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Abstract
In the southwestern USA, recent large-scale die-offs of conifers raise the question of 
their resilience and mortality under droughts. To date, little is known about the interan-
nual structural response to droughts. We hypothesized that piñon pines (Pinus edulis) 
respond to drought by reducing the drop of leaf water potential in branches from year to 
year through needle morphological adjustments. We tested our hypothesis using a 7-
year experiment in central New Mexico with three watering treatments (irrigated, nor-
mal, and rain exclusion). We analyzed how variation in “evaporative structure” (needle 
length, stomatal diameter, stomatal density, stomatal conductance) responded to water-
ing treatment and interannual climate variability. We further analyzed annual functional 
adjustments by comparing yearly addition of needle area (LA) with yearly addition of 
sapwood area (SA) and distance to tip (d), defining the yearly ratios SA:LA and SA:LA/d. 
Needle length (l) increased with increasing winter and monsoon water supply, and 
showed more interannual variability when the soil was drier. Stomatal density increased 
with dryness, while stomatal diameter was reduced. As a result, anatomical maximal sto-
matal conductance was relatively invariant across treatments. SA:LA and SA:LA/d 
showed significant differences across treatments and contrary to our expectation were 
lower with reduced water input. Within average precipitation ranges, the response of 
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1  | INTRODUCTION

In recent years, widespread forest mortality in response to drought has 
been documented worldwide (Allen, Breshears, & McDowell, 2015). 
An example of widespread and rapid increase in drought-induced 
mortality, or die-off, was observed for Pinus edulis Engelm. across the 
southwestern USA in response to several years of reduced rainfall and 
high vapor pressure deficits (VPD) (Allen et al., 2010; Breshears et al., 
2009; Williams et al., 2013). Although stomatal closure under drought 
has been hypothesized to increase mortality through carbon starvation 
(Breshears et al., 2009; McDowell et al., 2008), more evidences exist 
for mortality being caused by hydraulic failure (Garcia-Forner et al., 
2016; McDowell et al., 2013; Plaut et al., 2012; Sevanto, McDowell, 
Dickman, Pangle, & Pockman, 2014). Regardless of the mechanism of 
drought-induced decline, maintaining a positive supply of water to the 
foliage is critical for tree functioning and survival.

Species differ in their carbon allocation strategies resulting from, 
among other processes, the interaction of leaf phenology, use of 
stored carbohydrates, and intra-annual xylem growth (Michelot, 
Simard, Rathgeber, Dufrêne, & Damesin, 2012) or root growth (Gálvez, 
Landhäusser, & Tyree, 2011). The diversity in carbon allocation strat-
egies/patterns is expected to result in various growth of leaf vs. sap-
wood. Furthermore, species differ in the onset and timing of growth 
of different structural components (shoot, xylem, leaves). The growth 
of the components can be synchronous or asynchronous (Rossi, 
Rathgeber, & Deslauriers, 2009) and thus dynamically influences both 
evaporative surface area and water supply to the leaves. To date, lit-
tle is documented on how drought types (e.g., soil or atmospheric 
drought, seasonality, intensity) affect interannual carbon allocation 
patterns, and only one experimental study was found investigating the 
response to different drought types across xylem and leaf components 
(Grossiord et al., 2017). For piñons, drought can impair their structural 
development through a reduction in xylem development (Hartmann, 
Ziegler, Kolle, & Trumbore, 2013), needles and shoots length (Adams 
et al., 2015; Grossiord et al., 2016), and the number of needles 
(Clifford, Royer, Cobb, Breshears, & Ford, 2013; Schuler & Smith, 
1988). Because all these components exhibit their own dynamics and 
responses to drought, a comprehensive approach that integrates the 
different traits impacting overall tree gas exchange and water supply 

is key to understanding a tree’s response to drought and predicting 
overall ecosystem resilience.

Previous investigations have focused on short-term physiologi-
cal responses influencing the hydraulic response of trees to drought 
(e.g., stomatal regulation and sapflow variation in the case of piñons; 
Pangle et al., 2015). Other studies have investigated the longer-term 
adjustment in branch structure regulating the overall evaporative de-
mand vs. sap supply (Feichtinger, Eilmann, Buchmann, & Rigling, 2015). 
Indeed, phenologically driven annual growth of xylem and needles, as 
well as leaf abscission, are influenced by exogenous (e.g., climate) and 
endogenous (e.g., carbon and nutrient status) factors (Manzoni, Vico, 
Thompson, Beyer, & Weih, 2015). Each year, additional evaporative 
structure is generated, potentially altering the plant hydraulic design 
and modulating the balance between demand (at the canopy level) and 
water supply (i.e., transported through the xylem). Under a steady-state 
assumption, sap flow balances transpiration and the water potential 
gradient in xylem conduits can be expressed as (Tyree & Ewers, 1991): 

where ΨX is the xylem water potential, x the length of the hydrau-
lic pathway, E the evaporative flux density, and kL the leaf-specific 
conductivity, decomposed as kL = kS·AS:AL with AL the total leaf area, 
AS the total conducting sapwood area, and kS the specific hydraulic 
conductivity. Structural changes that increase kL mitigate the drop in 
dΨX

dx
 for the same level of transpiration E, which reduces the risk of 

cavitation (Cruiziat, Cochard, & Améglio, 2002). An increase in kL can 
be achieved at constant hydraulic pathway (kS·AS) through a decrease 
in AL or, at constant conductivity (kS), through a higher AS:AL (Tyree & 
Ewers, 1991). A decrease in the maximal anatomical stomatal conduc-
tance (gsmax) (Martínez-Vilalta, Poyatos, Aguade, Retana, & Mencuccini, 
2014) reduces E and thus can limit the drop of dΨX

dx
. Finally, variations in 

the annual elongation of branches might carry another hydraulic ad-
justment that can change the linear hydraulic resistivity (Poyatos et al., 
2007). Analyzing the impact of drought and interannual climate vari-
ability on evaporative structure may thus be a key to understanding 
plant resilience to droughts.

We define “evaporative structure” as the needle traits constrain-
ing gas exchange between the tree and the atmosphere and thus 

(1)
dΨX

dx
=

E

kL

these ratios to soil moisture was similar across treatments. However, when extreme soil 
drought was combined with high VPD, needle length, SA:LA and SA:LA/d became highly 
nonlinear, emphasizing the existence of a response threshold of combined high VPD and 
dry soil conditions. In new branch tissues, the response of annual functional ratios to 
water stress was immediate (same year) and does not attempt to reduce the drop of 
water potential. We suggest that unfavorable evaporative structural response to drought 
is compensated by dynamic stomatal control to maximize photosynthesis rates.

