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Abstract 

The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to an unprecedented effort to 

generate real-world evidence on the safety and effectiveness of various treatments. A growing 

number of observational studies evaluating the effects of certain drugs have been conducted, 

including several assessing whether hydroxychloroquine improves outcomes in infected 

individuals and whether renin-angiotensin-aldosterone system inhibitors have detrimental 

effects. We review and illustrate how immortal time bias and selection bias were present in 

several of these studies. Understanding these biases and how they can be avoided may prove 

important for future observational studies assessing the effectiveness and safety of potentially 

promising drugs during the COVID-19 pandemic. 
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The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to an unprecedented effort to 

generate real-world evidence on the safety and effectiveness of various treatments. While the 

randomized controlled trial (RCT) is widely accepted as the design providing the most definitive 

results, the generalizability of its findings to the real-world setting can be challenging. Indeed, 

RCTs often use strict selection criteria and treatment adherence that may differ with the real-

world setting.
1
 Moreover, compared with observational studies, RCTs may take longer to 

implement, and therefore their findings may take longer to reach the scientific community, which 

is a particular concern in the context of a rapidly evolving pandemic. Thus, by leveraging the 

rapidly accumulating data on patients hospitalized with COVID-19, a growing number of 

observational studies evaluating the effects of certain drugs have been conducted and published 

at an impressive pace. This includes assessing the effectiveness of hydroxychloroquine and 

evaluating whether angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II 

receptor blockers (ARBs) have detrimental effects. While the urge to generate rapid information 

to guide clinical practice is understandable, only well-conducted observational studies will 

provide results that can inform clinical decision-making, health policies, and future research. 

While observational studies have the potential to complement the results of RCTs, they 

can be methodologically complex. Aside from adequate control of confounding, studies of drug 

effectiveness and safety present unique challenges that stem from the time-varying nature of 

drug exposure. Indeed, in many studies, cohort entry is not defined by the date of treatment 

initiation but may correspond, for instance, to the date of disease diagnosis or the hospital 

admission date for a COVID-19 infection. Thus, in these real-world scenarios, patients may start 
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treatment at different times following the cohort entry date. While these considerations are 

irrelevant in RCTs where the date of randomization always defines cohort entry and patients 

considered exposed to the drug for the entire follow-up, the proper definition of cohort entry and 

exposure over time is inherently more complex in cohort studies. 

These critical aspects of drug effect cohort studies are often underappreciated. Indeed, 

whereas confounding issues are subjected to intense and often exclusive scrutiny, properly 

defining and analyzing treatment status over follow-up time is equally important to avoid 

introducing immortal time bias.
2,3

 Immortal time corresponds to a period of follow-up (person-

time) during which, by design, the outcome of interest (death or another outcome) cannot occur. 

In cohort studies assessing drug effectiveness and safety, immortal time is typically introduced 

when treatment status is defined based on a prescription issued or received at some point during 

follow-up. The time period between disease diagnosis or cohort entry and the first treatment 

prescription is necessarily immortal since the patient had to survive or be outcome-free (owing to 

the censoring of events in the analysis) to be classified as exposed. Immortal time bias is then 

introduced when this immortal period between diagnosis or cohort entry and the first treatment 

prescription is misclassified as exposed rather than correctly accounted for as unexposed. 

Immortal time bias is also introduced when this immortal period is excluded, with cohort entry 

defined as the date of treatment initiation for exposed patients and defined as the date of disease 

diagnosis or hospitalization for non exposed patients. Immortal time bias is common in cohort 

studies of drug effects and systematically biases the results downward in favor of the treatment 

under study. Consequently, this bias can make harmful treatments appear neutral, and neutral 

treatments appear protective. ORIG
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Most recent cohort studies assessing the effectiveness of hydroxychloroquine on 

mortality in patients hospitalized with COVID-19 determined exposure, in their primary 

analysis, based on treatment received at any time during follow-up or typically within 48 hours 

of hospitalization. However, patients were considered exposed as of the date of hospital 

admission, thereby introducing immortal time bias (Figure 1A).
4-9

 Indeed, the time period 

between cohort entry (date of hospitalization) and treatment initiation is immortal since the 

patients had to survive or be outcome-free to be classified as treated. This immortal period 

