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ABSTRACT
Tumor microenvironment (TME) is involved in the occurrence and development of hepatocellular 
carcinoma (HCC), and immune cells in the TME have been implicated in its progression and 
treatment. However, the association of genes involved in the TME with HCC prognosis remains 
unclear. Thus, in this study, we obtained transcriptomic and clinicopathological data of patients 
with HCC from The Cancer Genome Atlas to identify key genes in TME associated with HCC 
prognosis. Stromal and immune cell scores were calculated using the ESTIMATE method, and 
differentially expressed genes (DEGs) were determined. We identified 830 DEGs, which were 
further subjected to survival analyses and functional enrichment analysis. Next, we identified 
prognostic TME-associated DEGs, established a protein-protein interaction (PPI) network, and 
performed Cox analysis.Consequently, four key prognostic genes (CXCL5, CXCL8, IL18RAP, and 
TREM2) associated with TME, were identified, in which CXCL5 and IL18RAP may be potential 
independent prognostic factors. Age, clinical stage, N stage, and risk score were also determined 
as significant prognostic variables. CIBERSORT was used to predict the constitution and relative 
content of the immune cells, wherein M0 macrophages were the most closely related to the key 
genes. In conclusion, CXCL5, CXCL8, IL18RAP, and TREM2 were associated with HCC prognosis and 
were important for immune cell invasion into the TME. Additionally, IL18RAP expression may 
contribute toward favorable prognosis in patients with HCC. Consequently, these genes may serve 
as potential biomarkers and immunotherapeutic targets for HCC.
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1. Introduction

Hepatocellular carcinoma (HCC) is the most 
common type of primary liver cancer. The inci-
dence of HCC is increasing worldwide, and it is 
now the second leading cause of cancer-related 
deaths[1]. The early symptoms of HCC are not 
obvious, and its specificity is poor. Therefore, it 
is difficult to diagnose early-stage HCC, which 
leads to advanced progression of liver cancer. 
The prognosis and survival of patients with 
advanced HCC are also poor[1]. Although there 
are many treatment approaches for HCC, such as 
hepatectomy, radiofrequency ablation, and mole-
cular targeted drugs, their effects are not ideal. 
At present, the emergence of immunotherapies 
for HCC provides hope as a new treatment mod-
ality[2]. Therefore, it is crucial to identify HCC- 
related genes and determine their potential diag-
nostic and therapeutic implications as novel bio-
logical markers of the disease[3].

The tumor microenvironment (TME) is 
involved in tumor progression. It has a complex 
composition, including different types of non- 
tumor cells and non-cell materials[4]. Typically, 
the TME consists of stromal cells, immune cells, 
extracellular matrix components, and inflamma-
tory mediators[5]. The interaction of the TME 
with cancer cells exerts its influence during tumor-
igenesis and contributes to the biology of most 
cancers[6]. Notably, stromal and immune cells, 
the two major non-neoplastic components of the 
TME, have significance in the diagnosis and prog-
nosis of cancer[7].

Yoshihara et al[8]. proposed a new calculation 
method called ESTIMATE, wherein the algorithm 
estimates and obtains stromal and immune cell 
scores using cancer gene expression data. This 
score can then predict the infiltration levels of 
stromal and immune cells in the TME. At present, 
this new algorithm has been applied for studying 
many cancers, such as glioblastoma[7], colon can-
cer[9], clear cell renal cell cancer[10], breast cancer 
[11], prostate cancer[12], and pancreatic can-
cer[13].

Tumor-infiltrating immune cells (TIICs), 
another type of non-tumor cell in the TME, are 
also involved in tumor progression. As an 

indispensable component of the TME, TIICs are 
involved in the prognosis and treatment of many 
tumor types; for instance, the prognosis of 
patients with colorectal cancer is negatively cor-
related with neutrophils, M2 macrophages, and 
Tregs[14]. CD8+ cells have a prognostic value in 
endometrial adenocarcinoma[15], and CD4+ 

TIICs regulate the progression of renal cell carci-
noma through the TGFβ1/YBX1/HIF2α signaling 
pathway[16]. Further, increased M0 macrophages 
and Tregs are involved in poor prognosis in 
breast cancer[17], upregulation of activated 
CD8+ T cells is involved in the prognosis of 
many cancers[18], and T cells and B cells can 
alter the prognosis of patients with HCC by acti-
vating the immune response[19]. Many studies 
have shown that TIICs constitute a system in 
the TME to regulate tumor progression, and 
thus have a potential prognostic significance in 
tumors[20]. Although immunohistochemistry 
and flow cytometry have been used to show 
TIICs in TME, the function of all immune cells 
is yet to be systematically evaluated. CIBERSORT 
is a deconvolution algorithm that employs gene 
expression profiles to estimate the relative pro-
portion and prognostic significance of 22 TIICs 
more comprehensively, quickly, and accurately 
[21]. CIBERSORT has been used in studies 
related to gastric cancer[21], breast cancer [21– 
23], colorectal cancer[24], osteosarcoma[25], and 
lung cancer[26].

