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Abstract

Intestinal microbiota facilitates food breakdown for energy metabolism and influences the

immune response, maintaining mucosal homeostasis. Overall, HIV infection is associated

with intestinal dysbiosis and immune activation, which has been related to seroconversion

in HIV-exposed individuals. However, it is unclear whether microbiota dysbiosis is the cause

or the effect of immune alterations and disease progression or if it could modulate the risk of

acquiring the HIV infection. We characterize the intestinal microbiota and determine its

association with immune regulation in HIV-exposed seronegative individuals (HESN), HIV-

infected progressors (HIV+), and healthy control (HC) subjects. For this, feces and blood

were collected. The microbiota composition of HESN showed a significantly higher alpha (p

= 0.040) and beta diversity (p = 0.006) compared to HC, but no differences were found com-

pared to HIV+. A lower Treg percentage was observed in HESN (1.77%) than HC (2.98%)

and HIV+ (4.02%), with enrichment of the genus Butyrivibrio (p = 0.029) being characteristic

of this profile. Moreover, we found that Megasphaera (p = 0.017) and Victivallis (p = 0.0029)

also are enriched in the microbiota composition in HESN compared to HC and HIV+ sub-

jects. Interestingly, an increase in Succinivibrio and Prevotella, and a reduction in Bacter-

oides genus, which is typical of HIV-infected individuals, were observed in both HESN and

HIV+, compared to HC. Thus, HESNs have a microbiota profile, similar to that observed in

HIV+, most likely because HESN are cohabiting with their HIV+ partners.
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Introduction

Resistance to Human Immunodeficiency Virus 1 (HIV-1) in uninfected individuals who have

repeated unprotected sexual exposure to the virus, known as HIV-1-exposed seronegative

(HESN), provides a unique opportunity to elucidate mechanisms of natural protection to

infection. Although the mechanisms of protection in HESNs have not been fully elucidated, a

potent but focused and tightly regulated innate antiviral response at the entry site, clearing the

virus while avoiding excessive immune activation, is commonly observed in HESNs [1–4].

Furthermore, the gastrointestinal tract (GIT), as the primary viral replication site and viral res-

ervoir for HIV-1, plays an essential role in viral control and eradication [5].

Recent studies demonstrated that gut microbiota, composed of over 100 trillion bacteria

residing at the GIT, facilitates food breakdown for energy metabolism and contributes to the

immune system’s development and function, maintaining mucosal homeostasis [5,6]. Modifi-

cation of the intestinal microbiota composition is related to alterations in metabolic processes

and some metabolic disorders [7,8].

In the HIV context, most studies, including those performed in Latin America, have found

that HIV infection is associated with intestinal dysbiosis and changes in diversity, with

increased numbers of Enterobacteriaceae and Enterococcaceae pathobionts, as well as by an

enrichment of the Prevotella genus [9–12]. This altered microbial profile in HIV+ patients is

associated with i) a metabolic alteration of the microbiota and processes related to oxidative

stress [13], and with ii) increased levels of activation markers, and reduced levels of IL-10 and

IL-1R, which in turn correlate with an increase of activated CD8+ T cells [9,14,15], possibly

facilitating infection in HIV-exposed individuals [16]. Therefore, the presence and abundance

of beneficial bacteria within the intestinal microbiota could modulate the development and

response of the immune system, decrease activation levels, and promote integrity and function

of the intestinal mucosa, consequently protecting against infections such as those caused by

enteric pathogens and sexually transmitted viruses as HIV-1 [17,18].

Nevertheless, to date, it is not clear if the microbiota dysbiosis in HIV-infected individuals

is a product of the immunological alterations induced by the virus or whether it is one of the

causes of immune alterations, promoting disease progression. Even so, few studies have pro-

posed to evaluate the relationship between the intestinal microbiota and susceptibility to this

infection in HIV-exposed subjects. Some studies have found that men who have sex with men

(MSM) have a richer and more diverse fecal microbiota than non-MSM people. However, in

the HESN context, most studies have focused on women [19], especially in the cervicovaginal

microbiota in cohorts of sex workers in Africa. These studies have associated protective muco-

sal immune responses with a highly diverse vaginal microbiota, where, for example, the pres-

ence of Lactobacillus species is related to a lower risk of HIV-1 transmission [20–22].