between the date of hospitalization and treatment initiation was misclassified as exposed rather 

than correctly accounted for as unexposed. Immortal time bias was also introduced when patients 

receiving hydroxychloroquine during hospitalization were followed from the date of starting 

treatment while patients not exposed were followed from the date of hospitalization. In this 

instance, the immortal period between the date of hospitalization and treatment initiation was 

excluded from the analysis.
10

 The magnitude of the bias and its overall impact on the results 

depends on the duration of the immortal period, the duration of follow-up, the number of 

exposed in the cohort, and the event rate. Although we focused on studies assessing the 

effectiveness of hydroxychloroquine on mortality, immortal time bias was also introduced in 

studies evaluating other drugs. For instance, immortal time bias was present in a recent cohort 

study evaluating the association between ACEIs/ARBs and all-cause mortality in patients with 

hypertension hospitalized with COVID-19.
11

 Indeed, patients who received ACEs/ARBs at any 

time during the hospitalization were considered exposed from the date of admission until the end 

of follow-up, regardless of the timing of treatment initiation. 

Another critical design aspect is the selection of patients to be included in, and 

particularly excluded from, the cohort. As such, the exclusion of patients based on an event or 
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treatment occurring at some point during follow-up can lead to selection bias (Figure 1B). For 

example, in some cohort studies, exposure was based on receiving hydroxychloroquine within 48 

hours of hospitalization; patients initiating treatment more than 48 hours after hospital admission 

were excluded in the primary analysis.
8,10

 This exclusion may introduce selection bias in addition 

to immortal time bias. Both immortal time and selection bias were also at play in a study where 

the cohort was restricted to patients with at least six days of follow-up and a minimum of three 

days of treatment with hydroxychloroquine, but cohort entry was defined as the date of hospital 

admission.
12

 Also, this study did not have any comparator group. Similarly, excluding patients 

who did not experience the outcome or were not yet discharged by the end of the study period is 

incorrect.
4
 A flowchart describing cohort selection with numbers of patients excluded and 

reasons for exclusion should therefore be provided to assess the potential for such bias. It should 

be noted that these methodological issues are introduced by the investigators at the design or 

analysis stage, and thus, are not inherent ‘flaws’ of cohort studies. Moreover, as these biases are 

information and selection biases, methods used to deal with confounding, such as propensity 

scores, would not correct these biases. 

Several options can be used at the design or analytical stage to prevent these biases. One 

approach is to define exposure at the date of hospitalization (cohort entry) and thus consider as 

exposed only those patients initiating the drug of interest at the date of hospitalization while all 

other patients not exposed at cohort entry, including patients initiating the drug later during 

follow-up, are considered unexposed. Similarly, exposure could be defined based on treatment 

initiation in the first 48 hours of hospitalization with cohort entry accordingly moved to 48 hours 

after the date of hospitalization. Although this option is easy to implement, it only assesses the 

effectiveness of the drug when initiated at or soon after the date of hospitalization and does not 
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optimally use the information from all patients exposed to the drug of interest over time. 

Moreover, the study population does not include patients who die early after hospitalization. 

Finally, one caveat of this approach is that it may introduce some exposure misclassification. A 

second approach is to use a time-varying exposure definition at the analytic stage. The study 

cohort comprises all consecutive patients hospitalized with COVID-19 during a specific time 

period with cohort entry defined as the date of hospitalization. For each patient, each day of 

follow-up is classified as either exposed or not exposed to the drug of interest, allowing patients 

to move from a period of non-exposure to a period of exposure. Once treatment is initiated, 

patients can be considered exposed for the remainder of the follow-up regardless of treatment 

discontinuation (analogous to an intention to treat approach), censored when treatment is 

stopped, or their person-days of follow-up after treatment cessation classified as unexposed. A 

grace period can be added after treatment discontinuation where patients are still considered 

exposed to account for the residual biological effect of the drug under study. Time-dependent 

Cox proportional hazards models are then used to estimate hazard ratios for the association 

between current use of the drug under study and the outcome of interest.  