In this study, we used data from The Cancer 
Genome Atlas (TCGA) to identify the key prog-
nostic genes in the TME of HCC and constructed 
a prognostic model. The relationship between the 
key genes and immune cell infiltration in HCC has 
also been discussed.

2. Materials and methods

2.1 Downloading and collating TCGA data

Transcriptome and clinical information files of 
patients with HCC were downloaded from TCGA 
(http://portal.gdc.cancer.gov/repository; updated 
18 December 2020), which included the transcrip-
tomic data of 374 patients with HCC and 50 normal 
patients (gdc_download_20201218_095454.714640, 
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gdc_manifest_20201218_095427, metadata.cart 20 
20–12-18) along with their corresponding pathologi-
cal data (including age, sex, T phase, N phase, M 
phase, survival time, and survival state). As all data 
were acquired from public databases, there was no 
requirement for an ethical approval of this study.

2.2 Evaluation of stromal score and immune 
score

‘ESTIMATE’ and ‘limma’ packages[27] were used 
to obtain the immune and stromal scores for each 
HCC sample using the ESTIMATE method. The 
scores were categorized into high score and low 
score groups based on the median value of the 
scores.

2.3 Screening of differentially expressed genes 
(DEGs)

‘Limma’ package in R (version 4.0.2) was used to 
determine the DEGs between the high score and 
low score groups. The filter criteria were set as | 
log2FC| ≥ 1 and false discovery rate (FDR) < 0.05. 
A Venn diagram was used to screen the upregu-
lated and downregulated genes from the two scor-
ing groups. In addition, the ‘pheatmap’ package 
was used to generate heatmaps[28].

2.4. Functional analysis of the DEGs

To determine the biological roles of the DEGs, 
their functional analysis was performed using 
gene ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG). The following 
R packages were used to implement the enrich-
ment analyses: ‘clusterprofiler,’ ‘theorg.Hs.eg.db,’ 
‘enrichplot,’ and ‘ggplot2.’ The enriched GO 
terms included molecular function (MF), biologi-
cal process (BP), and cellular component (CC). 
KEGG analysis was used to explore the significant 
pathways related to the DEGs. An FDR < 0.05 was 
used to select the significance criteria of rich 
terms.

2.5 Batch overall survival analysis

The relationship between prognosis and gene 
expression was determined using a Kaplan-Meier 

plot. According to the median value of each gene, 
they were categorized into either a high expression 
group or a low expression group. Survival analysis 
was implemented using the R ‘survival’ package. 
Significance was set at P < 0.05.

2.6 Constructing a protein-protein interaction 
(PPI) network of the DEGs to determine the 
prognostic value

To investigate the interactions between the identi-
fied DEGs in the HCC samples, STRING (https:// 
string-db.org/) tools were used to plot a PPI net-
work. STRING is an online database that is used to 
predict the relationships between proteins. 
Cytoscape software[29] was used to visualize the 
PPI network more intuitively, and MCODE mod-
ule (version2.0.0) was used to discover closely 
related regions in the PPI network.The selection 
criteria of MCODE module are as follows: Dgree 
Cutoff is 2, Node Score Cutoff is 0.2, K-Core is 2, 
and Max. Depth is 100.

2.7 Construction of models to identify the key 
genes

First, we integrated the clinical data downloaded 
from TCGA with the prognostic gene data and 
performed a single-factor Cox regression analysis 
on the processed data to analyze the impact of the 
clinicopathological variables on overall survival 
(OS). Significant results from the univariate Cox 
analysis were then used in a multivariate Cox 
analysis, and key DEGs associated with HCC prog-
nosis were identified. Next, the identified key 
genes were used to calculate risk scores. 
A receiver operating characteristic (ROC) curve 
was plotted and used to validate the dependability 
of this model for calculating the OS of patients 
with HCC. The relationship between the DEGs 
and OS was described using a Kaplan-Meier plot. 
Significance was set at P < 0.05.

2.8 Gene set enrichment analysis (GSEA)

To further identify the potential functional path-
ways affecting the high-and low-risk (based on the 
overall survival rate) patients with HCC, GSEA 
software was used to perform the enrichment 
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analysis[30]. The ‘C2 KEGG’ gene set was used in 
the GSEA to obtain the corresponding upregulated 
and downregulated pathways. The significance 
threshold was set at P < 0.05.

2.9 Determining immune cell infiltration

CIBERSORT (https://cibersort.stanford.edu/ 
about.php) algorithm was used to investigate 
the TIICs in the TME of HCC. CIBERSORT is 
a gene transcription file-based analysis tool that 
estimates the content of 22 immune cells in 
a tumor sample. Here, we calculated the profiles 
of these cells in the HCC samples. Based on the 
results of immunocyte infiltration, we performed 
immunocyte differential analysis and immuno-
cyte correlation tests (between 22 immune cells 
and key prognostic genes) on the key prognostic 
genes using the ‘limma’ package in R and 
Spearman’s test, respectively. A Venn diagram 
was used to screen the immune cells related to 
each key gene from the abovementioned ana-
lyses. P < 0.05 was set as the filter for the 
analyses.