Hence, we characterize the intestinal microbiota, determining its association with natural

resistance to HIV, as well as with immune activation and regulation in HESN, HIV+, and

non-exposed HC from a small cohort of Colombian individuals.

Materials and methods

Population

General inclusion criteria for the three groups of the study were: to be over 18 years old, have

no history of recent antibiotic use, diarrhea, gastrointestinal disease or consumption of antire-

troviral medication. Blood and stool samples were collected from 6 HESN from a serodiscor-

dant cohort of heterosexual couples recruited at the HIV-1 care program HERES in Santa

Marta, Colombia. Inclusion criteria for HESN were: seronegative at the time of inclusion, with
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a history of unprotected sexual intercourse with HIV positive partners with detectable viral

loads, 12 or more unprotected sexual episodes in at least three consecutive months within one

year of study entry. Also, a third-generation rapid test and the determination of proviral DNA

were performed, obtaining negative results [23].

The HESN subjects were 33% males, mean age [range] = 37 [18–58] years old, and their

HIV-1 seropositive partners had at sampling: i) viral load of 1,450 [50–180,790] copies/mL (2

cART naïve, one on suppressive cART, and three on cART with low adherence), ii) CD4+ T

cells count of 344 [134–804] cells/uL and iii) the length of HIV infection since diagnosis was

9.5 [3.6–14.4] years. The couples had an average of 15 unprotected sexual intercourses per

month during 5.5 [2.2–9.0] years, with the last unprotected intercourse taking place between

two days and six months before sampling.

Blood and stool samples from 9 healthy controls (HC) with low risk for HIV infection were

also included (45% males with mean age [range] = 25 [22–53] years). Additionally, blood and

stool samples from 10 HIV-1 infected subjects were included (90% males with mean age

[range] = 27 [18–43] years). They had evident disease progression based in next criteria: HIV-

1 infection diagnostic (without antiretroviral treatment), CD4+ T-cells count>180 cells/μL

and viral load between 7,000 and 100,000 copies/mL.

Most individuals in this study were heterosexual. Additionally, each subject was surveyed

on diet components, the consumption of medications, and aspects related to lifestyle known

modifiers of the intestinal microbiota [24,25]. Exclusion criteria were diarrhea or being on

antibiotic treatment at the time of sampling. The study was designed and conducted following

the Declaration of Helsinki and Colombia legislation (Ministry of health resolution 008430 de

1993). It was approved by the Ethics Committee of the Universidad de Antioquia (Act. 16-08-

725). After thoroughly explaining the project and clarifying any doubt concerning the

research, all subjects signed a written informed consent. The biological material collected was

anonymized to ensure the privacy of the individuals.

The frequency and phenotype of blood T cells

The frequency and phenotype of T cells from blood were determined by flow cytometry. For

activation phenotype discrimination, 100 μL of blood was incubated for 30 min at 25˚C in the

dark with specific antibodies for CD3-PerCp (clone: SK7, Becton–Dickinson BD Biosciences,

San Jose, CA), CD4-PE (Clone: SK3, BD), CD8a-Alexa Fluor 700 (clone: OKT8, Thermo

Fisher), CD161-APC (clone: DX12, BD), CD38-PE-Cy7 (clone: HIT2, Thermo Fisher) and

anti-HLA-DR-FITC (clone: L243, Thermo Fisher). Erythrocytes were lysed with 1× lysing

solution (BD, San Jose/CA, USA) incubating for 20 min at 25˚C. Cells were washed twice with

PBS (Sigma-Aldrich) and then fixed with 1% paraformaldehyde.

