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80-233 Gdańsk, Poland
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Abstract: Smart materials are much discussed in the current research scenario. The shape memory
effect is one of the most fascinating occurrences in smart materials, both in terms of the phenomenon
and its applications. Many metal alloys and polymers exhibit the shape memory effect (SME). Shape
memory properties of elastomers, such as rubbers, polyurethanes, and other elastomers, are discussed
in depth in this paper. The theory, factors impacting, and key uses of SME elastomers are all covered
in this article. SME has been observed in a variety of elastomers and composites. Shape fixity and
recovery rate are normally analysed through thermomechanical cycle studies to understand the
effectiveness of SMEs. Polymer properties such as chain length, and the inclusion of fillers, such as
clays, nanoparticles, and second phase polymers, will have a direct influence on the shape memory
effect. The article discusses these aspects in a simple and concise manner.

Keywords: shape memory; elastomer; fixity; recovery; applications

1. Introduction to Rubbers and Properties

The first material, known as caoutchouc, is obtained from the weeping tree. This is
polyisoprene recovered from the sap of Hevea Brasiliensis and is known as natural rubber
(NR) in comparing with synthetically produced rubbers. In the course of developing
synthetic analogues of NR, similar compounds were found, which can also be cross-linked
with sulphur. However, macromolecular compounds, as they have unsaturation, can be
cross-linked with sulphur. This unsaturation normally comes from (partly or totally) diene
monomers, for example, polyisoprene (synthetic), polybutadiene, styrene–butadiene, or
acrylonitrile–butadiene copolymers [1–4].

Over the years, the importance of rubber to modern life has constantly increased.
About one-third of the total global rubber usage is natural rubber (NR); the remaining
two-thirds of required rubber is produced synthetically by a great number of industrial
countries, well distributed throughout the world. More than half of the world’s production
of natural and synthetic rubber is used in tyres and the remainder is for a great variety of
industrial and consumer products [5,6].

The most important property of rubbers is elastic behaviour after deformation (either
in compression or tension). It is possible to stretch a rubber sample ten times its original
length and after removal of the tension, the given sample will return to its original shape
and length. In addition, elastomers have many other useful properties under static and
dynamic conditions, such as abrasion resistance, impermeability to air and water, and re-
sistance to swelling in oils/solvents, etc. These properties are exhibited at higher, ambient,
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or lower temperatures and are mostly retained in different climatic conditions and even in
ozone rich atmospheres. Rubbers are capable of adhering textile to fabric and metals, which
helps in increasing properties such as tensile strength. These composites increase the range
of applications of rubber, for example, metal bonded rubber articles have the elasticity of
rubber and rigidity of metal. Properties required for rubber depend on the compounding
and type of rubber. Desirable properties of rubber may be obtained by using proper chem-
ical additives, process aids, and subsequent vulcanization. The degree of vulcanization
is also important, because for a given compound to have a different state of cure there
will be a large variation in properties concerning hardness, elasticity, and strength, but
typical properties like oil/gasoline resistance and ageing may remain unaltered. Rubbers
can form cross-linked structures; these may be long-chain molecules forming coils that can
be extended when subjected to even small stresses. These chain segments are flexible and
undergo micro Brownian motion at normal temperatures. The rubber molecules assume
statistically ordered confirmation when tensile stresses are applied; on the removal of the
stress they return to their statistically random confirmation. This ability of rubber to retain
a memory of its original unstressed state and return to its original dimension when external
forces are removed is utilized in many shape memory applications and will be discussed
in detail in this review [7,8].

2. An Overview of Shape Memory Effect

The shape memory effect (SME), as the term implies, is often the recovery or regaining
of the shape or size of a material as a result of heating it above a particular characteristic
temperature. The definitions may vary, but the effect has the same idea [9–11]. The
materials exhibiting shape memory effect can be categorized under alloys or polymers, the
formed being first proposed in the 1980s and studied in detail [10,12–16]. Nitinol, which is
an alloy of nickel and titanium, was the foremost studied material in understanding shape
memory behaviour and its plausible applications. This material opened up a window to
a new era of engineering material, which continues its development [17]. Presently, SME
and these materials have been employed in many advanced research areas.

Shape memory polymers (SMPs), after smart materials, are very versatile in their
properties and applications. This effect can be exhibited by both virgin polymers and
their composites [18–20]. Elastomers, such as nitrile butadiene rubber, natural rubber,
epoxidized natural rubber, silicon rubber, and polyurethane, etc., are widely studied
because of their shape memory effect [21–29]. Various fillers, such as silica, graphene oxide,
carbon nanotubes, and nano clay, etc., improve the shape recovery, mechanical strength,
and elastic modulus, as well as reduce recovery time. The layered fillers improve the
thermomechanical properties of the elastomers because of their high surface area, which
improves the matrix filler interaction [22,30,31].

