investigate the effect of econazole on the migra-
tion of PCa cells, we used Transwell chambers to mimic the
in vivo migration process. The number of cells that migrated
to the membrane gradually decreased with increasing con-
centrations of econazole, especially at 10, 20, and 40μM,
and the relative mobility was <40% (Figure 10(a)).

Table 2: Small molecules that potentially reverse dysregulation of expression profile in lymphatic metastasis and PCa samples, respectively.

CMAP drug name Enrichment score Mean score P value

Non-LNM compared with LNM samples

Geldanamycin -0.983 -0.806 0.001

Econazole -0.956 -0.804 0.002

6-Bromoindirubin-3′-oxime -0.953 -0.616 0.005

Triamterene -0.942 -0.449 0.007

Rilmenidine -0.941 -0.341 0.007

Fludrocortisone -0.918 -0.388 0.014

Mimosine -0.909 -0.373 0.017

Tocainide -0.896 -0.384 0.022

Ethoxyquin -0.871 -0.330 0.033

Acenocoumarol -0.812 -0.441 0.049

Normal tissue compared with PCa tissue

Econazole -0.972 -0.784 0.002

Rilmenidine -0.968 -0.719 0.002

6-Bromoindirubin-3′-oxime -0.878 -0.529 0.004

Diphenhydramine -0.957 -0.446 0.004

Naftidrofuryl -0.955 -0.336 0.004

PF-00539758-00 -0.952 -0.343 0.005

Meteneprost -0.950 -0.408 0.005

Quipazine -0.947 -0.397 0.006

Benzamil -0.841 -0.467 0.008

Azacyclonol -0.933 -0.368 0.009
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Figure 7: Econazole suppresses PC3 and DU145 cell proliferation. (a) PC3 and DU145 cells were treated with econazole for 12, 24, 48, and
72 h, and cell viability was assessed by the CCK-8 assay. (b, c) Immunofluorescence staining of PC3 and DU145 cells incubated with 0, 5, 10,
20, and 40 μM econazole for 48 h was observed by fluorescence microscopy (magnification 100x). Proliferation cells were dyed with EdU in
red, while whole cells were stained with Hoechst in blue. The EdU level was calculated by the high-content system based on fluorescence
intensity. Statistical analysis of EdU assay was shown in (d) for PC3 and DU145 cells treated for 48 h. The data was reported by
mean ± SD from three experiments. ∗P < 0 05, ∗∗P < 0 01, and ∗∗∗P < 0 001.
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Figure 8: Continued.
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Cell invasion is a process in which cells adhere to the
extracellular matrix and secrete matrix metalloproteinases
to degrade the extracellular matrix to complete migration,
which is a key step in the metastasis of cancer cells. We also
use the Transwell chambers as an invasion model. As the
concentration of econazole increased, the amount of cell-
derived Matrigel through the membrane decreased signifi-
cantly (Figure 10(b)). Adhesion of adjacent cells or with the
extracellular matrix during cell invasion and metastasis is
an important process for tumor cells to enter the blood ves-
sels and lymphatic vessels to achieve metastasis. Therefore,
we studied the effect of econazole on PCa cell adhesion. After
treatment with different concentrations of econazole for 48 h,
the number of PC3 and DU145 cells adhering to 96-well
plates was significantly reduced in a dose-dependent manner
(Figure 10(c)). These results indicated that econazole sig-
nificantly inhibited the migration, invasion, and adhesion
abilities of PCa cells.

3.6.3. Therapeutic Effects on the Xenograft Model. Xenografts
in the nude mouse model were used to investigate the
therapeutic effects of econazole against PCa. BALB/c nude
mice were subcutaneously implanted with PC3 cells. Intra-
peritoneal drug treatment with 20, 40, or 80mg/kg econa-
zole or vehicle control began the day after the first tumor
cell injection. Animals were treated once a day, and tumor
weight and volume were measured every 4 days. The study
was terminated after 21 days. No difference in body weight

was observed evidently in the four groups (Figure 10(d)).
There was no significant difference in tumor growth between
the groups in the first 4 days after tumor cell inoculation.
However, from days 5 to 21, tumor growth was rapid in the
control group but was remarkably reduced in the treatment
groups, especially for 40 and 80mg/kg econazole. Tumor size
was also significantly reduced in the econazole-treated groups
compared to the vehicle control (Figures 10(d)–10(f)). Ki67
is a proliferating cell-associated nuclear antigen whose
function is closely related to mitosis and is indispensable
in cell proliferation. The results of Ki67 immunohistochem-
ical staining indicated that the expression of Ki67 in the eco-
nazole treatment groups was significantly lower than that of
the control group, which further indicated that econazole
inhibited the growth of prostate xenografts in nude mice
(Figure 11(a)). Base on the hematoxylin-eosin (HE) staining
result (Figure 11(b)), there was nontoxic effect on nude mice
at the doses of 40mg/kg and 80mg/kg.