2.10 Determining the expression of the key 
genes

Differential expression analysis of the key genes in 
HCC was performed using Wilcoxon test. Clinical 
correlation analysis was performed using the 
R ‘ggpubr’ package. The protein expression levels 
of the key genes between the HCC and normal 
tissues were obtained from the Human Protein 
Atlas (HPA; https://www.proteinatlas.org/). HPA 
provides a protein histological atlas of both the 
normal and cancerous tissues.

2.11 Statistical analysis

ESTIMATE algorithm, survival analysis, function 
enrichment, Cox analysis, CIBERSORT algorithm, 
gene expression analysis, and clinical characteristic 
analysis were all implemented using R (version 
4.0.2) packages. Mann-Whitney U test or 
Wilcoxon signed-rank test were used to identify 
the key gene expression profiles. Significance cri-
terion was set as P < 0.05.

3. Results

In this study, we use the ESTIMADE method to 
identify the edge related to TME and analyze its 
function. In order to identify key prognostic 
genes and study the role of key genes in predict-
ing OS, we constructed a prediction model. 
Then, based on cibersort algorithm, the classifi-
cation and abundance of tiics in TME are stu-
died, the relationship between key genes and 
immune landscape is discussed, and the immune 
cells with strong correlation with key genes are 
found.

3.1 Correlation of ESTIMATE results with OS and 
clinical characteristics

A total of 374 patients with HCC were included in 
this study. The stomal, immune, and ESTIMATE 
scores of all tumor samples were estimated, and 
the stomal score interval was −1625.416209–-
1170.968429, immune score interval was −866.-
4496225–3145.797582, and ESTIMATE score 
interval was −2473.0130139735–-
3703.87503517354. Based on the scoring results, 
we categorized the patients into high and low 
score groups and analyzed the correlation between 
these groups and the clinicopathological results. 
Kaplan-Meier results showed no significant differ-
ence in the OS rates between the high immune 
score group and low immune score group. No 
significant difference was observed between the 
stromal and imputed score groups as well (Figure 
1(a-c)). Clinical grade showed a negative correla-
tion with the stromal score (P = 0.014; Figure 1(f, 
i)), but positive/no correlation with immune score 
(P = 0.938, Figure 1(e,h)) and ESTIMATE score 
(P = 0.579; Figure 1(d,g))

3.2 Identification of the DEGs

To identify the DEGs, the gene expression 
levels in the immune and stromal groups 
were calculated. After analyzing the immune 
scores, we observed that 1041 genes were upre-
gulated and 81 genes were downregulated; 
whereas, while analyzing the stromal scores, 
1338 genes were upregulated and 84 genes 
were downregulated. The expression profiles 
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of the upregulated genes are displayed as 
a heatmap (Figure 2(a,b)), and the Venn dia-
gram shows the common DEGs of the immune 
and stromal score groups. Finally, 802 DEGs 
were screened, including 802 upregulated and 
28 downregulated genes (Figure 2(c,d)).

3.3 GO and KEGG pathway enrichment analyses

Enrichment analysis was performed for all 830 
DEGs. GO analysis (Figure 3(a)) revealed 1359 
BPs, 67 CCs, and 96 MFs (FDR < 0.05). The top 
five enriched BP terms were: ‘T cell activation,’ 

‘regulation of lymphocyte activation,’ ‘leukocyte 
migration,’ ‘leukocyte cell-cell adhesion,’ and 
‘regulation of T cell activation’; the top five 
enriched CC terms were: ‘external side of plasma 
membrane,’ ‘collagen-containing extracellular 
matrix,’ ‘secretory granule membrane,’ ‘endocy-
tic vesicle,’ and ‘collagen trimer’; and the top 
five MF terms were: ‘receptor ligand activity,’ 
‘signaling receptor activator activity,’ ‘immune 
receptor activity,’ ‘carbohydrate binding,’ and 
‘glycosaminoglycan binding.’ The results of the 
Circos plots (Figure 3(b)) showed that the DEGs 
were mainly associated with ‘leukocyte cell-cell 

Figure 1. (a-c) Kaplan-Meier curves of ESTIMATE score, immune score, and stromal score with respect to the overall survival time. 
correlation between clinical features and stromal, immune, and ESTIMATE scores. (d, g) correlation between ESTIMATE score and 
clinical grade. (e, h) correlation between immune score and clinical grade. (f, i) correlation between stromal score and grade.
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adhesion,’ ‘regulation of leukocyte cell-cell adhe-
sion,’ ‘regulation of lymphocyte activation,’ ‘reg-
ulation of T cell activation,’ and ‘T cell 
activation.’ KEGG pathway enrichment results 
(Figure 3(c)) showed that the DEGs were signif-
icantly associated with ‘cytokine-cytokine recep-
tor interaction,’ ‘chemokine signaling pathway,’ 
‘PI3K-Akt signaling pathway,’ ‘hematopoietic cell 
lineage,’ and ‘cell adhesion molecules.’ 
Meanwhile, the Circos plots for the pathways 
(Figure 3(d)) revealed that the DEGs were clo-
sely related to ‘cell adhesion molecules,’ ‘chemo-
kine signaling pathway,’ ‘cytokine-cytokine 
receptor interaction,’ ‘hematopoietic cell lineage,’ 
and ‘viral protein interaction with cytokine and 
cytokine receptor.’ Thus, the enrichment analysis 
results demonstrated that the DEGs exerted an 
influence on the TME of HCC. Further, the 

DEGs may also be involved in immune 
responses.