The most pronounced stimuli to induce the shape recovery in polymers are electricity,
temperature, light, chemicals, and mechanical force. Based on these stimuli, the materials
can be further be classified as photoresponsive, thermoresponsive, and photochromic, etc.
Shape memory polymers (SMPs) have classifications based on the forces of interaction and
polymers involved, and shape memory pattern. A detailed list of categories of SMPs is
given in the chart below (Figure 1).
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Figure 1. Classification of shape memory polymers, according to different parameters.

2.1. Mechanism behind the Shape Memory Effect in Shape Memory Alloys

SME cannot be treated as an intrinsic property; it arises as a result of the morphology
and the processing conditions of the material. In shape memory alloys, the phase transi-
tion between the austenite and martensite crystalline states are responsible for this effect
(Figure 2), In shape memory polymers, the rearrangement of the polymeric chains results
in the shape memory effect [32]. On the other hand, shape memory changes in polymers
are due to the change in the mechanical characteristics above and below the glass transition
temperature. Here, we are more concerned about the SME of polymers and, in particular,
elastomers. In the case of elastomers, the SME is often combined with other effects, which
increase their applications.
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Figure 2. (A) Changes in crystalline structure during shape memory effect of alloys and (B) mecha-
nism of shape memory in polymers. (Reproduced with permission from [18,33], Elsevier, 2009).

Shape memory polymers are flexible polymer networks with appropriate stimuli-
responsive switches. The molecular switches and net points make up the polymer network.
The net points, which might be chemical or physical in origin, define the permanent
form of the polymer network. Physical cross-linking occurs in a polymer with a shape
that includes at least two separated regions, such as block copolymers. In this case, the
domains corresponding to the greatest transition temperature serve as a net point (hard
segment), whilst the chain segments connected to the region with the second-highest
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thermal transition temperature serve as molecular switches. A temperature that is higher
than the transition temperature results in flexible switching domains and an entropy elastic
polymer network above the transition temperature limit. It flips back into its original
shape if the sample has been previously distorted by external stress when the external
tension is released [18,34].In other words, the SME in polymers can be stated as entropy
phenomena because its original shape is a thermodynamically stable high entropy state;
when it undergoes any macroscopic deformation it changes the entropy and stability. The
chains heated above the transition temperature activate mobility in the molecular level; the
shape is regained using the energy released from the chains [35,36].

2.2. Terms Used in Shape Memory Effect

To explain the phenomena of shape memory we must consider two terms, shape fixity
(Rf) and shape recovery rate (Rr). By considering the values obtained for these parameters
for a particular material, the efficiency of SMEs can be well understood [37]. Among
elastomers, polyurethanes are well known for shape recovery. A great deal of work has
been reported on shape memory properties and composites of polyurethanes by Touchy
and others [38–41].The shape fixity can be defined as the switching segment’s capacity to
correct or fix transient deformations during the programming procedure. On the other
hand, shape recovery (Rr) can be expressed as the shape memory materials’ capacity to
recover their unalterable (original) form [42–44].

The expression used to calculate the shape fixity (Rf) can be given as

Shapefixity, Rf =
Permanent deformation

Total deformation
(1)

For the shape recovery, the equation can be given as,

Shape recovery rate, Rr =
Deformation recovered inacertain cycle

Total deformation inonecycle
×100% (2)

The shape fixity (Rf) and the shape recovery (Rr), which are mainly related to the
mechanical deformation and capability of recovery from the original shape, and Rf and Rr,
are also calculated using the equation shown below [30,45].

Rf(%) =
εu

εm
×100, Rr(%) =

(εm−εp)
εm

×100 (3)

εu = Fixed strain after cooling and load removal; εm = Maximum strain when loading;
εp = Recovered strain after reheating the sample.