4. Discussion

Although PCa-specific lncRNAs are being increasingly
identified, our understanding of lncRNAs for competing
miRNA that regulates tumorigenesis and progression of
PCa is still incomplete. The recently proposed ceRNA
hypothesis posits that a novel form of posttranscriptional
gene regulation operates through miRNA competition. With
the identification of ceRNA crosstalk, miRNA, lncRNA, and
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Figure 8: Effect of econazole on the cell cycle and apoptosis. (a) DU145 and PC3 cells were treated with 0, 5, 10, 20, and 40 μM econazole for
48 h and then stained with PI for flow cytometry analysis. The percentages of PC3 cells at the G1 phase increased to 46.1%, 52.5%, 58.7%,
60.5%, respectively, compared with the control group (G1 = 36 8%). For DU145 cells treated with the same concentration of econazole,
the percentages of cells in the G1 phase increased to 43.9%, 51.1%, 60.3%, and 65.9%. (b) Western blot analysis was performed to detect
the expression levels of key proteins at the G1 phase. Econazole inhibited p-Rb and CyclinE expression and induced PUMA and P53
protein expression. (c) The expression of apoptosis-related proteins was detected by western blot. Econazole reduced the expression of
Bcl-2, Mcl-1, and PARP and increased the expression of cleaved PARP. After being treated with various concentrations of econazole for
48 h, (d) PC3 and (e) DU145 cells were stained with Annexin V-FITC and PI and analyzed by flow cytometry.
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their targeted genes can connect directly or indirectly.
Herein, based on ceRNA hypothesis, we utilized paired
miRNA, lncRNA, and mRNA expression profiles of PCa
patients to construct a ceRNA network.

PCA3 and PCAT1 as well-known PCa-associated
lncRNAs [4, 9] were identified in the ceRNA network. They
were highly expressed with logFC values of 3.36 and 2.71,
respectively. Interestingly, UCA1 was downregulated in PCa
compared with normal samples but was highly expressed in
LNM samples and was also a main signature for machine
learning model building. More importantly, UCA1 was
associated with the tumor stage with a P value of 0.04. There-
fore, UCA1 positively correlated with the severity of PCa.
UCA1 was originally discovered to be overexpressed in
bladder cancer [48]. Several recent studies reported that
UCA1 might have a prognostic value in PCa and be a
potential therapeutic target [49, 50]. Recently, it was
reported that UCA1 could exacerbate oxidative stress and
attenuates autophagy-dependent cell death through block-
ing autophagic flux [51, 52].

XIST is also a potential signature for the progression of
PCa. XIST was significantly downregulated in both PCa and
LNM samples, and the XIST/miR 372/DUSP2 axis might be
important for ceRNA crosstalk according to the findings of
a permutation test. XIST is required for X chromosome
inactivation (XCI) and enables dosage compensation

between XX females and XY males [53]. XIST loss may result
in X reactivation and consequent genome-wide changes that
lead to cancer, indicating that XIST RNA was required to
maintain XCI and to suppress cancer in vivo [54]. XIST could
engage in TGF-β-induced epithelial-mesenchymal transition
(EMT) and cell invasion and metastasis in non-small-cell
lung cancer (NSCLC) [55] and colorectal cancer (CRC)
[56]. miR 372 is crucial in several human cancers [57]. Exces-
sive miR 372 promotes metastasis of oral and liver cancers
[58], but the role of XIST in PCa is rarely studied. We found
that miR 372 was also upregulated in PCametastasis samples,
and DUSP2, the target gene of miR 372, is downregulated.