For discrimination of regulatory T cells (Treg) and CD161+CD4+ T cell phenotype

(Th17-like [26]), 100 μL of blood was incubated for 30 min at 25˚C in the dark with specific

antibodies for CD3-PerCp (clone: SK7, BD), CD4-PE (Clone: SK3, BD), CD161-APC (clone:

DX12, BD) and CD25-PE-Cy7 (clone: BC96, Thermo Fisher). Erythrocytes were lysed with 1×
lysing solution (BD) incubating for 20 min at 25˚C. After, the cells were permeabilized and

fixed using the Foxp3/Transcription Factor Staining Buffer Set (Thermo Fisher), following the

intracellular staining with anti-FOXP3-FITC (clone: PCH101, Thermo Fisher) for 30 min at

4˚C. Then, cells were washed twice with PBS (Sigma-Aldrich) and fixed with 1% paraformal-

dehyde. At last, we estimated the balance in Treg and Th17-like cells using a ratio.

All preparations were stored at 4˚C until the acquisition in the LSR Fortessa cytometer

(BD). Acquisitions were performed in the BD FACSDiva 6.1.2 version and the data analysis in

FlowJo versión 10.4 (Tree Star, Inc, Ashland, OR, USA). Fluorescence minus one control was
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used to define positive thresholds. The lymphocyte gate was selected by the side (SSC) versus

forward (FSC) light scatter, and dead cells were excluded. The CD4+ or CD8+ T cells were

gated within the CD3+ region.

The characterization of Treg cells was performed by evaluating the expression of the CD25

and FOXP3 markers in the CD4+ LTs. Th17-like cells were determined by the expression of

the CD161+ in CD4+ T cells. Likewise, the activation level was determined by the co-expres-

sion of HLA-DR and CD38 in both subsets.

Microbiota sequencing

DNA was extracted from feces using the stool DNA isolation kit (Norgen Biotek, Thorold,

ON, Canada). DNA sequencing and analysis were performed. Briefly, after quality controls

assessments, the DNA was sequenced as previously described [27], using the Illumina MiSeq

platform. The sequenced data processing was performed following the Standard Operating

Procedure (SOP) using MOTHUR software package (v 1.39.5). Quality and specificity reads

were assessed, and low quality and nonspecific reads were cleaned with the screen.seqs_com-

mand. Operational Taxonomic Units (OTUs) were defined at 97% and were taxonomic

assigned using the RDP reference database sequences as a guide [28] (S1 File). Singletons and

OTUs, identified as both chloroplasts and mitochondria, were discarded.

Statistical analysis

The compositional data obtained were normalized using Center Log Ratio (CLR) transforma-

tion, and the characterization of microbial community alpha diversity was assessed by the sam-

ple’s richness. To visualize differences in microbial community structures based on genera

abundances, θyc dissimilarity matrices were generated from OTU tables, which were obtained

with MOTHUR, subsequently observed to Principal Coordinate Analysis (PCoA), and samples

were compared through Permutational Multivariate Analysis of Variance (PERMANOVA),

performed using Microbiome Analyst [29,30]. In addition, correlations in genera microbial of

fecal microbiota samples were calculated using the Spearman test implemented in Microbiome

Analyst, following literature recommendations [31]. According to bivariate normality assump-

tion through the Shapiro–Wilk test, parametric unpaired t-tests or non-parametric Mann-

Whitney U tests were used to compare the phenotype of blood T cells among the studied

groups. A two-tailed p-value <0.05 was considered statistically significant. The statistical tests

were performed using the GraphPad Prism V.7. (GraphPad Software, San Diego, CA, USA).

Results

The composition of intestinal microbiota in HESN is different from HC

but similar to HIV+

We assessed the fecal microbiota of 25 individuals belonging to three groups: HESN (n = 6),

HC (n = 9), and HIV+ (n = 10). We asked about the food preference and the intake of different

animal protein such as chicken, meat and fish and differences were not observed among the

three cohorts of individuals. Likewise, regarding physical activity in all individuals, differences

were not highlighted. After bioinformatics analyses, the number of clean sequences of the fecal

samples had a median of 29,589 sequences per sample. The sequences obtained were represen-

tative of the microbial communities, and sequence numbers were sufficient to characterize the

study population, indicated by the rarefaction curves (S1 Fig).