Thermomechanical cycles are normally performed to analyse SMEs. In this procedure,
the samples will be heated to a high temperature normally above their characteristic glass
transition temperature (Tg). The applied strain and resultant strain will be fixed to zero.
Presently, the polymer of the composite will be deformed to the desired shape; constant
stress and strain are ensured while deforming and fixing to the particular shape. The SMPs
are then cooled to a temperature below Tg, causing the chain segments of the materials
to reposition themselves. When the tension is entirely released from the polymer, it is
considered to be in its temporary form. Programming is another name for this procedure.
When the materials are warmed to temperatures above Tg, the strain is released, and the
materials return to their original form; the thermomechanical cycle is complete. For the
following cycle, the recovery processes can be repeated [42]. Very high shape fixity and
recovery were reported for polymer composites, which includes thermoplastics [46,47],
rubbers, polyurethanes [39,48] and biopolymers [49–53].
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3. Shape Memory Materials of Rubbers
3.1. Natural Rubber (NR) Based Materials with Shape Memory

The superiority of NR over synthetic polymers lies on the fact that they are capable of
supporting large amounts of stress up to 30 MPa at a strain of more than 1000%.This is due
to strain-induced crystallization (SIC) that occurs whenever cross-linked NR is stretched
to large elongations. The crystals formed vanish when releasing the stretching force and
regain their original amorphous condition. The effect of SIC was investigated by Katz and
thermodynamically by Flory. Flory proposed a theory that considers the entropy change
of molecular chains due to stretching. The entropy change is a factor that promotes the
SIC and the formation of crystals with low surface energy promotes the enhancement of
SIC. In a study by Tosaka et al., the surface energies of strain-induced NR crystals were
found to be relatively small. The low surface energy crystallites usually exhibit a high
melting point exceeding room temperature; this supports the existence of shape memory
natural rubber [54].

3.2. Lightly Cross-Linked Shape Memory Natural Rubber

Lightly cross-linked NR networks have a cross-link density below 0.4%; the crystals
do not disappear after releasing the stretching force but stabilize the network in a highly
elongated state, up to 1000%, at room temperature. The recovery of this network can
be triggered by heating it above its melting point, which is known as a trigger temper-
ature. The trigger temperature of shape memory natural rubber (SMNR) is adjustable
from −20–50 ◦C [55]. Lightly cross-linked NR, rapidly stretched and kept in this state, does
not recover its original state. But when applying a small heat, such as body temperature,
to the stretched material it recovers its original state. Thus, lightly cross-linked NR can
be programmed below its triggered temperature, and the stretching of semi-crystalline
polymer results in partial recoverability. The cross-linking of NR in-between thermoplastics
and heat allow the formation of crystals under strain that can withstand the network in the
high heat of elongation. A typical formulation for shape memory natural rubber is given
in Table 1 [56].

Table 1. Components to be considered when fabricating SME natural rubber.

Components Phr

Natural rubber 100
Sulphur 0.2

ZnO 0.15
Zinc diethyldithiocarbamate 0.15

SMNR is capable of storing a high amount of strain. For an SMNR with a cross-
link density of 0.12%, the strain stored was found to be 990%. Figure 3 shows the strain
stored (εstored) during a 10 shape memory cycle at 20 and 80 ◦C, which also indicates the
programming temperature slightly affects the storable strain [57,58].

In a study by Chai et al., palmitic acid was used as a swelling agent for shape memory
properties. Under a cooling effect, palmitic acid crystallizes onto natural rubber to form a
platelet network. This network allows the fabricated shape memory of NR to deform and
recover its original shape at room temperature [59].

Blends of epoxidized NR (ENR) with polylactic acid (PLA) and polycaprolactone (PCL)
are an example of bio-triggered shape memory polymer. The driving force of recovery is
the stored elastic energy of the ENR phase, which is elongated and restricted by the rigid
PLA or PCL continuous phase in its temporary shape [60,61].



Materials 2021, 14, 7216 6 of 19
Materials 2021, 14, x FOR PEER REVIEW 6 of 20 
 

 

 
Figure 3. Strain stored for cross-linked SMNR at different programmable temperatures. (Repro-
duced with permission from [57], Wiley and Sons, 2016). 

3.3. Synthetic Rubber-Based ShapeMemory Materials 
The term synthetic rubber derives from the synthetic analogue to natural rubber, but 

a great variety of other rubbery materials are produced by chemical synthesis[7].The 
shape memory properties of synthetic rubbers, such as polyurethane, ethylene propylene 
diene monomer (EPDM), and silicone rubbers, were largely studied by scientists all over 
the world. The shape memory effect of zinc-neutralized sulfonated EPDM and fatty acid 
salts was studied by Weiss and others [62]. Here, ionic aggregates form the cross-linked 
network and fatty acid salts form the temporary network. The temporary shape was 
achieved by straining the sample above the melting point of the sample. The next candi-
dates to show the SME are the silicon rubbers. Silicone elastomers were usually blended 
with paraffin wax or sodium acetate to generate shape memory polymer. Silicon paraffin 
wax blend showed a one-way shape memory effect, where deformation was achieved by 
reversible volume expansion/contraction of the wax during melting or crystallization 
[11,63]. In another study silicone, sodium acetate trihydrate (SAT) blends were prepared. 
The SAT formed supercooled liquids, where crystallization was obtained by tapping the 
sample. The deformation is formed at room temperature and the shape can be regained 
by heating above the melting point of SAT or immersing in water [64]. 