K E Y W O R D S

functional ratio, Huber value, isohydricity, leaf area, stomatal conductance, xylem
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participating in the regulation of carbon and water exchanges with 
the atmosphere. To assess the evaporative structure, numerous stud-
ies have considered a structural component approach by quantify-
ing the functional ratio of total leaf area, AL, and normalized by total 
sapwood, AS (presented as the Huber value = AL:AS (Huber, 1928) or 
its converse AS:AL). Supporting a beneficial reduction in kL to prevent 
cavitation (Equation 1), increases in AS:AL have been found along a 
geographical gradient of increasing dryness in both conifers (Callaway, 
DeLucia, & Schlesinger, 1994; DeLucia, Maherali, & Carey, 2000; 
Martínez-Vilalta et al., 2009; Mencuccini & Bonosi, 2001; Whitehead, 
Edwards, & Jarvis, 1984) and angiosperms (Bucci et al., 2005; Carter & 
White, 2009; Gotsch et al., 2010; Li, Berninger, Koskela, & Sonninen, 
2000). Only one instance of decreasing AS:AL with increasing dryness 
has been reported in angiosperms from Eastern Europe (Sellin et al., 
2013), while one study reported no variation along a Mediterranean 
gradient (Martin-StPaul et al., 2013). As the fraction of active sap 
wood is not readily measurable, we here break down the multiple 
years of growth included in AS:AL by focusing on the yearly addition of 
leaf area (LA) relative to yearly addition of sapwood area (SA), noted 
SA:LA. The response of this annual ratio to precipitation, which has 
only been studied in angiosperms at the most apical shoot, showed 
increasing SA:LA ratio with increasing dry conditions (Limousin et al., 
2012; Martin-StPaul et al., 2013). We expect the annual SA:LA in co-
nifers to behave similarly to AS:AL and increase with drought.

In branches, same evaporative structure and sapwood area but 
shorter branch length (h) will lead to a lower drop of water potential 
∆ΨX at constant transpiration E (Equation 1, dx = h). A functional ratio 
that could help studying the influence of elongation on the evapo-
rative structure response to drought is AS:AL/h, the inverse of the 
Huber Value corrected for the branch length. The annual adjustment 
of SA:LA/d (where d is the distance to tip) in response to drought 
might reduce the drop of water potential in new tissues. The annual 
shoot elongation of piñons branches is reduced under drought condi-
tions (Adams et al., 2015; Grossiord et al., 2016); therefore, we expect 
SA:LA/d to increase with droughts.

Changes in the stomatal conductance also contribute to the variabil-
ity of the evaporative structure of plants. Total stomatal conductance 
(gs) is the result of a dynamic response to various physiological and me-
teorological variables (e.g., light, VPD, abscisic acid, leaf water potential) 
and the anatomical component related to stomatal geometry and distri-
bution, called maximum anatomical stomatal conductance, gsmax (Dow, 
Berry, & Bergmann, 2014). To date, studies have focused on change of 
gsmax in response to long-term atmospheric CO2 concentration accli-
mation (Franks, Leitch, Ruszala, Hetherington, & Beerling, 2012; Franks 
et al., 2013, 2014), or on the theoretical framework for optimal use of 
the epidermal area for gas exchange (de Boer et al., 2016). Experimental 
drought has been shown to increase stomatal density and reduce sto-
matal size in angiosperms (Bosabalidis & Kofidis, 2002; Spence, Wu, 
Sharpe, & Clark, 1986; Xu & Zhou, 2008), which has been reported to 
correlate with an increase in gsmax (Franks, Drake, & Beerling, 2009).

We hypothesized that piñon trees, which display a relatively isohy-
dric strategy (i.e., maintaining relatively constant leaf water potential, 
ΨL, irrespective of soil water conditions; Limousin et al., 2013), would 

adjust their annual evaporative structure in response to soil moisture 
and VPD to reduce the drop of water potential in the xylem (dΨX

dx
). 

More precisely, we hypothesized that in years with low soil moisture 
and/or high VPD, piñons would (1) reduce needle length (l) and needle 
area; (2) increase the stomatal density and reduce the stomatal diam-
eter, resulting in a decrease of maximum anatomical stomatal conduc-
tance gsmax; and (3) increase the annual SA:LA and annual SA:LA/d.

To test these hypotheses, we analyzed the drought-induced re-
sponse of piñon pines over a 7-year experiment in New Mexico that 
artificially modified soil moisture conditions, with three types of treat-
ments: ambient, irrigated, and precipitation exclusion (so-called drough-
ted). Atmospheric VPD was similar across treatments, allowing us to 
decouple the effects of atmospheric dryness from soil water stress 
during multiple years, overcoming an issue for understanding long-term 
ecosystems response over long time periods (Novick et al., 2016).

2  | METHODOLOGY

2.1 | Study site and experimental design

The study site is a mature piñon-juniper woodland located at the 
Sevilleta Long-Term Ecological Research Area LTER (34°23′11″N, 
106°31′46″W; 1,911 m asl) in the Los Pinos Mountains of the Sevilleta 
National Wildlife Refuge. The climate record (25 years, 1991–2015) 
from the closest (2 km) meteorological station in the Long-Term 
Ecological Research network (LTER, Cerro Montosa #42; http://sev.
lternet.edu) indicates a mean annual precipitation of 355.3 mm with a 
standard deviation SD = 83.4 (Table 1) for the hydrological year taken 
from November to October. Precipitation in the region is bimodal 
with an average 18% of precipitation occurring during the winter 
(November to February) and 52% during the monsoon season (July to 
September). Mean annual (from January to December) maximum daily 
temperature is 18.8°C, ranging from 7.0°C in December to 29.8°C in 
July. Climate data at the experimental site were collected using a mi-
crometeorological station centrally located in an open intercanopy area 
of the study site and stored on a CR-10X datalogger. From 2007 to the 
end of 2013, precipitation was recorded with a Series 525 rain gauge 
(Texas Electronics, Dallas, TX), air temperature, and relative humidity 
with a Vaisala HMP45C sensor (Vaisala Oyj, Helsinki, Finland) (Table 1).

The experimental design consisted of three flat 40 × 40 m plots 
with different water treatments: (1) ambient conditions, (2) an artificial 
water addition from April to October, and (3) a precipitation exclusion 
(reduction of ~45 ± 1%). These 6-year treatments spanned from the 
beginning of 2008 extending through the end of 2013, with the rain 
exclusion treatment starting in August 2007. Water addition dates were 
distributed from April to October with an average of ~19 mm per wa-
tering event resulting on annual addition rates of 57, 69.5, 112, 107, 95, 
and 95 mm/year. Further details of the water treatments and site infra-
structures can be found in Pangle et al. (2012) and Plaut et al. (2012).