3.4 Correlation of the DEGs with prognosis

To investigate the correlation between the DEGs 
and OS in HCC, we constructed a Kaplan-Meier 
survival curve and performed a batch survival 
analysis of all 830 DEGs. Consequently, we found 
that 110 DEGs were associated with the OS 
(P < 0.05; Figure 4).

3.5 Construction of the PPI network of the 
prognostic DEGs

To explore the interactions between the identi-
fied prognostic DEGs, we mapped a PPI network 
using the STRING database and analyzed it 

Figure 2. (a) Heatmap of the expression of the differentially expressed genes (DEGs) grouped by the stomal score. (b) heatmap of 
the expression of the DEGs grouped by immune score. (c) venn diagram of the upregulated genes common between the immune 
score and stomal score groups. (d) venn diagram of the downregulated genes common between the immune score and stomal score 
groups.
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using Cytoscape. After hiding the nodes discon-
nected from other genes in the network, we 
found that the network consisted of three mod-
ules (Figure 5(a)). We selected the top 30 PPI 
network genes with close interactions as the 
‘core genes’ (Figure 5(b)), from which, the top 
10 nodes were CD2, CCR7, CD80, CXCL8, LCK, 
CD69, TBX21, ZAP70, CXCR3, and IL7R. Then, 
we analyzed the most significant modules. As 
shown in Figure 5(c), module 1 had 13 nodes 
and 60 edges; whereas, module 2 had 12 nodes 
and 27 edges. In module 1 (Figure 5(c)), CCR7, 
CD3G, CD80, and LCK had the highest degree of 
contact with other nodes and were more 

significant. In module 2 (Figure 5(d)), CXCL1, 
CXCL5, GPR18, and SH2D1A had higher 
degrees.

3.6 Identifying four key prognostic genes from 
a DEG model

Univariate Cox analysis of 110 prognostic DEGs 
identified nine significant genes (P < 0.05; 
Table 1), from which, four key genes were 
identified after the multivariate Cox analysis 
(Table 2). Among the many clinical variables, 
age, N stage, and risk score (Figure 6(a,b)) were 

Figure 3. Gene ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the 
differentially expressed genes (DEGs). (a) the top 10 enriched biological processes (BP), cell components (CC), and molecular 
functions (MF) from the GO enrichment. (b) Circos plots show the primary relationship between the DEGs and GO enrichment terms. 
(c) the top 30-enrichment pathway terms from the KEGG pathway analysis. (d) Circos plots show the pathways in the KEGG pathway 
that were closely related to the DEGs.
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significant variables for the prognosis of HCC. 
Multivariate Cox analysis suggested that among 
the four genes, IL18RAP and CXCL5 were inde-
pendent prognostic factors (P < 0.05). Next, we 
calculated the risk score using the following 
equation:

Risk score = (TREM2 × 0.1553) + (IL18RAP × 
−2.07225) + (CXCL5 × 0.1885) + 
(CXCL8 × 0.1210).

0.1553 is the coef value of TREM2, −2.07225 is 
the coef value of IL18RAP, 0.1885 is the coef value 
of CXCL5, 0.1210 is the coef value of CXCL8. The 
tumor samples were categorized into high-risk and 
low-risk groups, based on the differences in the 
risk score values. The high-risk group had 
a shorter survival time than the low-risk group 
(P < 0.001; Figure 6(c)). The 1-year and 3-year 
ROC curves have an area under the curve (AUC) 

Figure 4. Correlation between the expression levels of the differentially expressed genes (DEGs) selected from The Cancer Genome 
Atlas (TCGA) and overall survival rate. the total survival time of the high expression group was compared with that of the low 
expression group using kaplan-meier survival curve (P < 0.05).
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of 0.763 and 0.710, respectively (Figure 6(d,e) 
respectively).

3.7 GSEA of the different risk groups

To further compare the significantly enriched 
pathways between the different risk groups, we 
conducted a GSEA. Enrichment results showed 
that the terms ‘cell cycle,’ ‘oocyte meiosis,’ 
‘spliceosome,’ ‘RNA polymerase,’ and ‘DNA 

replication’ were significantly associated with 
the high-risk group, and these pathways were 
mainly associated with biosynthesis. In the 
low-risk group, ‘fatty acid metabolism,’ ‘valine, 
leucine, and isoleucine degradation,’ ‘linoleic 
acid metabolism,’ ‘tryptophan metabolism,’ 
and ‘glycine serine, and threonine metabolism’ 
were significantly enriched. The low-risk 
group was associated with major metabolic 
pathways (Figure 7).