The composition of microbial communities was assessed in each group. Although we iden-

tified common genera of Firmicutes such as Faecalibacterium and Roseburia genus with
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similar abundance in the fecal microbiota in all groups analyzed (Fig 1A), microbiota in HESN

was different compared to HC. Still, it exhibited a more remarkable similarity with the one

observed in HIV+ (Figs 1A–1C and S2), including the family abundance (S3 Fig). Indeed, we

observed a similar abundance of genera such as Prevotella, Dialister, and the Proteobacteria

Succinivibrio genus shared in HESN and HIV+. In contrast, we observed a lower abundance of

Prevotella and Dialister genera and a higher abundance of Bacteroides in HC compared to

HESN and HIV+ (Fig 1A).

Moreover, many genera were not common in HESN and HC; Succinivibrio (p = 0.0021),

Victivallis (p = 0.0029), and Megasphaera (p = 0.017) were more significantly enriched in

HESN than HC, Bacteroides (p = 0.0042), Clostridium XIVa (p = (0.011), Alistipes (p = 0.011),

and other genera from Firmicutes, Bacteroidetes, and some Vellionellales as Allisonella
(p = 0.036), were preferentially present in HC, but absent in HESN (Fig 1B). However, HESN

and HIV+ seem to have a similar microbiota composition since only Allisonella (p = 0.047, Fig

1B and 1C) was significantly enriched in HIV+, but not in HESN, suggesting an association of

these genera with HIV-1 infection. In this analysis, we observed Megasphaera (p = 0.017), and

Allisonella (p = 0.036) genera being over- and under-represented in HESN when compared to

both HC and HIV+, respectively (Fig 1B and 1C).

Higher richness in the fecal microbiota of HESN

The alpha diversity was assessed using the Chao1 index, a richness indicator. We found a sig-

nificantly higher richness in HESN than in HC (p = 0.040), whereas there were no differences

between HESN and HIV+ (Fig 2A). Likewise, when comparing the microbiota composition

among the three groups, through beta diversity analysis, we found that the fecal microbiota of

HESN was not clustered with HC, being indeed significantly different between them

(p = 0.006, Fig 2B). Additionally, HIV+ and HESN show similar clustering (p = 0.754, Fig 2C).

Altogether these results suggest that fecal microbiota in HESN share features with HIV+. In

contrast, fecal microbiota in HESN is substantially different compared to HC, despite none of

them harboring the virus. However, an exclusive presentation of some genus in HESN micro-

bial composition was not observed in the analysis.

Influence of Treg and Th17-like cells in the composition of fecal

microbiota

Subsequently, we wonder if fecal microbiota varied depending on some immunological char-

acteristics. Accordingly, we compared the percentage of hyperactivated T cells among the

groups, as previously reported [32]. As expected, HIV+ had a significantly higher percentage

of activation of T cells (8.63% CD4+, and 34.1% CD8+) than HESN (1.82% CD4+, and 6.22%

CD8+), and HC (2.03% CD4+, and 8.69 CD8+). Moreover, no differences were observed

between HESN and HC in any of the cell subsets evaluated, and both groups maintained low

levels of T cell activation (Fig 3A and 3B).

Furthermore, we assessed the percentage of CD4+CD25+FOXP3+ regulatory T cells (Treg),

and we found that HESN had a lower percentage of Treg cells (1.77%) compared to the HC

group (2.98%) and the HIV+ group (4.02%) (p = 0.12 and p = 0.0065 respectively, Fig 3C).

Additionally, we assessed the percentage of Th17-like cells by CD4+CD161+ phenotype, and

although HESN seems to have higher Th17-like percentages than HIV+ and HC, there were

no significant differences among the groups (Fig 3D). Finally, we explored potential differ-

ences among the groups in the balance of regulatory and inflammatory T cells using the ratio

Treg/Th17-like cells. We found that HESN had a significantly lower Treg/Th17-like ratio than
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HIV+, whereas no statistically significant differences were observed between HESN and HC

(Fig 3E).