Polyurethane (PU) after cross-linking, using excess diisocyanate or glycerine, can be 
used as a shape memory material. The improvement in the increase of the recovery tem-
perature was observed due to the introduction of cross-links. The thermoplastic PU with 
shape memory effect was analysed by graft polymerizing with the PU backbone [65,66]. 

3.4. Rubber Composites with Carbon-Based Fillers 
Carbon-based fillers are good thermal conductive fillers. The incorporation of these 

fillers enhance thermal conductivity and improve the heat distribution between the shape 
memory device and heat source [67–71]. Carbon nanotubes have a high aspect ratio, which 
results in high mechanical strength. Fonseca et al. reported that the reduction of the par-
ticle size of the filler improves the thermomechanical properties of the material. They have 
improved the CNT dispersion in thermoplastic polyurethane by functionalization. The 
carboxylation of CNT established the linkage between CNT and the matrix and improved 
the thermal diffusivity of the nanocomposite. Reinforcement of CNT into the natural rub-
ber matrix made the composite susceptible to near-infrared laser irradiation, which actsas 
a trigger to the shape memory process [72]. Lai et al. melted blended natural rubber/par-
affin wax/CNT composite and studied the two-way shape memory effect, which involves 
melt-induced contraction and cooling-induced elongation behaviour. The measurements 
were conducted using a dynamic mechanic analyser[67].They heated the rubber/paraffin 
wax/CNT composite to the deformation temperature (Td) of 90 °C at a heating rate of 5 

Figure 3. Strain stored for cross-linked SMNR at different programmable temperatures. (Reproduced
with permission from [57], Wiley and Sons, 2016).

3.3. Synthetic Rubber-Based ShapeMemory Materials

The term synthetic rubber derives from the synthetic analogue to natural rubber, but a
great variety of other rubbery materials are produced by chemical synthesis [7].The shape
memory properties of synthetic rubbers, such as polyurethane, ethylene propylene diene
monomer (EPDM), and silicone rubbers, were largely studied by scientists all over the
world. The shape memory effect of zinc-neutralized sulfonated EPDM and fatty acid salts
was studied by Weiss and others [62]. Here, ionic aggregates form the cross-linked network
and fatty acid salts form the temporary network. The temporary shape was achieved by
straining the sample above the melting point of the sample. The next candidates to show
the SME are the silicon rubbers. Silicone elastomers were usually blended with paraffin
wax or sodium acetate to generate shape memory polymer. Silicon paraffin wax blend
showed a one-way shape memory effect, where deformation was achieved by reversible
volume expansion/contraction of the wax during melting or crystallization [11,63]. In
another study silicone, sodium acetate trihydrate (SAT) blends were prepared. The SAT
formed supercooled liquids, where crystallization was obtained by tapping the sample.
The deformation is formed at room temperature and the shape can be regained by heating
above the melting point of SAT or immersing in water [64].

Polyurethane (PU) after cross-linking, using excess diisocyanate or glycerine, can be
used as a shape memory material. The improvement in the increase of the recovery tem-
perature was observed due to the introduction of cross-links. The thermoplastic PU with
shape memory effect was analysed by graft polymerizing with the PU backbone [65,66].

3.4. Rubber Composites with Carbon-Based Fillers

Carbon-based fillers are good thermal conductive fillers. The incorporation of these
fillers enhance thermal conductivity and improve the heat distribution between the shape
memory device and heat source [67–71]. Carbon nanotubes have a high aspect ratio, which
results in high mechanical strength. Fonseca et al. reported that the reduction of the particle
size of the filler improves the thermomechanical properties of the material. They have
improved the CNT dispersion in thermoplastic polyurethane by functionalization. The
carboxylation of CNT established the linkage between CNT and the matrix and improved
the thermal diffusivity of the nanocomposite. Reinforcement of CNT into the natural
rubber matrix made the composite susceptible to near-infrared laser irradiation, which
actsas a trigger to the shape memory process [72]. Lai et al. melted blended natural
rubber/paraffin wax/CNT composite and studied the two-way shape memory effect,
which involves melt-induced contraction and cooling-induced elongation behaviour. The
measurements were conducted using a dynamic mechanic analyser [67].They heated the
rubber/paraffin wax/CNT composite to the deformation temperature (Td) of 90 ◦C at a
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heating rate of 5 ◦C/min, then elongated it to the elongation value of 120 kPa, fixed the
sample shape, and then cooled it to 10 ◦C. Then the load was removed, recovery was noted,
and the procedure was repeated. Figure 4A shows the one-way shape memory cycle and
Figure 4B shows the two-way memory cycle, in which the sample is again heated to a Td of
90 ◦C, elongated up to 450 kPa, cooled up to 10 ◦C, and repeated. Figure 4C(a–e) shows the
near infrared laser-induced shape memory effects of the NR/paraffin wax/CNT sample
and Figure 4D(a–e) shows the images of the sunlight-induced shape memory effects of
the NR blend composites. However, applied external stress is needed for the vapour-
triggered shape memory process; they overcame this issue by replacing the paraffin wax
with beeswax. By adjusting the beeswax composition they have attained the solvent
vapour-triggered process [23,31].
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Elsevier. 2019).