During the 6 years of the experiment, a wide range of climatic 
conditions occurred (Table 1, Figures S1 and S2). Four years (2009, 
2010, 2011, 2012) had a cumulative monsoon precipitation below 
average: the irrigation treatment thus compensated for this low 

http://sev.lternet.edu
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precipitation supply, the ambient treatment experienced natural 
drought conditions, while the droughted treatment faced extreme 
drought conditions (Figure 1). The year 2011 was extremely dry 
with premonsoon and monsoon precipitation approximately two 
(2σ) and one (1σ) standard deviations below the climatology, re-
spectively. The mean maximum daily VPD at LTER site was below 
the long-term VPD monsoon average, suggesting the absence of at-
mospheric drought at the field site with the exception of years 2011 
and 2012, which had extremely high daily maximum VPD during 
the monsoon (approx. 1σ above the experimental mean) (Table 1, 
Figures S1 and S2).

2.2 | Tree selection and sampling

Sample size for the irrigated, control, and droughted treatments 
were 10, 10, and 4 P. edulis Engelm trees, respectively (Tables S1 and 
S2). In May 2014, between 6 a.m. and 12 p.m., we collected three 
branches per tree so that at least the last 7 years of shoot elonga-
tion were included. All sampled branches were south-facing and at 
the highest possible part of the tree crowns (between 2 and 4.5 m). 
They were carefully chosen to avoid possible local disturbances from 
previous twig collections used for leaf water potential measurements 
(Limousin et al., 2013). All branches were placed in plastic bags with 
a moist sponge and stored in ice-coolers until their transportation to 
the laboratory in the afternoon for longer-term storage in a freezer 
(−20°C).

2.3 | Needle structure

Needles from the primary axis of each branch were removed and 
sorted by year of formation (Figure 2). The average number of years 
of needles on each branch was 5.5 with a standard deviation 

SD = 0.96 (ranging from 4 to 7 years). An average of 13.2 needles 
with SD = 3.1 (ranging from 1 to 15) were randomly selected for each 
year and pooled to create a yearly subsample. On each needle of 
these subsamples, we counted the number of stomatal rows in the 
adaxial (Rad, with a precision of ±0.5) and abaxial faces (Rab, ±0.5) 
under a microscope (Nikon SMZ-U; Nikon, Tokyo, Japan) at a magni-
fication of ×5. Then, we scanned the adaxial face of these needles on 
a flat-bed scanner at a resolution of 1,200 dpi. We measured needle 
length (l) and width in mm (w) with a precision of ±0.02 mm in Adobe 
Illustrator CS5 15.0.0 (Adobe Systems Inc., San Jose, CA, USA) for a 
total of 4,918 needles. The needle adaxial area (Aad) was measured 
with a precision of ±0.01 mm2 with Adobe Photoshop CS5 12.0 
(Adobe Systems Inc.) for 20% of the needles. Using these measure-
ments, we used linear regression to estimated Aad for all needles 
(Aad = γ + α·l·w; R2 = .966; Figure S3). From the subsamples of nee-
dles used for measuring w and l, we randomly selected 1–5 needles 
(an average of 4.8 needles, SD = 0.6) to measure stomatal features. 
From each needle, adaxial face imprints at the widest part of the nee-
dle (middle section) were produced using nail polish and tape 
(Voleníková & Tichá, 2001). From these imprints, we measured the 
mean linear density of stomata in rows in each subsample (Dlin , sto-
mata/mm) and maximal stomatal diameter (dS, μm) with a precision of 
4 μm under a microscope (Olympus, BX50; Olympus Austria Corp., 
Vienna, Austria) at a magnification of ×400, with a field of view of 
8.5 mm2 (Camargo & Marenco, 2011). Stomatal density of each nee-
dle (Ds, stomata number/mm

2) was then calculated considering 
Aad ≈ Aab (i.e., neglecting the slight curvature of the abaxial face): 

Maximal anatomical stomatal conductance, gsmax (mol m
−2 s−1), has 

been described as a long-term adaptation parameter (de Boer et al., 

(2)Ds=
Dlinl(Rad+Rab)

2Aad

TABLE  1 Long-term climatic statistics from LTER weather station (#42) and from field site met-station

Period Location

Dry season Max VPD 
(kPa)

Monsoon Max 
VPD (kPa) Yearly PPT (mm)

Pre-monsoon PPT 
(mm)

Monsoon PPT 
(mm)

Mean SD Mean SD Mean SD Mean SD Mean SD

1991–2015 LTER #42 2.43 0.24 2.57 0.30 355.3 84.3 144.8 60.7 210.7 63.0

2007–2013 LTER #42 2.58 0.31 2.6 0.24 328.1 93.4 115.7 68.0 212.4 67.9

2007–2013 Field site 2.62 0.24 2.82 0.26 314.5 73.3 122.7 58.5 191.8 60.2

2007 Field site 2.35 – 2.92 – 323.7* – 174.3* – 149.3 –

2008 Field site 2.61 – 2.48 – – – 96.8 – 253.8 –

2009 Field site 2.35 – 2.87 – 281.7 – 105.9 – 175.8 –

2010 Field site 2.49 – 2.9 – 352.3 – 202.7 – 149.6 –

2011 Field site 2.87 – 3.07 – 163 – 34.5 – 128.5 –

2012 Field site 2.91 – 3.06 – 352.7 – 159.2 – 193.4 –

2013 Field site 2.8 – 2.42 – 377.4 – 85.3 – 292.1 –

SD, standard deviation.
Yearly PPT is the yearly cumulative precipitation from November 1st to October 31st, premonsoon PPT is from November 1st to June 30th, monsoon PPT 
from July 1st to October 31st.
*Value obtained from LTER (on 2008:2013, corr = .9651, p = .0018).
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2011). It can be related to stomatal conductance and is a function of 
dS and Ds (Lammertsma et al., 2011) which are two potential parame-
ters for the study of drought acclimation (Hepworth, Doheny-Adams, 
Hunt, Cameron, & Gray, 2015).

A yearly maximal anatomical stomatal conductance was derived 
for each branch using the formula (Dow, Bergmann, & Berry, 2014): 

where Ds

y

 is the mean Ds for year y (stomata number/mm
2), amax

y is 
the mean maximum stomatal pore area for year y (μm2), d is the dif-
fusivity of water vapor in air (m2/s), v is the molar volume of air (m3/
mol), and p is the pore depth (μm). d and v were computed at 25°C. 
In line with Mitton, Grant, and Yoshino (1998), who found similar 
dimensions for the length and width of P. edulis (difference of ~15%), 
we observed stomata with circular shape. We therefore approxi-
mated stomata as a half-sphere, so that p̄=dS∕2 and amax=π ⋅ (dS∕2)

2.