DUSP2 was also known as PAC1 (phosphatase of acti-
vated cells 1) and is a dual threonine/tyrosine phosphatase
that specifically dephosphorylates and inactivates mitogen-
activated protein (MAP) kinases. DUSP2 transcription is
induced in response to serum deprivation and oxidative
stress, which leads to p53-dependent apoptosis [59].
DUSP2 also has been demonstrated to be involved in
EMT through its direct involvement in the inactivation
of the extracellular signal-regulated kinase pathway in
pancreatic ductal adenocarcinoma, which is essential to
the epithelium-originated solid tumor metastasis cascade
[60]. Therefore, we hypothesize that XIST might regu-
late PCa progression and metastasis by competing for
miR 372 to modulate the expression of DUSP2. The
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Figure 9: Econazole decreases mitochondrial membrane potential (MMP) in PCa cells. Relative MMP represents the MMP of the respective
sample over that of control (%). The data was reported by mean ± SD from three experiments. ∗P < 0 05, ∗∗P < 0 01, and ∗∗∗P < 0 001.
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Figure 10: Continued.
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underlying mechanism remains unclear and should be
further investigated.

Lymphatic metastasis is a common outcome of PCa and
is one of the key factors affecting the prognosis of PCa
patients. Thus, it is essential to discover biomarkers that
accurately indicate the risk of lymphatic metastasis. We

established four machine learning classifiers to discriminate
LNM from non-LNM based on the signatures from the
coexpression network. There were 32 significant signatures
used to build the RF model. Among the signatures, UCA1
and XISTwere also the key hub nodes of the ceRNA network,
suggesting that they might play important roles in the
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Figure 10: Effect of econazole on the migration, invasion, and cell adhesion and therapeutic effects on a nude mouse xenograft model.
Transwell chambers were used to mimic the in vivo migration and invasion process. (a) The number of PCa cells that migrated to the
membrane gradually decreased with increasing concentrations of econazole, especially 10, 20, and 40μM, and the relative mobility was
<40% (original magnification, 100x). (b) The invasion of PC3 and DU145 cells was inhibited in a dose-dependent manner by econazole.
(c) Effect of econazole on the cell adhesion of PCa cells. After treatment with different concentrations of econazole for 48 h, the number of
PC3 and DU145 cells adhering to 96-well plates was significantly reduced in a dose-dependent manner. (d, e) The growth of PCa
xenografts in nude mice inhibited by econazole. No differences in body weight was evident in the four groups. From days 5 to 21, tumor
growth was rapid in the control group but was remarkably reduced in the econazole treatment groups for 40 and 80mg/kg econazole.
(f) Tumor size was also significantly reduced in the econazole-treated groups compared to the vehicle control. The data is reported as
the mean ± standard deviation from three experiments. ∗P < 0 05, ∗∗P < 0 01, and ∗∗∗P < 0 001.
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pathogenesis and metastasis of PCa. Some signatures have
direct and indirect relationships with PCa or other types
of cancer. For example, CLDN2 is an X-linked oncogene
or tumor suppressor gene in breast cancer [61]. EMX1
and EMX2 are homeodomain-containing transcription
factors, and the function of EMX2 has been linked to
the WNT signaling pathway, which has an important role
as a suppressor in lung cancer [62, 63]. Overexpression of
SCHLAP1 independently predicts the progression of lethal
PCa [64]. Four signatures (PATE1, PATE2, EDDM3A, and
EDDM3B) are extensively distributed in the prostate and
testis. UCA1, GABRG1, ANPEP, SCHLAP1, and CXCL5
were strongly related to the clinical stage of PCa. In par-
ticular, the P value of ANPEP of 1.096e-7 was consistent
with a previous study [58]. Recently, it was reported that
apoptosis-induced CXCL5 accelerates inflammation and
growth of prostate tumor metastases in the bone [65].
The relationship between GABRG1 and cancer has not
yet been reported. Presently, using enrichment analysis,
we confirmed that the GABAergic system contributes to
PCa progression [39]. It has also been reported that
GABA is highly expressed in prostate tissue of patients
with cancer or benign prostatic hypertrophy and the high
expression has been observed in prostate tissue of cancer
patients with LNM [66]. Therefore, the GABAergic system

and its related dysregulated genes could be important in
the progression and prognosis of cancer.

Another successful application of the coexpression net-
work is to find drugs for PCa treatment utilizing the
CMAP database. In this study, the anticancer effect of
econazole was identified for further validation in vitro
and in vivo.