Finally, a design approach aimed at emulating a target trial in this setting can be the 

prevalent new-user cohort design.
13

 Briefly, the base cohort consists of all consecutive patients 

hospitalized with COVID-19 during a specific time period. This base cohort includes patients 

initiating treatment (for example, hydroxychloroquine) at various time points during 

hospitalization and patients not treated during the entire follow-up. Among this base cohort, each 

patient initiating hydroxychloroquine is matched 1:1 (or 1:n) to a patient not exposed to 

hydroxychloroquine up to the same point in time. Thus starting chronologically to emulate the 

randomized trial process, each patient initiating hydroxychloroquine is matched without 

ORIG
IN

AL U
NEDIT

ED M
ANUSC

RIP
T



8 
 

replacement to a patient not exposed to hydroxychloroquine up to this point in time. The point of 

hydroxychloroquine initiation is used to define the time-based exposure set which include all 

potential comparator patients with the same duration of follow-up since entry into the base 

cohort (date of hospitalization) and determine the point at which one patient starting 

hydroxychloroquine is matched to one comparator patient. This approach allows to take into 

account the time since hospitalization admission and provides a similar time point during 

hospitalization to measure characteristics for the treated patient and the matched comparator. 

Time conditional propensity scores can be used to identify the comparator patient most similar to 

the patient who initiated hydroxychloroquine. They are time conditional because they depend on 

the time-varying patient characteristics measured at the point of the time-based exposure sets, 

and the positivity assumption is verified conditionally within each exposure set. To compute the 

propensity of initiating hydroxychloroquine versus no treatment as a function of the time-varying 

patient characteristics measured at the point of the exposure set, conditional logistic regression is 

used to conserve the matching induced by the exposure set. For the matched pairs formed, cohort 

entry is defined as the date of hydroxychloroquine initiation and the corresponding date for the 

matched comparator patient. A strenght of this design is its flexibility with the possibility to 

compare multiple treatment regimens. As such, patients switching to a different drug during 

hospitalization may be compared to patients continuing on the first drug initiated during 

hospitalization while matching on duration of previous treatment. Similar approaches have been 

proposed by others, such as creating sequential cohorts at predetermined time intervals.
14,15

 

Aside from these design issues, the potential for confounding by indication is always a 

concern in drug effectiveness studies, particularly in the current pandemic where no treatments 

are available. Indeed, off-label treatments are typically given preferentially to moderate to severe 

ORIG
IN

AL U
NEDIT

ED M
ANUSC

RIP
T



9 
 

patients at the time of hospital admission or to those with a worsening condition during follow-

up; in extreme situations, the treatment is given for compassionate use to highly severe patients. 

Thus, depending on the clinical context, the confounding may be intractable so that available 

statistical methods will not be able to control for this bias. The rapidly changing treatment 

recommendations may create an additional challenge in adequately balancing the exposure 

groups. Finally, traceable and transparent data are prerequisites to the above considerations, as 

recently reminded to the scientific community. 

In summary, real-world data are useful to complement evidence from RCTs and can even 

predict their results in some settings.
16

 However, recently published cohort studies assessing the 

effectiveness and safety of drugs in patients hospitalized with COVID-19 illustrate the 

importance of carefully designing and analyzing such studies. While much attention is paid to 

confounding, fundamental methodological principles must also be applied to derive meaningful 

conclusions. Methods exist, such as the prevalent new-user design, that allow to avoid these 

biases and permit a proper control for confounding.
13

 Otherwise, ill-designed observational 

studies may have detrimental consequences on clinical decision-making, informing future 

clinical trials, and ultimately the credibility of observational studies. These methodologic 

principles may prove important for the many future observational studies on potentially 

promising drugs in the midst of the COVID-19 pandemic. 
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Figure 1. Illustration of immortal time and selection biases in a hypothetical cohort of patients 

hospitalized with COVID-19 

 

Panel A. Patients 1 and 2 receive a first prescription of hydroxychloroquine at some point during 

hospitalization, but are considered exposed from the date of hospital admission, thereby 

introducing immortal time bias caused by exposure misclassification (red line). 

 

Panel B. At the end of the study period, patients 2 and 4 have not experienced the outcome but 

are not yet discharged. These two patients, still alive and unexposed for a period of time, are 

incorrectly excluded (red dashed lines) therefore introducing selection bias. Abbreviation: HCQ, 

hydroxychloroquine. 
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