2.4 | Sapwood

For measurement of ring area variables, we cut at least three segments 
of twig (~1–3 cm long) on one branch per tree (three branches per tree 
for the droughted treatment), along the primary axis for measurement 

of wood anatomical variables (Figure 2). From the most distal extrem-
ity of each segment, thin sections (20 μm thickness) were produced 
using a sliding microtome (WSL, Lab-microtome, Switzerland). Using 
a digital camera (Canon EOS-650D), images were taken from each 
thin section under a microscope (Olympus BX41) with a resolution 
of 2.36 pixels/μm. In each image, individual growth rings were identi-
fied and their ring area (SA) determined using ROXAS 2.0 (von Arx 
& Carrer, 2014) with Image-Pro Plus 6.1 (Media Cybernetics, Silver 
Spring, MA, USA). Due to the small number of years, correct ring dat-
ing could only be made visually, but not statistically cross-validated. 
This procedure suggested the existence of missing rings only for the 
extremely dry year 2011 (Figure S4).

2.5 | Functional ratios

We used annual SA:LA to understand the trend in interannual vari-
ation and its drought response. Because annual SA and annual LA 
can be measured from different elongation segments of the branch 
(Figure 2), we clarify by noting SAy,Γ the xylem area (in cm

2) that was 
added during year y and measured on a twig section whose genesis 
occurred in year Γ (the innermost ring of this wood section). In other 
words, y gives the temporal information of when the SA was formed 
and Γ gives the spatial information of where SA was measured on 
the branch. Similarly, we note LAy,Γ the total needle surface area (m

2) 

(3)gsmax(y)=
damax

y

v

(

p̄y+
π

2

√

amax

y
∕π

)Ds

y

F I G U R E   1 Climate during the years 
of the experiment and across treatments. 
(a) Cumulative precipitation during the 
pre-monsoon period, (b) cumulative 
precipitation during the monsoon, (c) total 
yearly precipitation, initiating on November 
1st, (d) distribution of maximum daily vapor 
pressure deficits during the monsoon. 
Dotted lines indicate the long-term mean 
derived with LTER long-term dataset. 
The continuous line indicates the mean 
during the experiment and measured at 
the experimental site. Horizontal gray 
segments visually identify two treatments 
that had similar seasonal water input but 
on different years
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formed in year y that is between the branch’s tip and the twig section 
whose genesis occurred in year Γ. As a ring of year y is measured on 
a section whose oldest ring is Γ, Γ ≤ y holds (Figure 2). We then calcu-
lated the annual ratios SA:LAy,Γ (cm

2/m2): 

After discarding the apical values corresponding to the innermost ring 
of each twig section (primary xylem), we averaged for each branch 
across all Γ, that is, across all wood sections analyzed on each branch 
(Appendix S1), to obtain one value per year per branch: 

We further emphasize that this is different from total sapwood 
area (AS) divided by total leaf area (AL) because SA:LA represents the 
relative annual change. Indeed, it is not possible to retrospectively 
measure changes in total active sap area throughout the years, nor it 
is to retrospectively estimate AL, and thus we only focus on the annual 
changes and their trends.

We finally derived the yearly ratio of SA:LA/d (m2/m3), which inte-
grates size-related structural change of the branch within the frame-
work of a hydraulic model (Tyree & Ewers, 1991). Similarly, we discard 
the apical values and obtain one value per year and per branch: 

where dy,Γ is the distance between the tip as of year y and the wood 
section where SA:LAy,Γ was measured (Figure 2, Appendix S2).

2.6 | Statistical analysis

For each year, variables were compared between the three treat-
ments using a two-sided Wilcoxon test (i.e., three comparisons 
for 7 years of data). Within treatments, we tested whether needle 
structure for any specific year differed from the long-term mean 
of all 7 years, using a two-sample nonparametric Kolmogorov–
Smirnov test. Regardless of the position on the branch (Γ), we also 
compared across treatments the linear relationship between SAy,Γ 
and LAy,Γ for the “extreme year” (year 2011 only) and “average 
years” (all experimental years except 2011). Relationships were ob-
tained using linear regressions (with intercept = 0), and comparison 
of slopes was made using a bootstrap (Efron & Tibshirani, 1993). 
For all statistical tests, we used a significance level of α = 0.05 (un-
less otherwise noted). These analyses were completed in Matlab 
(R2016a; The MathWorks, Inc., Natick, MA).

We investigated the potential effects of (1) number of days with 
maximum VPD >4.5 kPa during the dry season (MAMJ) and the 

(4)SA:LAy,Γ =
SAy,Γ

LAy,Γ

(5)SA:LAy=SA:LAy,Γ

Γ

(6)SA:LA∕dy=SA:LAy,Γ∕dy,Γ
Γ

F I G U R E   2 Scheme of the structural dissection. Different shades of green correspond to different years. n is the last year of growth present 
on the branch (here 2013). LAy,Γ is the total leaf area of all needles formed in year y and that are between the branch tip and the twig section 
whose genesis occurred in year Γ. Similarly, SAy,Γ is the xylem area that was added during year y and measured on a twig section whose genesis 
occurred in year Γ. dy,Γ is the distance between the tip as of year y (TIPy) and the section where SAy,Γ was measured (only 1 year shown for 
readability). For example: LAn,n−1 is the total leaf area of all needles formed in year n that are between the tip and twig section #2 (genesis in year 
n − 1); SAn,n−1 is the ring area formed in year n in the twig section #2 (genesis year n − 1); dn,n−1 is the length between SAn,n−1 and TIPn
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monsoon season (JASO) and (2) cumulative precipitation during pre-
monsoon (November to June) and monsoon (July to October, JASO), 
with needle length, SA:LA and SA:LA∕d using linear mixed effect 
models (LMEM) (Zuur, Ieno, Walker, Saveliev, & Smith, 2009). The 
choice of the VPD threshold was established after trying different val-
ues, and 4.5 kPa was the value that explained the highest variability. 
Precipitation and VPD periods were used in the LMEM as fixed effects 
and random effects to allow for different responses across treatments, 
using treatment as the grouping variable. To identify the best combina-
tion of predictors in our LMEM, we used a structured search approach 
(Tables S3 and S4) using the Akaike Information Criterion (AIC) and 
ANOVA tests, jointly with knowledge about physiological responses 
(e.g., precipitation is expected to positively affect needle length). In 
order to further guard against violating the underlying LMEM as-
sumption of normality of residuals and coefficients, we confirmed 
the results using a bootstrapped nonparametric approach (Efron & 
Tibshirani, 1993). Similarly, rather than χ2-tests, we used bootstrap-
ping for comparing coefficients between treatments (5% level). Finally, 
simple linear regressions were run on the best predictors. These analy-
ses were conducted using R (3.3.1, R Core Team, 2016) with the pack-
ages “stats” and “nlme” (Pinheiro et al., 2008).