CCK-8 and Edu staining assays showed that econazole
significantly inhibited the proliferation of PC3 and DU145
cells. Flow cytometry and western blot were used to ana-
lyze apoptosis and cell cycle arrest in PC3 and DU145
cells after econazole treatment. Econazole effectively pro-
moted apoptosis of PCa cells, including reduction of
MMP, activation of caspase family proteins, cleavage of
PARP-1, and decrease of Bcl-2 and Mcl-1 in a dose-
dependent manner. Econazole also significantly regulated
cell cycle arrest at the G0/G1 phase by inhibiting P-Rb
and CyclinE protein expression and increasing PUMA
and P53 protein expression. The antimetastasis activity of
econazole was observed in Transwell chamber migration
and human fibronectin assays. Econazole remarkably
inhibited PCa cell migration, invasion, and adhesion. More
importantly, econazole also inhibited the growth of pros-
tate xenografts in nude mice. Thus, the result showed
the anticancer effects of econazole and supported the novel
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Figure 11: Econazole inhibited prostate tumor growth in the xenograft mouse model and had no toxic effect on the main organs (original
magnification, 100x). (a) Ki67 immunohistochemical staining showed that the expression of Ki67 in the econazole treatment groups was
significantly lower than that in the control group. (b) HE staining of paraffin-embedded sections of the heart, liver, kidney, lung, and
spleen indicated that econazole inhibited the growth of tumors at 40mg/kg and 80mg/kg and also did not produce toxic side effects on
nude mice.
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therapeutic indication and usage of econazole for PCa
treatment.

5. Conclusions

The PCa-associated dysregulated ceRNA network was devel-
oped by utilizing sample-matched miRNA, lncRNA, and
mRNA expression profiles in combination with the miRNA
regulatory network based on the ceRNA hypothesis. XIST/
miR 372/DUSP2 in the ceRNA network was speculated to
participate in the EMT process. The underlying mechanism
should be further investigated. In addition, the coexpression
network was constructed to find the hub genes, which are
selected as signatures for building the RF classifier to predict
the PCa lymphatic metastasis. These key RNAs in the ceRNA
network and lymphatic metastasis-associated signatures were
analyzed by KS test. Taken together, we found that UCA1,
GABRG1, ANPEP, SCHLAP1, and CXCL5 were strongly
related to the clinical stage of PCa and also had good perfor-
mance for predicting lymphatic metastasis risk. Finally,
based on the CMAP database, econazole was identified as a
novel repositioning candidate for PCa treatment. In vitro
and in vivo pharmacodynamic experiments validated that
econazole could induce growth restraint, arrest cell cycle at
the G0/1 phase, lead to apoptosis, inhibit migration, invasion,
and adhesion in PCa cells, and inhibit the growth of prostate
xenografts in nude mice. Although the exact molecular
mechanism of the anticancer and antimetastasis activities of
econazole remains unclear, the present findings indicate that
econazole might be a potential therapeutic drug for PCa.
Therefore, the study provides a substantial and feasible
approach for identifying the potential diagnostic biomarker
and therapeutic drug for the diagnosis and treatment of PCa.
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Supplementary Materials

Figure S1: the prognostic value of lncRNAs in PCa was
evaluated by KS test, by computing expression changes of
lncRNAs with the progression of PCa among stages II, III,
and IV. P values of UCA1 (A) and OSTN-AS1 (B) were
<0.05. UCA1 was downregulated in PCa tissue, but its
expression gradually increased with the progression of PCa,
and UCA1 was upregulated in PCa lymphatic metastasis.
SCHLAP1 (C), LINC01141 (D), CTD-2521M24.5 (E), and
RP11-245J24.1 (F) were also identified as important progres-
sion of PCa-related lncRNAs with P values < 0.01. Figure S2:
proliferation inhibitory effect of dose response curves of
geldanamycin and 6-bromoindirubin-3′-oxime (BIO). Gel-
danamycin on prostate cancer cells, PC3 cells (A), and
DU145 cells (C) was cultured in 96-well plates with different
concentrations of econazole for 72 h. Dose response curves of
BIO on PC3 and DU145 cells were shown in Figure S1 B and
D, respectively. Cell viability was measured by CCK-8 assay.
Each bar represents the mean ± SD of three determinations.
(Supplementary Materials)
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