Figure 5. Protein-protein interaction (PPI) network of prognostic differentially expressed genes (DEGs). (a) PPI network of the DEGs 
with interaction score greater than 0.4. (b) Interaction of the top 30 genes in the PPI network. (c, d) Two significant modules in PPI 
network analyzed by cytoscape software. the color of nodes in the PPI network reflects the logarithmic (FC) values of Z-score of gene 
expression, and the size of nodes represents the protein degree of PPI.
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3.8 Infiltration of the immune cells in the TME

Immune infiltration in the HCC samples was cal-
culated using CIBERSORT. Since there was no 
significant component of the CD4 progenitor 
cells in the tumor samples, they were excluded 
from this study. Bar graphs were used to show 
the relative content of 21 TIICs in the samples 
(Figure 8(a)). The matrix diagram (Figure 8(b)) 
shows the degree of correlation between the dif-
ferent TIICs: CD8 T cells had a positive correla-
tion with memory activated CD4 T cells 
(Cor = 0.48), and CD8 T cells had a negative 
correlation with M0 macrophages (Cor = −0.69). 
The difference in immune cell infiltration between 
the HCC and normal tissues is shown via a violin 
plot (Figure 8(c)). The highest infiltration fraction 
in the tumor tissues was by M0 macrophages, CD8 
T cells, M2 macrophages, CD4 memory resting 
T cells, and M1 macrophages. The top five infil-
trating cells in the normal tissues were CD4 mem-
ory resting T cells, M1 macrophages, M2 
macrophages, CD8 T cells, and plasma cells. M0 
macrophages (P < 0.05) were the most common 
TIICs in the tumors than in the normal tissues.

3.9 Analysis of immune-associated differences of 
the four key genes

To further elucidate the immune-related differ-
ences of the four key genes (CXCL5, CXCL8, 
IL18RAP, and TREM2), all samples were 

categorized into two groups based on the differ-
ential expression of each key gene. The differences 
between the 21 TIICs in the different expression 
groups were analyzed. For the CXCL5 group, M0 
macrophages (P = 0.012) were more abundant in 
the upregulated group than in the downregulated 
group. Resting dendritic cell (P = 0.004) content 
was higher in the downregulated group than in 
the upregulated group (Figure 9(a)). M0 macro-
phages (P < 0.001) and naive B cells (P = 0.034) 
were more abundant in the CXCL8 upregulated 
group than in the downregulated group. CD8 
T cells (P = 0.003) were more abundant in 
CXCL8 downregulated group than in the upregu-
lated group (Figure 9(b)). Naive B cells 
(P = 0.024), plasma cells (P = 0.033), CD8 
T cells (P < 0.001), CD4 memory activated 
T cells (P = 0.018), and gamma delta T cells 
(P = 0.036) were more abundant in the IL18RAP 
upregulated group than in the downregulated 
group. M0 macrophages (P < 0.001) and activated 
dendritic cells (P = 0.043) were more abundant in 
the IL18RAP downregulated group (Figure 9(c)). 
However, TREM2 did not show any significant 
differences between the groups (Figure 9(d)). 
The results of the correlation analysis between 
CXCL5, CXCL8, IL18RAP, and TREM2, and 
immune cell infiltration are shown in Figure 10. 
M0 macrophages and neutrophils were positively 
correlated with CXCL5, and activated natural 
killer cells and resting mast cells were negatively 
correlated with CXCL5 (Figure 10(a)). CXCL8 was 
positively correlated with M0 macrophages, rest-
ing dendritic cells, and neutrophils, and negatively 
correlated with resting cells (Figure 10(b)). 
IL18RAP was positively correlated with naive 
B cells, plasma cells, CD8 T cells, CD4 memory 
activated T cells, follicular helper T cells, gamma 
delta T cells, and negatively correlated with M0 
macrophages and activated dendritic cells (Figure 
10(c)). TREM2 expression was positively corre-
lated with M2 macrophages (Figure 10(d)).

Table 1. 9 genes obtained by univariate Cox analysis.
id HR HR.95 L HR.95 H pvalue

TREM2 1.213077032 1.02011097 1.442544909 0.028872575
CXCL1 1.154966689 1.023643644 1.303137142 0.019313772
KLRB1 0.743123357 0.557505133 0.990542132 0.042890745
IL18RAP 0.308032444 0.103284691 0.918664576 0.034675476
CXCL5 1.267945113 1.110701509 1.44744992 0.000441202
ITGB6 1.701485698 1.08535431 2.667381107 0.020502273
SPOCD1 1.833839923 1.127360343 2.983046977 0.014570273
CXCL8 1.169570922 1.028967521 1.329387094 0.01653257
CLEC5A 2.15390429 1.258189061 3.687286621 0.005153388

Table 2. 4 key genes selected by multivariate Cox analysis.
id coef HR HR.95 L HR.95 H pvalue

TREM2 0.155305699 1.168014967 0.966508011 1.411534046 0.107968961
IL18RAP −2.072253919 0.125901689 0.035395098 0.447837028 0.001370623
CXCL5 0.188559947 1.207509468 1.016745426 1.434065083 0.031614434
CXCL8 0.121043583 1.128674102 0.958521185 1.329031896 0.146546172
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Figure 6. Cox analysis of differentially expressed genes. (a) Univariate Cox analysis of clinical variables related to the prognosis of 
hepatocellular carcinoma (HCC). (b) Multivariate Cox analysis of clinical variables related to the prognosis of HCC. (c) Kaplan-meier 
curve of the survival time of the high-risk and low-risk groups. (d) one-year receiver operating characteristic (ROC) curve analysis. (e) 
three-year ROC curve analysis.