3  | RESULTS

3.1 | Needle structure

Needle structural parameters exhibited different responses to drought 
across treatments and years. In 2009, one year into the experiment, 
the branches of irrigated trees developed longer needles with larger 
areas than ambient trees and droughted trees (Figure 3a,b). In each 
treatment, median annual needle length and area, and number of sto-
mata per needle showed significant variation compared to the median 
interannual value over the entire duration of the experiment. This var-
iability was lowest in irrigated trees. During the driest year of the ex-
periment (2011), needle length (l), needle area (Aad + Aab), and number 
of stomata per needle decreased by 50% in ambient and droughted 
trees compared to the previous year, while irrigated trees showed a 
smaller decrease (10%–20%) (Figure 3a,c). In 2012, with rainfall closer 
to the mean, these values were again similar to those in 2010. Overall, 
l was positively associated with Aad + Aab and the number of stomata 
per needle (r = .96, r = .86, respectively, with p < .001). Stomatal den-
sity (DS) remained significantly smaller for the irrigated treatment 
throughout the experiment (Figure 3d). Compared to l, Aad + Aab, and 
stomata per needle, stomatal density DS exhibited less interannual 
variation within treatments, although 2008 and 2013 were signifi-
cantly lower and 2011 significantly higher than the long-term mean 
for all treatments (Figure 3d). Stomatal diameter (dS) and maximum 
anatomical stomatal conductance (gsmax) showed little variation across 
treatments and little variability between years for the duration of the 
experiment. Irrigated trees showed higher dS, but these differences 
were only significant in 2011 and 2012 (Figure 3e). gsmax showed lit-
tle significant differences across treatments or significant variability 
between years (p > .05, Figure 3f). On average, gsmax remained lower 

for trees of the irrigated treatment, while trees from the droughted 
and ambient treatments were similar (Figure 3f). This lower gsmax was 
primarily explained by the reduced density of stomata (DS) in the ir-
rigated treatment.

For each treatment, needle length increased with both premon-
soon and monsoonal precipitation but decreased with VPD (Figure 4, 
Table S6a). Using linear mixed effect models (LMEM), the variance of 
needle length was explained using different combinations of climate 
predictors (two precipitation periods and two VPD periods, total of 
four combinations). Including premonsoon precipitation as predictor 
always increased the model fit with respect to the same model with-
out this variable. Because VPD and monsoon precipitation are strongly 
correlated (r = −.89, p = .008, Table S5), no improvement was achieved 
when using both of these predictors compared to only one. Among 
all the models tested, the needle length, l, was best fitted (based on 
AIC, Table 2a) by premonsoon precipitation (p < .05) and monsoon 
precipitation (p < .05) as fixed effects (explaining 32% of the variance; 
Johnson, 2014). As expected, for each treatment, needle length de-
creased with increasing VPD and it increased with both precipitation 
periods for all models (Table 3a). A nonparametric bootstrap test 
confirmed that the interannual response of l to precipitation change 
was higher on the irrigated treatment than the ambient treatment, 
itself smaller than the droughted treatment (βppt-irrigated < βppt-
ambient < βppt-droughted, methods in Appendix S3 and R code in 
Appendix S4 and results in Table S7a). Needle length did not exhibit 
any significant response to VPD across treatments (Table S7a), except 
during the very dry year of 2011 (Figure 3a), emphasizing that VPD 
affected all treatments similarly, independently of soil moisture.

3.2 | Functional ratios

For “average years,” the linear regressions of SAy,Γ on LAy,Γ, led to sig-
nificantly larger slopes (SA:LAy,Γ) on the irrigated and ambient treat-
ments compared to the droughted treatment (Figure 5, Table S8a). For 
the “extreme year” (2011), all slopes were significantly different and 
decreased with dryness (Figure 5, Table S8b).

The yearly branch average SA:LA was mostly higher in the irrigated 
treatment compared to the ambient treatment, which was higher than 
the droughted treatment (Figure 6a). Mean SA:LA values for the du-
ration of the experiment (SA:LA2008:2013) were 1.79, 1.41, 1.06 cm

2/
m2 (SD: 0.64, 0.57, 0.52) for the irrigated, ambient, and droughted 
treatments, respectively (Figure 6a). When taking the percentage of 
variation of SA:LAy around its treatment mean, the difference be-
tween treatments collapsed and resulted in very few significant dif-
ferences for SA:LAy (Figure 6b), thus indicating a linear response. The 
largest positive variations of SA:LA occurred for year 2008 (+71% 
in the droughted treatment) and the largest negative variation in 
the extremely dry year of 2011 (−71% in the droughted treatment) 
(Figure 6b).

Similarly, SA:LA∕d was higher in the irrigated treatment com-
pared to the ambient and droughted treatments (Figure 6c). Mean 
SA:LA∕d2008:2013 were 2.34 × 10

−3, 1.72 × 10−3, 1.33 × 10−3 m2/
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m3 (SD: 1.45 × 10−3, 0.95 × 10−3, 0.76 × 10−3) for the irrigated, 
ambient, and droughted treatments, respectively (Figure 6c). The 
percentage of variation of SA:LA∕dy around its mean resulted in al-
most no difference for SA:LA∕dy between treatments (Figure 6d). 
The largest positive variations occurred for year 2008 (+125% in 
the irrigated treatment) and the largest negative variation in the 
extremely dry year of 2011 (−62% in the droughted treatment) 
(Figure 6d).

For each treatment, similarly to needle length, SA:LA and SA:LA∕d 
increased with precipitation and decreased with VPD (respectively 
Figure 7, Table S6b and Figure 8, Table S6c). Using LMEM, the ratios 
were best fitted (based on AIC, Table 2b,c) by premonsoon precipita-
tion (p < .05) and monsoon VPD (p < .05) as fixed effects (explaining, 
respectively, 32% and 16% of the variance, r2

(m)
; Johnson, 2014). The 

random effect did not improve the fitting (r2
(c)
 ≈ r2

(m)
; Johnson, 2014) 

(Table 2b,c) and modeling the logarithm of the ratios led to the same 
best fits (Table 3b,c). The bootstrap confirmed the LMEM results 
(Table S7b,c), except for the significance of premonsoon precipi-
tation in predicting SA:LA∕d in two treatments. Response of SA:LA 
and SA:LA∕d to climate predictors did not change significantly across 

treatments (p > .05, Table S7b,c). Overall, the effect of VPD and pre-
cipitation periods seemed to affect both ratios with similar magnitude 
across treatments (comparing coefficients after standardizing climate 
predictors).