Graphene oxide is layered filler that shows high mechanical and thermal properties;
when we reduce the surface oxygen group present in the graphene oxide, it becomes
electrically conductive, reduced graphene oxide. Sarmadet et al. used the graphene oxide,
reduced the graphene oxide (rGO), and functionalized the reduced graphene, as a filler
in the polyurethane matrix. The shape memory effect was studied and a 99.1% of shape
fixity value and 96.7% shape recovery value for 5 wt% TPU composite, reinforced with
GO: rGO hybrid filler, was obtained [30,45]. Figure 5A illustrates the morphology of the
GO-based shape memory material [(a) GO platelets, (b) rGO platelets, and (c) GO:rGO
hybrid filler] and Figure 5B shows the shape fixity, recovery, and the molecular mechanism
of the shape memory behaviour [(a) Shape memory thermo-mechanical cycle, (b) The
molecular mechanism of Shape memory behavior (Blue lines: molecular chains with low
mobility below Tg; red lines: molecular chains with high mobility above Tg), (c) shape
fixity and (d) shape recovery on neat TPU, TPU/GO, TPU/rGO and hybrid TPU/GO:rGO
composites with 1, 2 and 5 wt% filler content]
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The incorporation of hybrid fillers, such as CNT/GO, CNT/nano clay, and CNT/carbon
black, was also explored by different researchers; there are plenty of hybrid filler combina-
tions that need to be studied [29,73,74]. Liu et al. synthesized the graphene oxide/Trans-
1,4-polyisoprene (GO/TPI) nanocomposite and improved the mechanical and thermal
properties of the composites at 0.9 phr GO composition; they have also studied the effect
of temperature on the rate of shape recovery. They find that the rate of shape recovery
increases with temperature [75].

3.5. Composites with Metal and Metal Oxide Fillers

Magnetically sensitive shapememory materials have major applications in the in-
telligent biomedical field. Fe3O4 is a very good nanofiller used for magnetic property,
which shows relatively high saturation magnetization, high initial permeability, and low
connectivity. The dispersion of the magnetic filler is a major challenge and the in situ
addition of magnetic filler could improve the dispersion within the matrix. Via the in
situ polymerization reaction, Liu et al. designed a carboxylic styrene-butadiene rubber
(XSBR)/ferriferous oxide (Fe3O4)/zinc dimethacrylate (ZDMA)-based shape memory ma-
terial with a higher glass transition temperature (20.5 ◦C), a shape fixation ratio ~100% at
room temperature, and a shape recovery ratio of~100%. Figure 6 shows the reaction of
XSBR, Fe3O4, and ZDMA [76].

Huang et al. successfully synthesized a super tough and locally thermal/magnetic/light-
triggered shape memory material with the highest Rf (~99%) and Rr (>90%) value using
polylactide/epoxidized natural rubber thermoplastic vulcanizates by regulating the com-
position of ferriferous oxide (Fe3O4), using the dynamic vulcanization method. Figure 7A
shows the recovery process, digitally photographed for a better understanding of the pro-
cess. Figure 7B are the DCM-etched scanning electron microscopy images of the composite,
which show very good recovery and have a potential application in intelligent biomedical
areas [77].
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3.6. Composites with Silicon-Based Fillers

The shapememory performance of polyurethane in very low temperatures is signif-
icant for automobile industrial uses, such as low spin-out resistance, winter tires, and
apparel constituents for usage in exceptionally icy environments, such as locations high
above sea level [22,64,78–81].

By maintaining the sample at a continual elevated temperature or putting on an
uninterrupted temperature increase until the strain is entirely well again, shape memory
polyurethane and its nanocomposites have been broadly investigated for shape recollec-
tion routines under stress, in unrestricted or unconstrained settings [82–87]. The distinct
program design practice has been used in the majority of published work, and the sub-
sequent reactions have been accomplished under stress-free retrieval or unconstrained
situations [78,84,88].