Figure 7. Gene set enrichment analysis (GSEA) to determine enriched pathways in the high- and low-risk groups.
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Figure 8. Analysis of immunocyte infiltration in the tumor microenvironment of hepatocellular carcinoma (HCC). (a) the bar plot 
shows the relative proportion of 21 types of tumor-infiltrating immune cells (TIICs) in each tumor sample. (b) the matrix shows the 
correlation between the 21 TIICs. (c) Violin plot shows the differences between the 21 types of immune cells in the HCC and normal 
tissues.

1566 T. WANG ET AL.



3.10 Immune cells that were closely associated 
with the expression of the key genes

We identified key genes associated with TIICs 
using intersectional analysis of differential and 
correlated immune cell subsets. First, the immune 
cells closely related to each of the four key genes 
were identified. Consequently, two types of TIICs 
closely related to CXCL5 (Figure 11(a)) and 
CXCL8 each (Figure 11(b)), and seven types of 
TIICs related to IL18RAP (Figure 11(c)) were 
found. As shown in Figure 11(d), there were no 
common TIICs between the differential and corre-
lated immune cells in TREM2 (Figure 11(d)). 
Next, we obtained the intersection of the above-
mentioned three genes with closely related TIICs 
(Figure 11(e)), and determined that M0 macro-
phages were the most closely related with 
CXCL5, CXCL8, and IL18RAP.

3.11 Expression levels and survival status of the 
four key genes

The expression of key genes was verified in 
HCC and normal tissues, and the expression of 
CXCL5 (P = 0.013), IL18RAP (P = 0.002), and 
TREM2 (P < 0.001) was determined to be higher 
in tumor tissues than in normal tissues; how-
ever, no differences were observed in CXCL8 
expression (Figure 12(a)). Next, we analyzed 
the expression of CXCL5, CXCL8, IL18RAP, 
and TREM2 in paired tumor and adjacent nor-
mal tissues (Figure 12(b)). IL18RAP expression 
was higher in paired normal tissues than in 
tumor tissues (P < 0.001), TREM2 expression 
was higher in paired tumor tissues than in nor-
mal tissues (P < 0.001), and CXCL5 and CXCL8 
did not show differences in expression between 
the two paired groups. The survival results 

Figure 9. Relationship between the expression levels of four key genes (CXCL5, CXCL8, IL18RAP, and TREM2) and tumor-infiltrating 
immune cells (TIICs) in hepatocellular carcinoma (HCC) samples. violin diagram showed the proportion of 21 TIICs in the upregulated 
and downregulated groups. (a) CXCL5, (b) CXCL8, (c) IL18RAP, and (d) TREM2.
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Figure 10. Correlation analysis of the expression of four key genes with tumor-infiltrating immune cells (TIICs). (a) scatter plot of four 
types of TIICs and CXCL5 expression. (b) Scatter plot of four types of TIICs and CXCL8 expression. (c) scatter plot of eight types of TIICs 
and IL18RAP expression. (d) scatter plot of an immune cell associated with TREM2 expression. P < 0.05.
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(Figure 12(c)) indicated that upregulated 
IL18RAP was associated with better prognosis 
than downregulated IL18RAP (P = 0.002). 
However, upregulated CXCL5 (P = 0.045), 
CXCL8 (P < 0.001), and TREM2 (P = 0.014) 
showed poorer survival than in their corre-
sponding downregulated groups. Finally, protein 
profiles were acquired from HPA. CXCL5 pro-
tein expression was negative in both HCC and 
adjacent tissues (Figure 12(d)), CXCL8 protein 
was less abundant in HCC and almost absent in 
adjacent tissues (Figure 12(e)), IL18RAP protein 
was moderately abundant in HCC and, to 
a lesser extent, in adjacent tissues (Figure 12 
(f)), and TREM2 protein was highly abundant 
in HCC tissues and moderately abundant in 
adjacent tissues (Figure 12(g)).

4. Discussion
HCC is a common cancer that is typically diag-
nosed in advanced stages, and is associated with 
poor prognosis and a median survival of less than 
12 months[31]. Many studies have shown that the 
components of the TME are involved in tumor 
progression, and have suggested its prognostic 
value in HCC[32]. However, the association of 
genes involved in the TME with cancer prognosis 
remains unclear[33]. Thus, in this study, we esti-
mated the immune and stromal scores to identify 
the key genes associated with HCC prognosis in 
TME. As tumor progression may be due to the 
disharmony in the immune response[34], we used 
the CIBERSORT algorithm to analyze the classes 
and numbers of TIICs in the TME. Finally, we 
evaluated the prognostic significance of HCC by 

Figure 11. Based on differential and correlation analyses, the immune cells that were closely related to key genes were analyzed by 
using a venn diagram. (a) two types of tumor-infiltrating immune cells (TIICs) closely related to CXCL5 expression. (b) two types of 
TIICs closely related to CXCL8 expression. (c) seven types of TIICs closely related to IL18RAP expression. (d) there were no common 
immune cells in the differential and correlation analyses of TREM2. (e) venn diagram showing the common TIICs related to CXCL5, 
CXCL8, and IL18RAP.
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integrating the immune landscape with the key 
genes.