Since we observed significant differences between HESN and other groups in Treg percent-

age, being a relevant immunological characteristic decreased in HESN, we classified the

Fig 1. Specific microbial communities in HESN fecal microbiota compared to HC. Genera abundance and prevalence in HESN, HIV+, and HC (A)

are shown. (B) presents the top 25 genera correlated between HESN and HC and HESN and HIV+. Finally, (C) shows the main genera correlated in

previous analyses performed using Spearman correlation with statistical significance �(r>0.50 and p<0.05).

https://doi.org/10.1371/journal.pone.0260729.g001

Fig 2. Higher diversity in HESN and similarities with HIV+. (A) Microbial community diversity, assessed by the sample’s richness with Chao1 index (alpha

diversity) by T-test statistical (p = 0.070). (B) Comparison between samples in HESN and HIV+. (C) Comparison between samples in HESN and HC, by

Principal Coordinates Analysis (PCoA), and using Permutational Multivariate Analysis of Variance (PERMANOVA) in statistical analysis (p = 0.011).

https://doi.org/10.1371/journal.pone.0260729.g002
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percentages of Treg cells according to the median percentage of Treg cells of HC as previously

assessed [33]. Accordingly, we defined Treg percentage as high (>3%) or low (<3%), and

then, we compared fecal microbiota composition in clustered samples by a high and low Treg

cells percentage. We found that the genus Butyviribrio was enriched in subjects with low Treg

(r = 0.56 p = 0.029, Fig 3F), a cluster represented by all HESN and half of HC (Fig 3C). Besides,

we could highlight the positive correlation of the Succinivibrio genus with low Treg (r = 0.48,

p = 0.066, Fig 3F), a genus that we have found enriched in HESN (Fig 2). Subsequently, we

observed negative correlations between low Treg and Streptococcus (r = -0.75, p = 0.001), Alli-
sonella (r = -0.67, p = 0.006), and Veillonella (r = -0.52, p = 0.046) (Fig 3F). We also explored

the correlations between the higher and lower ratio of Treg/Th17-like cells and fecal micro-

biota composition among groups, but no differences were observed (S4 Fig).

Although these findings suggest that Treg might influence microbiota composition, its

impact seems not to be sufficient to affect microbial diversity and abundance, at least in HC,

since no differences were observed in alpha and beta diversity when we compared microbiota

between HCs with low and high Treg percentages (S5 Fig).

The abundance of some genera is shared between HESN and HIV+

The fecal microbiota in HESN subjects is particular in its composition. However, the enrich-

ment of specific genera such as Prevotella, Succinivibrio, and Dialister in both HESN and HIV

Fig 3. Lower percentage of Treg cells in HESN and influence of immunological characteristics on fecal microbiota composition. The

percentage of CD38- and HLA-DR-expressing CD4+ T cells (A) and CD8+ T cells (B) is shown. The percentage of Treg cells (C), Th17-like

(CD161+CD4+) T cells (D), and the ratio of Treg/Th17-like cells in each group (E) are presented. The statistical analysis among groups was

estimated using the Mann-Whitney U test. (F) The top 25 genera correlated with a high (>3%) or low (<3%) percentage of Treg cells on

fecal microbiota composition is shown. (statistical analysis were performed using Spearman test; p-value<0.05). �p-value<0.05. ��p-value

<0.01.

https://doi.org/10.1371/journal.pone.0260729.g003
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+ is noteworthy. We evaluated the abundance and influence of some genera in the microbial

communities through a network of positive or negative correlations among them in all groups.