4  | DISCUSSION

In our 7-year experiment, we showed that yearly variation in 
evaporative structure of piñon pines was driven by changes in soil 
moisture across treatments. Specifically, needle length, area, and 
stomatal density of needles all decreased with drier soil, whereas 
neither stomatal diameter nor maximal anatomical stomatal con-
ductance varied significantly. Needle length, SA:LA and SA:LA/d 
differed across treatments and correlated positively with precipi-
tation, but only needle length responded differently across treat-
ments—same water input resulting in significantly different length. 
Atmospheric drought, through high VPD, had an impact only when 
cooccurring with extreme soil drought, as observed in 2011. In 
branches, the response of the new evaporative structure to drought 

F I G U R E   3 Time series of needle structure parameters. (a) Needle’s length, (b) needle’s area, (c) number of stomata per needle, (d) 
stomatal density, (e) stomatal diameter, (f) maximal anatomical stomatal conductance (gsmax). Solid lines are the means per treatment, 
and shading are the standard deviations. Wilcoxon tests were performed to determine statistical difference in the yearly median across 
treatment, reported in the upper part under id, irrigated/droughted; ia, irrigated/ambient; da, droughted/ambient. For each individual 
treatment, Kolmogorov–Smirnov tests were performed to determine statistical difference in the distribution of yearly population against 
population obtain from pooling all years of the treatment, reported in the lower part and following the color code. Difference at the 5% 
level: *, at the 1% level: **
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is immediate and does not support a reduction of the water poten-
tial gradient in newly built xylem.

4.1 | Climate impact on evaporative structure

Because plant species that behave more isohydrically react to low 
moisture levels by reducing water use even at the expense of lower 
carbon gain through stomatal regulation (Limousin et al., 2013), we 
hypothesized that piñon pines would adjust their evaporative struc-
ture under low soil moisture by increasing stomatal density (DS) and 
reducing stomatal diameter (dS). Our results confirmed our hypoth-
esis and piñons increased DS and slightly decreased dS in response to 
low soil moisture. Similar trends of higher DS under drought were also 
found in young Pinus taeda L. in a dry region of South Central US (Bilan 
& Knauf, 1974) and in angiosperms (Clifford et al., 1995; Quarrie & 
Jones, 1977). However, the opposite trend has also been observed 
for some angiosperm species which responded to low soil moisture 
by reducing both DS and dS (Doheny-Adams, Hunt, Franks, Beerling, 
& Gray, 2012; Franks et al., 2009; Taylor et al., 2012). The large va-
riety of responses among species suggests that plasticity in stomatal 
morphology might serve different goals for different species (Franks 

& Farquhar, 2007). In the case of the relatively isohydric piñons ex-
periencing long-term water stress, it is beneficial to reduce stomatal 
size to maintain an efficient and rapid control of stomatal aperture 
and closure (Drake, Froend, & Franks, 2013; Franks et al., 2012). The 
reduction in pore size often correlates with increased stomatal density 
(Franks et al., 2009), at the expense of a higher energy cost associated 
with the maintenance and operations of individual stomata (Assmann 
& Zeiger, 1987). Contrary to our hypothesis, the variations in DS and dS 
mostly offset each other and thus did not result in a significant change 
in gsmax across treatments and years, so that this parameter was not 
sensitive to yearly changes in climate. This result contrasts with the 
response of the more anisohydric Eucalyptus globulus seedlings which 
have shown to increase gsmax with rainfall (Franks et al., 2009). As sug-
gested by de Boer et al. (2016), gymnosperm might not benefit from 
increasing gsmax due to inherently low leaf water transport capacity. 
Relatively isohydric piñons might not benefit either from a decrease in 
gsmax as they have good control of stomatal closure.

In conifers, the dates of needle emergence and total needle length 
correlate positively with soil moisture during the growing season 
(Dobbertin et al., 2010; Raison, Myers, & Benson, 1992; Sheffield, 
Gagnon, & Jack, 2003), while temperature has contrasted effects on 

F I G U R E   4 Relation between number 
of days with maximum VPD > 4.5 kPa and 
cumulative precipitation (Cum. PPT) with 
needle length on the period 2007–2013. 
(a) Needle length (l) versus number of 
days of VPD > 4.5 kPa during the dry 
season. (b) l versus cumulative precipitation 
during premonsoon (c) l versus cumulative 
precipitation during monsoon. Each 
dot represents one year average from 
one branch (N=173). Colored lines are 
regressions for each treatment. Shaded 
areas are confidence intervals of each 
regression. Results of linear regressions are 
found Table S6a. For readability, an artificial 
abscissa offset was added for droughted 
and ambient treatments in (a)
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the onset and the end of the needle growing season (Gordo & Sanz, 
2009; Olszyk, Wise, VanEss, Apple, & Tingey, 1998; Peñuelas, Filella, 
& Comas, 2002). Unlike Mediterranean semiarid vegetation that un-
dergoes a long dry summer with reduced soil moisture, vegetation in 
New Mexico receives additional water during the Monsoon. Needle 
emergence of P. edulis in New Mexico occurs as early as May and can 
be postponed under heat/drought conditions until mid-July, gen-
erally concomitant with the arrival of monsoonal moisture (Adams 
et al., 2015; Grossiord et al., 2016). We found that the total nee-
dle length (l) (end of the elongation period ~ October; Adams et al., 
2015) was best explained by models including premonsoon and 
monsoon precipitation as predictors, and both had a similar weight 
in the models. Including a lag in the predictors did not increase the 
predictive power of the model. We suggest that winter rainfall sup-
plies water for early spring photosynthesis and increases in carbon 
stocks, until soil moisture is depleted (Dickman, McDowell, Sevanto, 
Pangle, & Pockman, 2015). Early in the summer, monsoonal mois-
ture increases turgor in the buds for leaf emergence and sustained 
expansion (Boyer, 1970; Korner, 2003; Palacio, Hoch, Sala, Korner, 
& Millard, 2014; Würth, Peláez-Riedl, Wright, & Korner, 2005). This 
sensitivity to a bimodal precipitation period should be accounted for, 
when designing future irrigation experiment, and more broadly when 
inferring climate change influence on monsoonal vegetation.