In the present study, we applied acquired stro-
mal, immune, and ESTIMATE scores and ana-
lyzed the impact of different groups on patient 
outcomes. We did not find any significant differ-
ence in the OS between the immune, stromal, and 

ESTIMATE scores.In the past study, similar inter-
stitial and immune states have been shown in 
HCC[35]. Further, there was a significant negative 
correlation between clinical grade and the stromal 
score group. We also identified 830 DEGs and 
analyzed their GO and KEGG enrichment terms. 
The enrichment analyses revealed that the DEGs 

Figure 12. The expression of four key genes in hepatocellular carcinoma (HCC) and their survival status. (a) the expression levels of 
the four key genes in HCC tissues and normal tissues. (b) the expression levels of four key genes in paired HCC tissues and adjacent 
tissues. (c) the survival status of high and low expression groups of the four genes. protein expression levels of the four genes in HCC 
and adjacent tissues. (d) CXCL5, (e) CXCL8, (f) IL18RAP, (g) and TREM2.
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were mainly involved in ‘immune cell activation’ 
and ‘effects of chemokines and cytokines.’ 
Immune cell activation checkpoint is the most 
favorable measure to activate an anti-tumor 
immune response. Currently, the most reliable 
sites for cancer treatment are the CTLA-4- and 
PD-1-activated immune T cells. Drugs that antag-
onize CTLA-4 and PD-1 can greatly improve the 
treatment outcomes in late-stage cancer[36]. 
Further, chemokines can alter the cancer progres-
sion and migration [37,38]. Cancer cells enrich 
inflammatory cells through differential expression 
of chemokines and alter tumor progression 
through chemokines[39]; for instance, chemokines 
have been involved in the autocrine regulation of 
the cell proliferation in melanoma[40].

Next, we analyzed the OS of 830 DEGs and 
found that 110 of them were associated with the 
prognosis of HCC. PPI network of these genes 
revealed two protein interaction modules and 
CD2, CCR7, CD80, CXCL8, LCK, CD69, TBX21, 
ZAP70, CXCR3, and IL7R as the top 10 nodes. 
Most of these nodes play important roles in the 
immune progression.CCR7 promotes HCC pro-
gression and is associated with poor survival[41]. 
As a C4 subtype checkpoint gene, CD80 may be 
closely associated with immune escape in HCC 
[42]. Chemokines such as CXCL8, CXCR3, 
CXCL1, and CXCL5 regulate the tumor immune 
response in tumor microenvironment 
[37,38,43–45].

Next, we constructed a prognostic model of 
HCC associated with TME and obtained four 
prognostic core genes (CXCL5, CXCL8, IL18RAP, 
and TREM2) using Cox regression analyses. We 
concluded that age, clinical stage, N stage, and risk 
score were important prognostic variables for 
HCC, and IL18RAP and CXCL5 could be indepen-
dent prognostic factors. IL18RAP is a susceptible 
gene in esophageal adenocarcinoma and Barrett’s 
esophagus[46]. Tian et al. have screened IL18RAP 
and GPR182 as prognostic genes in the TME of 
HCC[47]. In this study, four prognostic core 
genes, including IL18RAP, were obtained using 
similar analytical methods. However, unlike the 
previous study, we used risk scores and performed 
a GSEA of high-and low-risk groups to identify 
the main enriched pathways in different risk 
groups. CXCL5 is a predictor of poor prognosis 

in patients with colorectal cancer, and blocking the 
CXCL5- CXCR2 axis is an effective treatment 
strategy for them [48,49]. Haider et al. reported 
that the expression of CXCL5 in HCC is related to 
neutrophil recruitment, TGF-β/Smad3 signaling, 
and Axl expression[50]. Zhou et al. reported that 
the upregulation of CXCL5 expression in HCC is 
related to the activation of PI3K/Akt/GSK-3β/Snail 
signaling and EMT phenotype[51]. The differential 
expression of the CXCL5 gene is the key to the 
prognosis of HCC; therefore, CXCL5 can be used 
to evaluate tumor progression, block tumor pro-
gression, and predict tumor prognosis[52]. Zhu 
et al. obtained CXCL5 and CXCL8 as prognostic 
genes in the TME of HCC, and analyzed the rela-
tionship between CXCL5/CXCL8 and TIICs[53]. 
In this study, CXCL8 and CXCL5 were obtained 
using similar analysis methods. However, unlike 
previous studies, we used the CIBERSORT algo-
rithm to analyze the correlation between prognos-
tic genes and immune cells. Combined with the 
results of differential and correlation analyses, we 
identified TIICs with their common prognostic 
genes. Tang et al. reported that TREM2 inhibits 
cancer progression and migration by targeting the 
PI3K/Akt/β-catenin signaling pathway in HCC. In 
this study, we identified TREM2 as a key prognos-
tic gene and analyzed its possible role in HCC[54]. 
In contrast to previous similar reports, we identi-
fied the key prognostic genes in the TME of HCC, 
and then combined them with the immune spec-
trum to further explore their underlying mechan-
isms in HCC and their relationship with 
immunotherapy. While clarifying the characteris-
tics of the key genes in the TME of HCC, we 
observed that high-risk groups were strongly asso-
ciated with biosynthesis, and low-risk groups were 
strongly associated with metabolism.