Bin Xu et al. studied the attapulgite clay composites with polyurethane and examined
the mechanical properties. Comparing the untreated and 850 ◦C-treated clay showed
significant progress in mechanical strength. Heat treatment resulted in the crystallization
and formation of layered clay nanoparticles and thereby, the enhancement in mechanical
strength. Figure 8 shows the TEM images of untreated and heat-treated silica; it is clear
that without treatment it shows a rod-like structure and after treatment the silica forms a
bundle structure—it is difficult to break those structures even under ultra-sonication. The
SEAD pattern of heat-treated silica and nano-crystallization is also confirmed. In addition,
thermal analysis supports the bundle structure of treated silica nano particles [89].

Yang B et al. and Lu H et al. reported the genesis of the indentation size effect (ISE)
using a variety of theories, including experimental limitations, work hardening or softening
of the objective lens produced during surface groundwork, and structurally core elements
of the material, such as work toughening during the production line indentation, elastic
restoration from indentation, and the grain consequence of size [90–92]. Because of this
man-made enhancement, the indention is quite large and the effect is not substantial.
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Microhardness figures of unadulterated PU, treated, and natural clay-reinforced
combinations, as a function of the applied standard load and temperature, are included
in Figure 9. The inflexibility of PU-cantered shapememory polymers diminish as the
indentation load increases, especially at lower loading [89].
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Figure 9. (a) Hardness of PU composites with treated clay, (b) Hardness of PU composites with untreated clay and
(c) Microhardness vs. temperature of PU shape memory polymers. (Reproduced with permission from Elsevier, 2009).

Bin Xu et al. showed that the mechanical properties of the polymer are very much
dependent on the pre-treatment of nanofillers. Moisture content in untreated clay acts as
a plasticizer and it has a key role in determining the mechanical goods. According to the
direction of the work, 4% moisture content can result in an 85% reduction in hardness.
Commonly, the glass transition temperature and strength of raw PU–clay nanocomposites
decreased. The shape-regaining was comparable across composites based on PU, together
with 30 wt% treated clay nanoparticles and unadulterated PU–clay composites, albeit
recovery time was slightly slower [89].

G.Tsukada et al., C.E. Friedman et al., and C. Liu et al. identified TPI (trans-1,4-polyisoprene)
as a novel category of man-made rubber with shape memory. Its furthermost notable
features are an effortlessly adjustable changeover temperature (Tt) at standard temperature
and a deformity restoration of more than 200% [9,93,94].

For engineering dynamic polymer composites, controlling the interaction amongst the
filler and matrix surfaces is critical. Liu J et al. mediated the charge attraction to create a
modified core (silica)–shell (graphene oxide) hybrid, which was then introduced as neoteric
filler to a trans-1,4-polyisoprene polymer matrix to create an innovative silica–graphene
oxide/trans-1,4-polyisoprene nanocomposite. Fracture toughness, mechanical strength,
and heat resistance of the nanocomposites were all increased by hybrid inclusion. They
used meticulous investigation from a micro scale to macro scale for analysing and parsing
the thermomechanical as well as the shape recall properties of nanocomposites [95].

Yutong Liu et al. used co-continuous polylactide (PLA)/natural rubber (NR)/silica
(SiO2) TPVs to create a shape memory polymer (SMP). The consequence of the thermody-
namic aspect and processing approaches on the selective dispersal of SiO2 nanoparticles, as
well as the impacts on shape memory behaviour, were investigated. Findings showed that
both form fixation and recovery were aided by the co-continuous arrangement. The PLA
phase acted as a “button” to control the shape memory actions, even though the distortion
of the continuous rubber linkage put in storage enough elasticity to drive the shape and
successfully regain course. The fact that tap and bop have distinct shape recovery ratios
could be attributed to the careful distribution of silica nanoparticles in TPVs. For taps,
the majority of SiO2 nanoparticles are located in the NR segment, whereas for bops, a
considerable number of silica nanoparticles were also distributed in the PLA phase. The
difference between the two types of TPVs in the form of recovery progression is exemplified
in Figure 10. The presence of SiO2 nanoparticles in the rubber phase has a clear impact on
rubber tensile strength, affecting the shape retrieval percentage of TPVs as a result [83].