Interestingly, our results showed that needles on droughted trees 
could reach the same length as on irrigated trees despite receiving 

at least 50% less precipitation. The drier the soil, the more respon-
sive needle length was to interannual variability in water supply (i.e., 
βppt-irrigated < βppt-ambient < βppt-droughted), emphasizing that 

FIGURE 5 Relation between SAy,Γ and LAy,Γ on the period 2008-
2013 (N=440, includinc apical values). Filled symbols represent “average 
years” of the experiment and solid lines are the regressions for each 
treatment (Table S8a). Empty symbols represent the “extreme year” 
(2011), and dashed lines are the regressions for each treatment (Table 
S8b). For a zoomed version, see Figure S5
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TABLE  2 Results of mixed linear effect models of the form Y = β0 + β1·X1 + β2·X2 with Y the modeled variable, X1 and X2 standardized 
climate predictors (yearly value minus experimental mean divided by standard deviation)

Y Climate predictors

Fixed effect Random effect

AIC r2
(m)

r2
(c)

Value SE p-Value SD

a. l Intercept β0 31.7 2.38 <.001* 3.21 1,172 .43 .77

PPT: pre-monsoon std β1 0.1 0.04 .009* 0.06

VPD: monsoon std β2 −0.86 0.18 <.001* 0.26

Intercept β0 6.8 6.1 .27 9.97 1,151 .32 .94

PPT: pre-monsoon std β1 0.14 0.06 .014* 0.09

PPT: monsoon std β2 0.11 0.04 .005* 0.06

b. SA:LA Intercept β0 1.42 0.06 <.001* 3.8 e-2 355 .32 .33

PPT: pre-monsoon std β1 0.31 0.07 <.001* 7.2 e-2

VPD: monsoon std β2 −0.3 0.05 <.001* 3.8 e-5

Intercept β0 1.53 0.25 <.001* 0.41 367 .37 .59

PPT: pre-monsoon std β1 0.37 0.1 <.001* 0.12

PPT: monsoon std β2 0.41 0.15 <.01* 0.22

c. SA:LA∕d Intercept β0 1.7 e-3 0.1 e-3 <.001* 9.5 e-7 −1,644 .16 .16

PPT: pre-monsoon std β1 0.3 e-3 0.1 e-3 <.001* 12.8 e-7

VPD: monsoon std β2 −0.4 e-3 0.1 e-3 <.001* 8.3 e-7

Intercept β0 1.69 e-3 0.1 e-3 <.001* 0.5 e-5 −1,635 .11 .12

PPT: pre-monsoon std β1 0.31 e-3 0.1 e-3 .021 12.2 e-5

PPT: monsoon std β2 0.36 e-3 0.1 e-3 .018 3.8 e-5

Intercept, X1, and X2 are fixed and random effects, with β0, β1, and β2 their respective coefficients. Needle length (l) in mm. SA:LA in cm2/m2. SA:LA∕d in 
m2/m3. r2

(m)
 and r2

(c)
 refer, respectively, to marginal R2 and conditional R2 (Johnson, 2014).

*Notifies a p < .05.



     |  1665GUÉRIN et al.

the wetter treatment buffered interannual variability of needle length. 
Although droughted trees experienced lower predawn leaf water po-
tential than the ambient treatment during the growing season (Pangle 
et al., 2015), they still produced needles of similar length. This sug-
gests that factors other than predawn leaf water potential and turgor 
during the growing season are influencing l. Studies have suggested 
that the sizes of certain components of branch growth in current 
year depend on previous year precipitation (Clements, 1970; Löf & 
Welander, 2000). Nonetheless, we report similar l for all treatments 
in year 2012, with the ambient treatment having slightly lower l than 
the droughted one. We suggest that this could be the result of pheno-
logical phasing. Newly grown leaf area in a piñon branch is the result 
of successive phenophases (budburst, needle emergence and needle 
elongation)(Adams et al., 2015). These phases can reach various de-
grees of completion, giving the possibility to adjust the growth of new 

leaf area during the growing season. For example, droughted piñons 
can have a lower percentage of needle emergence during drought 
(Adams et al., 2015).

We analyzed the variation in yearly addition of AS:AL (denoted 
SA:LA) and SA:LA/d and their responses to drought. Opposite to our 
hypothesis, irrigated trees maintained a significantly higher yearly 
SA:LA and SA:LA/d than other treatments. This result contrasts with 
previous studies on Mediterranean Quercus ilex that reported a signif-
icant increase of apical SA:LA, lasting up to 5 years after the experi-
ment onset (Limousin et al., 2012; Martin-StPaul et al., 2013). These 
contradictory results might stem from different properties of the pri-
mary xylem of the apical SA:LA (apical values were not considered in 
the present study), from the specificity of P. edulis and from the climate 
of New Mexico (monsoonal vs. Mediterranean). The importance of 
pre-monsoon precipitation (i.e., mainly winter precipitation as snow 
fall) in explaining the interannual response in SA:LA and SA:LA/d is 
not surprising as snow pack melting provides soil moisture for photo-
synthesis, cell division, and shoot growth in early spring (Adams et al., 
2015; Hallman & Arnott, 2015). The difficulty of selecting the best 
climate predictor between monsoon precipitation and the number of 
high VPD days (>4.5 kPa) during the monsoon is common because of 
the high coupling between these two climate variables. Unlike needle 
length, both functional ratios exhibited similar interannual variability 
across treatments (Table S7b,c) and their responses were robust to 
changes in precipitation and VPD, regardless of the treatment water 
status. Moreover, when dividing interannual variations of SA:LA and 
SA:LA/d by their means, differences disappear, emphasizing that the 
interannual response is simply linear (except for year 2011, see below). 
In addition, the yearly ratios exhibit no lag/memory, that is, influence 
of previous years, and primarily reflect dryness condition of the cur-
rent year. It also suggests a tight balance between structural compo-
nents—sapwood, leaf area, shoot length—might be sufficient in this 
isohydric species to cope with atmospheric or soil stress, similarly to 
recent results for isohydric grasslands (Konings, William, & Gentine, 
2017).

4.2 | Implications for leaf water potential

The annual changes in SA:LA should be differentiated from the long-
term adaptation expressed by AS:AL and also differentiated from the 
stand-level response (Martin-StPaul et al., 2013). Our results suggest 
that multiple consecutive years of drought may create successive an-
nual developments of evaporative structure with low SA:LA, thus cu-
mulatively lowering AS:AL of the piñon. This is in contradiction with 
the absence of difference found in piñons under different water/heat 
treatments (Grossiord et al., 2017) and with other intraspecies stud-
ies of conifers, that found a correlation between dry average condi-
tions and higher AS:AL (Callaway et al., 1994; DeLucia et al., 2000; 
Martínez-Vilalta et al., 2009; Mencuccini & Bonosi, 2001; Whitehead 
et al., 1984). We see four reasons for these discrepancies. First, it is 
possible that higher values of AS:AL reported for drier conditions—
compared to values for wetter conditions—result from the acclimation 
achieved on time scales longer than the duration of our experiment 

TABLE  3 Equations from mixed linear effect model for 
Y = β0 + β1·X1 + β2·X2 with X1 and X2 climate variables taken as 
fixed and random effects