We utilized CIBERSORT to assess the type and 
number of TIICs in the TME to elucidate the 
influence of the TME on tumor immunization. 
We found that there was a high proportion of 
M0 macrophages, CD8 T cells, M2 macrophages, 
CD4 memory resting T cells, and M1 macrophages 
in the tumor tissues. High proportion of CD4 
memory resting T cells, M1 macrophages, M2 
macrophages, CD8 T cells, and plasma cells were 
present in the normal tissues. Notably, the infiltra-
tion of M0 macrophages (P < 0.05) in normal 
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tissues was significantly different from that in the 
tumor tissues. CD8+ T cells are the main cytotoxic 
lymphocytes that play an anti-tumor role. CD8+ 

T cells can induce B cells to produce plasma cells 
by producing IL-21, and play a role in humoral 
immunity[55].

Among the four key genes screened, the ratio of 
M0 macrophages was higher in upregulated 
CXCL5 group, indicating that CXCL5 exerts its 
influence in HCC by upregulating M0 macrophage 
content. Meanwhile, the ratio of M0 macrophages 
to naive B cells was higher in the CXCL8 upregu-
lated group. This may be associated with the pro-
motion of CXCL8 secretion from macrophages by 
MMP (Matrix Metalloproteinase)[56]. 
Furthermore, the ratio of gamma delta T cells, 
naive B cells, CD8 T cells, plasma cells, M1 macro-
phages, and CD4 memory activated T cells was 
higher in the upregulated IL18RAP group. We 
further identified that the three key genes 
(CXCL5, CXCL8, IL18RAP) shared M0 macro-
phage as the common TIIC, indicating that M0 
macrophage may be closely related to the expres-
sion levels of these three important genes.

CXCL5 is reportedly involved in intrahepatic 
cholangiocarcinoma[57], lung cancer[58], prostate 
cancer[59], pancreatic cancer[60], endometrial 
carcinoma[61], and squamous cell carcinoma of 
the head and neck[62]. It has a high expression 
in various cancers, including bladder cancer[63], 
and is involved in tumor progression. However, 
CXCL5 inhibits tumor progression in colorectal 
cancer and renal cell carcinoma [64,65]. The dif-
ferential impact of CXCL5 in cancer is suggested 
by the fact that it can enrich different TIICs to 
either accelerate or restrain TIIC involvement in 
tumor enlargement. Our results showed that high 
expression of CXCL5 led to poor prognosis of 
HCC, which was consistent with the biological 
characteristics associated with CXCL5. Many stu-
dies have reported that CXCL8 is upregulated in 
different cancers. High CXCL8 expression is 
related to poor differentiation and poor survival 
[66]. Upregulation of CXCL8 is also related to 
a lower OS rate in HCC. Furthermore, OS in the 
upregulated IL18RAP group was significantly 
higher than that in the downregulated group. 
Thus, upregulation of IL18RAP indicates 
a favorable prognosis for HCC, which can be 

further explored in the context of immunotherapy. 
At present, there are only a few reports on the 
application of IL18RAP in cancer. Some studies 
have shown that the IL18-IL18RAP axis is 
involved in inflammation and immune regulation, 
making it a potential therapeutic target for natural 
killer T-cell lymphoma[67]. Furthermore, tumor- 
infiltrating macrophages can express TREM2, lead-
ing to an immunosuppressive microenvironment 
[68], which can, in turn, promote tumor growth, 
but inhibit the anti-tumor immune response. Our 
study shows a consistent view that upregulation of 
TREM2 also contributes to the poor prognosis of 
patients with HCC.

The current study has certain limitations. First, 
this retrospective study needs to be validated in 
a large cohort. Second, because of the lack of 
in vivo and in vitro studies, there may be some 
deviations in our results. Thus, the mechanisms by 
which CXCL5, CXCL8, IL18RAP, and TREM2 
affect the TME and immune cell infiltration in 
HCC requires further investigations.

5. Conclusion

We identified CXCL5, CXCL8, IL18RAP, and 
TREM2 as key DEGs that were associated with the 
TME and prognosis of HCC. IL18RAP and CXCL5 
may be independent prognostic factors of HCC. The 
prognosis of patients with HCC who showed a high 
expression of IL18RAP was better and the survival 
time was longer; this may be used in improving the 
prognosis of patients with HCC in the future. 
Further, the expression of the four key genes was 
closely related to the TIICs, particularly, the M0 
macrophages, suggesting their importance in the 
TME of HCC. However, further in vivo and in vitro 
studies and larger cohorts will be required to effec-
tively validate the results of this study.

Highlights

1.CXCL5, CXCL8, IL18RAP, and TREM2 were identified as 
prognostic genes in HCC TME

2. High IL18RAP expression indicated a better prognosis 
for patients with HCC

3. Tumor infiltrating immune cell, macrophage M0, was 
shared by the prognostic genes
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