Abrisham et al. used the heat-actuated approach to study the form remembrance
capabilities of polymer composites; the multi-walled carbon nanotubes were used to
create the composites. Nanocomposites of thermoplastic polyurethane made of carbon
nanotubes (CNT), montmorillonite clay (MMT), and hybrid CNT: MMT nanoparticles
were investigated. Mahbod-Abrisham et al. found out that mechanical and shape recall
characteristics are enhanced as a result of the appropriate distribution of nanoparticles,
in addition to the formation of a greater interfacial area sandwiched between the filler



Materials 2021, 14, 7216 12 of 19

and the matrix, due to the synchronized mixing of CNT and MMT with the matrix [96].
Filler content, crystallinity, and filler localization are all highly influenced. Due to the
votive character of MMT nanosheets in improving the distribution of CNT units, hybrid
composites have the best heat-actuated shape memory performance. TPU/CNT: MMT-3
sample (96.2%) had the best shape recovery percentage, whereas TPU/CNT: MMT-5
had the highest shape fixity value (99.1%). The synergistic impact of simultaneously
including carbon- and silica-based filler into the polymer matrix, which is derived from
the marked spreading of hybrid nanoparticles in hybrid composites, was discovered by
the research of Mahbod-Abrisham et al. Finally, this synergistic nature paves the way to
exceptional thermomechanical behaviour, which is the outcome of hybrid nanoparticles
exerting themselves without any alteration. Table 2 shows the shape retention values of
the prepared composites.
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3.7. Composites with Biopolymers and Other Biomaterials

Another advantage of employing SMPs is that biodegradability can be included in the
polymer if the therapeutic device is not meant to be everlasting [97,98]. One application of
this biodegradable material could be scaffolding devices to aid with bone and tissue restora-
tion. The SMP’s medical potential was recently proved through the use of a self-tightening
knot [99]. Biomaterials, such as polylactide (PLA), polyglycolide (PGA), and their copoly-
mer polylactide-co-glycolide (PLGA), have seen increased use in healthcare engineering,
such as in environments for targeted drug supply [100,101], medication as a substance for
bone implantations and bone fixation measures [102–105], surgical stitches [106,107], and
anastomotic equipment, due to their low cost. This shape memory polymer (SMP) class
also includes low crystallinity semicrystalline homopolymers or melt-miscible polymer
blends, with at least one of the semicrystalline constituents that are congruent in the molten
and amorphous regimes, and at least one semicrystalline fraction [9]. The crystals act as
physical cross associations (or harddomains) in this structure, while the composition reliant
Tg of the unstructured area acts as the conversion temperature.

Within the last decade, the emergence of decomposable implantation components
and minimally invasive medical procedures has significantly upgraded the health care
sector. Andreas Lendlein and Robert Langer’s work, published in the Science journal,
describes a class of degradable thermoplastic polymers that can change shape in response
to temperature changes. Bulky implants can be put in the body through tiny incisions,
and sophisticated mechanical displacements can be performed, automatically attributable
to their shapememory capability. To demonstrate the potential of these shape memory
thermoplastics in biomedical applications, a smart degradable suture was developed [99].
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Table 2. Shape memory performance of the composites (Reproduced with permission from
Elsevier, 2020).

Sample Shape Recovery
(%) Shape Fixity (%) Recovery Rate (s)

TPU 86.2 94.3 15.4
1 wt%

TPU/CNT-1 92.1 95.0 12.8
TPU/MMT-1 90.0 93.6 14.1

TPU/CNT:MMT-1 93.3 93.5 12.4

3 wt%
TPU/CNT-3 94.7 98.3 12.1
TPU/MMT-3 91.3 94.6 13.7

TPU/CNT:MMT-3 96.2 97.8 11.5

5 wt%
TPU/CNT-5 92.0 98.5 12.2
TPU/MMT-5 91.0 95.5 14.2

TPU/CNT:MMT-5 95.6 99.1 11.9

Liu C et al. investigated two blends, namely polyvinyl acetate (PVAc)/Polylactic acid
(PLA) and PVAc/PMMA with poly-vinylidene fluoride(PVDF), which are miscible systems
in all blend proportions. PLA and PVDF both have partial crystal-like properties with a
crystallinity value of roughly 50%. Crystallinity in the blends is in the 0% to 50% range,
depending on the composition proportion, with crystals acting as physical cross-links and
crystallinity influencing the modulus of elasticity [9]. The Tg of the non-crystalline section
serves as a conversion temperature between the two homopolymers and can be adjusted.
A copolymer of PLA and poly(glycolide-co-caprolactone), as well as PLA–HA composites,
have recently been produced to display favourable shape memory capabilities [108,109].

Water-loving oligomers can be employed to make manifold block copolymers with
shape retention capabilities, due to the variety of soft domains available. Wetness can
be employed to plasticize the soft realm and drop its Tg lower than the contexture tem-
perature to activate form retrieval in these materials, in addition to heat-triggered shape
recovery [64,91].