We found genera of great interest in the context of HIV exposure, especially the similar abun-

dance from Prevotella and Succinivibrio both in HESN and HIV+, and the positive correlation

observed between these genera (Fig 4A). These genera interact, allowing the consolidation of a

particular profile in HESN individuals, with characteristics shared with HIV+. We highlighted

the positive correlations between Streptococcus and Veillonella (p = 0.0038), and the negative

ones with Butyrivibrio (p�0.0001), genera associated with variations in Treg percentage (Figs

3F and 4A). Furthermore, the network analysis also showed a negative correlation between

Bifidobacterium and Allisonella (p = 0.0093), genera related to HESN and HIV+, respectively

(Fig 4A).

In summary, we identified some genera that, although not exclusive, are enriched in the

intestinal microbiota of a specific group of subjects and are part of the most outstanding char-

acteristics in the microbiota of each one. We outlined in a Venn diagram the genera character-

izing the microbiota profile in the three studied groups (Fig 4B). Specifically, we found that

Megasphaera, Victivallis and Butyrivibrio are enriched in the microbiota composition in

HESN. On the other hand, Bacteroides, Akkermansia, and Parasutterella were clustered as

healthy microbiota composition, and Veillonella, Allisonella, and Alloprevotella were clustered

as genera highlighted in HIV+ subjects. Other genera were highlighted to be shared in some

groups but absent in the other, for instance, the case of Prevotella, Succinivibrio, and Dialister
shared in HESN and HIV+, but absent in HC. Finally, other genera such as Faecalibacterium
and Roseburia were identified as very common microbiota in the three studied groups (Fig

4B).

Fig 4. The Abundance of Prevotella and Succinivibrio in fecal microbiota composition of HESN. (A) shows the correlation network of the most abundant

genera in HESN (green), HIV+ (purple), and HC (orange), and interaction between microbial community’s genera; the circle’s size represents the abundance of

genera in microbial composition. The correlations were estimated using Spearman correlations (p<0.05, r>±0,5), the most significant bacteria are highlighted

as positive (red) or negative (blue) correlations. Venn diagram (B) shows the main genera of each group studied as well as those shared between them.

https://doi.org/10.1371/journal.pone.0260729.g004
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Discussion

The mechanisms of natural resistance to HIV have been a subject of interest. We aimed to

characterize the fecal microbiota profile of a small group of HESN from a Colombian cohort

compared to the microbiota of HC and HIV+ progressors. Previous studies have previously

studied the microbiota in cervicovaginal mucosa in heterosexual women as a correlate of pro-

tection in HIV-exposed sex workers from Africa [21]. However, to the best of our knowledge,

this is the first study describing the characteristics of the fecal microbiota in a group of HESN

in Latin American individuals. These preliminary results suggest that exposure to HIV in sero-

negative individuals seems to confer specific composition to their fecal microbiota. Indeed,

HESN individuals have a particular profile characterized by bacterial genera such as Mega-
sphaera, Succinivibrio, and Victivallis, as well as by a high richness composition.

Interestingly, many of the bacteria found in HESN were common with HIV+ subjects. In

fact, there were no significant differences between both groups in alpha and beta diversity

analyses of fecal microbiota. Remarkably, microbiota composition in HIV-infected individuals

stands out by increased numbers of Proteobacteria Succinivibrio and Klebsiella; Veillonellaceae
pathobionts such as Dialister, Allisonella, and Veillonella, as well as by enrichment of Prevotella
and Alloprevotella, as previously described worldwide [10–12].

Most of these genera (except for Allisonella, Alloprevotella, and Veillonella) were shared

with HESN. Thus, we hypothesized that the microbiota in HESN could be acquired due to

cohabiting and experiencing unprotected sexual intercourse with HIV seropositive partners

[19,34,35]. It has been shown that cohabiting with a person [36], experiencing certain types of

sexual relations [37], and sharing with pets [38] causes similar composition of microbial

communities.

In this study, the genera Allisonella, Alloprevotella, and Veillonella were almost absent in

HC and HESN but predominant in HIV+, and thus related with infection. Why these bacteria

are not transmitted from HIV+ to HESN remains to be elucidated. Alloprevotella was reported

in men who have sex with men and was even related to an early diagnosis of anal precancerous

lesions [37]. Allisonella has also been reported in lower genital tract microbiota from HIV-

infected women [39].