Compounds of Poly(D,L-lactide) (PDLLA) and Hydroxyapatite (HA) with biodegra-
dation, biocompatibility, and shape retention capabilities are technologically advanced.
Researchers have looked into some unusual shape memory behaviours. The outcomes
reveal that using the experiment methodologies, HA grains have a more dispersed morphol-
ogy, and PDLLA/HA composites with a specific composite proportion have a significantly
superior shape memory end product than crude PDLLA polymer (Figure 11). This sug-
gests that HA entities can increase shape memory and that PDLLA/HA composites have
biological uses [109].

In cellulose nanowhisker(CNW)/thermoplastic polyurethane (TPU) nanocomposites,
a new strategy for achieving a fast switchable water-sensitive shapememory effect has
been demonstrated by Yong Zhu and others [110]. The ability to adapt chemically and
mechanically to a cellulose whisker percolation network and the entropicelastomer’s
elasticity is the foundation for achieving shape fixity. Yong Zhu et al. also demonstrated
the transient deformation and shape recovery in a dry state; when wet, it returns to its
former shape [111]. As a result of this phenomenon, the chemo-mechanical relationship
and adjustability of the elastomer’s whisker percolation network matrix, provides a new
variant of shape memory that can be switched on and off in real-time.
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Spider silk is a type of natural shape memory biopolymer that is sensitive to water,
allowing it to adapt to a variety of spider demands. Following that, an organizational
example of spider silks has been developed, which accounts for a variety of phenomena,
including adjustable mechanical characteristics, the starting point, purposes, and ground
state of super contraction [53,112–114], all related to shape memory.

Shape memory polymers manufactured from Eucommiaulmoides gum (EUG) have
the potential to be used in biomedical machinery and sensors due to the gum’s renewability,
functionality, and biocompatibility. Heat responsive shape memory composites with zinc
dimethacrylate(ZDMA) reinforcements were created in the study done by Hailan Kang
and colleagues [115]. Figure 12 illustrates ZDMA monomers that were polymerized in situ
and evenly distributed in EUG, demonstrating significant interfacial contacts. The shoring
up of poly-ZDMA particles is responsible for the significantly enhanced tensile strength
and storage modulus in rubber form. Changing the dicumyl peroxide and ZDMA loading
changed the interchanging temperature to 29 ◦C for EUG/ZDMA composites from 50 ◦C.
The EUG/ZDMA composites had extraordinary shape firmness of 95% and a great shape
retrieval of 90%, making them ideal for biomedical applications.
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4. Conclusions 
The polymer classification is that elastomers have many superior properties. In ad-

dition to these intrinsic properties, an interesting behaviour, called the shape memory ef-
fect, is also widely studied. The property of a material, by virtue of whether it can memo-
rize or recover the shape at a particular temperature, is generally termed as the shape-
memory effect. In polymers, this happens due to the rearrangement of polymer chains. 
The two parameters—shape fixity ratio and shape recovery rate—are analysed to explain 
the SME. The addition of fillers, the modification of polymer chains, and the inclusion of 
the second polymer in the matrix will affect the parameters of SME. The shape memory 
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Figure 12. The interaction of EUG chains with ZDMA particles is depicted in this illustration.
(Reproduced with permission from [113], Wiley, 2020).

4. Conclusions

The polymer classification is that elastomers have many superior properties. In
addition to these intrinsic properties, an interesting behaviour, called the shape memory
effect, is also widely studied. The property of a material, by virtue of whether it can
memorize or recover the shape at a particular temperature, is generally termed as the
shapememory effect. In polymers, this happens due to the rearrangement of polymer
chains. The two parameters—shape fixity ratio and shape recovery rate—are analysed
to explain the SME. The addition of fillers, the modification of polymer chains, and the
inclusion of the second polymer in the matrix will affect the parameters of SME. The shape
memory composites of natural as well as synthetic rubbers, such as SBR, can be produced
from fillers of different kinds. The carbon-based fillers, such as graphene oxide, rGO,
and CNTs, and inorganic fillers, such as silica, iron oxide nanoparticles, etc., have great
potential to enhance shape fixity and recovery. This review examines the factors affecting
SME, the different fields of applications, and the future scope of its effects. SME is widely
employed in smart devices, such as actuators in robotics. They have been exploited in the
biomedical field for artificial implants. Shape memory elastomers are believed to have
great potential in biomedical research. Shape memory polyurethanes and composites with
biocompatibility are promising materials. The interactions of elastomer chains with the
second phase determine the behaviour of the resulting materials. The different possible
applications were also mentioned in this article.
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