Here, Succinivibrio was shared in fecal microbiota between HESN and HIV+, which is strik-

ing because this genus has been associated with infection control in HIV-1 elite controllers,

possibly because it could influence a metabolic profile (fatty acid metabolism, lipid biosynthe-

sis, and tryptophan pathways) that may contribute to HIV-1 control [35]. Recently, an increase

in Succinivibrio and Megasphaera have been described in infected patients under antiretroviral

therapy [40]. In addition, the Megasphaera genus has been found in high proportion in healthy

vaginal microbiota, especially in the genital tract [41]. It is important to note that most HESN

in this study were female, and their HIV-infected partners were on ART at sampling, which

could explain the enrichment of these genera in HESN.

It is known that the production of favorable short-chain fatty acids (SCFA) by some bacte-

ria has anti-inflammatory, antitumorigenic, and antimicrobial effects, maintaining gut integ-

rity and immune homeostasis [42]. Interestingly, genera enriched in HESN such as

Succinivibrio, Megasphaera, Butyrivibrio, and Victivallis are known SCFA-producers [41–44],

suggesting a larger SFCA pool in HESN than HIV+ subjects. However, the relevance of these

genera in HESNs remains to be fully described.

HESNs showed higher species richness than HCs when evaluating the Chao-1 index, being

enriched in microbial genera that were not very abundant but particular of these individuals.

Changes in microbial diversity or species richness are characteristics that other authors have

reported in HIV-infected individuals [7], in whom bacterial alpha diversity was associated
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with lower expression of different biomarkers (soluble or cellular) of immune stimulation or T

cell dysfunction [12,45].

HIV-infected patients, particularly during disease progression, show gut microbiota alter-

ation and a massive destruction of Th17 cells and expansion of dysfunctional Treg cells, which

induces an imbalance in the Treg/Th17 ratio, allowing microbial proliferation, dysregulation,

and dysbiosis in the gut [46,47]. Althoug some authors have found an increase in Treg percent-

age associated with natural resistance to HIV-1 infection in commercial sex workers [48], we

observed that low Treg percentage is a common characteristic in our HESNs coming from ser-

odiscordant couples, allowing us to especulate that type of exposure could diferentaially modu-

late Treg subset. Interestingly, the subjects with low Treg percentage had an enrichment of the

genus Butyrivibrio. However, when Th17 cells were analyzed alone, they were not significantly

relevant in our study. A decrease of relative abundance of Clostridia, including Butyrivibrio,

has been found in HIV-related microbiota signatures consisting of lower diversity, especially

in those patients with severe immunodeficiency [49]. We found Butyrivibrio is enriched in

subjects with low Treg percentage, while Streptococcus and Allisonella are associated with

higher Treg percentage. However, Treg percentage alone was insufficient to explain the micro-

biota profile in this group since no differences in alpha and beta diversity analyses between

subjects with high and low Treg percentage were found. Nevertheless, additional studies are

needed to define Treg cells and Treg/Th17 ratio role in modulating microbiota and HIV

resistance.

Although these results are interesting, they need to be interpreted with caution since this

study is limited by the small sample size and the fact that HIV+ partners of HESN individuals

were not studied. However, the expansion of antiretroviral therapy coverage worldwide has

reduced the viral load and thus the viral exposure in serodiscordant couples, making it chal-

lenging to identify a larger number of HESNs.

Also, the microbiota variability could be influenced because the individuals included in the

study came from two different cities and because food intake was not controlled. Nonetheless,

we applied surveys regarding diet, medication consumption, and recent diseases, but we did

not see any notable differences among the sampled subjects. Being aware of these limitations

and thus requiring confirmation in bigger cohorts, the evidence described in this study sug-

gests that the microbiota in HESN has a characteristic profile, similar to that of HIV+, most

likely because HESNs cohabit with their HIV+ partners.
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