Treatment β0 βl-treatment β2-treatment n

a. l

PPT: pre-monsoona VPD: monsoon

Irrigated 34.7 0.042 −0.58 58

Ambient 28.8 0.093 −0.96 54

Droughted 31.5 0.161 −1.04 61

PPT: pre-monsoona PPT: monsoona

Irrigated 18 0.051 0.05 58

Ambient 0.4 0.126 0.096 54

Droughted 2 0.236 0.171 61

b. SA:LA

PPT: pre-monsoon VPD: monsoon

Irrigated 1.35 4.0 e-3 −0.062 48

Ambient 1.23 5.0 e-3 −0.062 58

Droughted 1.19 5.0 e-3 −0.062 57

PPT: pre-monsoon PPT: monsoon

Irrigated 0.11 4.2 e-3 3.8 e-3 48

Ambient −0.09 6.5 e-3 4.1 e-3 58

Droughted −0.21 6.5 e-3 8.0 e-3 57

c. SA:LA∕d

PPT: pre-monsoon VPD: monsoon

Irrigated 15.7 e-4 5.3 e-6 −80.1 e-6 48

Ambient 15.7 e-4 5.3 e-6 −80.1 e-6 58

Droughted 15.7 e-4 5.3 e-6 −80.1 e-6 57

PPT: pre-monsoon PPT: monsoon

Irrigated 5.7 e-4 4.2 e-6 3.6 e-6 48

Ambient 3.8 e-4 5.8 e-6 3.6 e-6 58

Droughted 5.7 e-4 4.4 e-6 3.6 e-6 57

Needle length (l) in mm. SA:LA in cm2/m2. SA:LA∕d in m2/m3. n the sample 
size of each treatment.
aThe three treatment slopes are significantly different at the 5% level.
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(i.e., decadal or longer) (Martin-StPaul et al., 2013). Second, it could 
be possible that a substantial proportion of the measured sapwood 
(AS) in branches may not be conducting, especially in the drought ex-
periments, which would increase AS:AL and diverge from the actual 
hydraulic allometry. This bias in AS could explain the higher values of 
AS:AL (~4.5 cm

2/m2) compared to SA:LA in our study (~1.5 cm2/m2) 
(Grossiord et al., 2017; Hudson, 2016). Third, studies typically stand-
ardize measurements of AS:AL by cutting branches at a fixed distance 
from the tip (e.g., 20 cm; Grossiord et al., 2017). Under experimental 
manipulation, the annual elongation of the shoot is expected to be 
reduced with drier conditions (Adams et al., 2015), likely resulting in 
measurement of AS:AL that includes more years of sapwood in drier 
treatments, possibly introducing a dilution of experimental signal in 
the ratio. And fourth, drought-stressed trees might develop low SA:LA 
during multiple years and still be able to maintain a cumulative AS:AL 
that is higher than average. Indeed, cumulative AS:AL also integrates 

the active regulation of leaf area (AL). Under dry conditions, a reduc-
tion in AL can occur through leaf abscission even in evergreen spe-
cies (Manzoni et al., 2015; Maseda & Fernandez, 2006; Munné-Bosch 
& Alegre, 2004; Vico et al., 2014) and lead to an increase of AS:AL. 
However, in our experiment, this does not seem to be the case be-
cause branches on droughted trees maintained more years of nee-
dles (5.9 years, SD = 0.99) than branches on irrigated trees (5.4 years, 
SD = 0.81); Kolmogorov–Smirnov test, p = .21).

Under drought conditions, with no annual lag, pinions build new 
evaporative structure of reduced SA:LA and SA:LA/d. If acclimation 
might occur after few years (Martin-StPaul et al., 2013), temporarily, 
low SA:LA contributes to a decrease in the leaf-specific conductiv-
ity (kL) and therefore an increase in the water potential gradient for 
the same water transport (E, Equation 1). In addition, when including 
the length of the new evaporative element within the framework of 
Equation (1), the linear resistivity of the branches increases which 

F I G U R E   6 Time series of the functional ratios and their variations around the mean (2008–2013). (a,c) SA:LA and SA:LA∕d pooled by 
treatments, dashed lines indicating the mean during the experiment. (c,d) percentage of variation of SA:LA and SA:LA∕d around the mean of 
each treatment, pooled by treatments. For (a) and (c), dotted lines are the mean per treatment. Shading are standard deviations (±σ). Similarly to 
Figure 3, Wilcoxon tests and Kolmogorov–Smirnov tests were reported
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results in a bigger drop of water potential for the same level of evap-
oration. We conclude that the annual adjustments in the evaporative 
structure do not support a reduction in the water potential drop under 
soil dryness. Rather, trees try to increase the overall maximum sap and 
transpiration rates as SA:LA/d decreases across treatments.

We suggest that the relatively isohydric piñons do not need evap-
orative structure reduction to mitigate the drop of water potential 
under droughts (see below). When drought stress increases, piñons 
can still actively close stomata to reduce evaporation, preventing 
drop of leaf water potential regardless of AL (Limousin et al., 2013). 
Stomatal closure, however, comes at the expense of lowering carbon 
assimilation (Limousin et al., 2013), which impacts piñons carbon sta-
tus (Dickman et al., 2015) and further development of both LA and SA 
(Palacio et al., 2014).

4.3 | Carbon allocation

Reducing yearly increments in SA:LA during drought emphasizes that, 
in relative terms, more carbon is being allocated toward leaves than 
xylem. Rather than creating a safer hydraulic structure supporting 
the regulation of leaf water potential by reducing leaf area, piñons 

tend to maintain photosynthesis by decreasing LA less. This response 
allows for more carbon gain outside of the growing season, when 
water is available and stomata are opened (Wright et al., 2004). The 
importance of LA for carbon gain and thus resilience and growth has 
been identified in other conifer species. It was shown that reduced 
LA is associated with lower stem and shoot growth (Albaugh, Allen, 
Dougherty, & Kress, 1998; O’Neil, 1962; Vose & Allen, 1988) and with 
a shift of carbon allocation toward storage (Wiley, Huepenbecker, 
Casper, & Helliker, 2013). Elevated carbohydrate production also in-
creases tree defenses against biotic agents (McDowell et al., 2011), 
while more carbon being available for xylem growth may strengthen 
new xylem tracheids (Eilmann, Zweifel, Buchmann, Graf Pannatier, 
& Rigling, 2011; Martín-Benito, Beeckman, & Cañellas, 2012) and 
therefore reduce vulnerability to cavitation (Bouche et al., 2014). 
Eventually, reduced allocation of carbon to xylem compared to leaves 
might also be the result of a strategy prioritizing the building of larger 
carbohydrate pools over xylem growth, saving resources for future 
growth (von Arx et al., 2017), or the result of an allocation strategy to-
ward root development, in order to reach deeper soil layer and access 
more water (Gálvez et al., 2011). Overall, a reduced xylem growth 
together with a relative large photosynthetic surface area seems to 

F I G U R E   7 Relation between climate 
variables and SA:LA calculated for each 
branch on the period 2007-2013 (N=163). 
(a) SA:LA versus number of days of 
VPD > 4.5 kPa during monsoon. (b) SA:LA 
versus cumulative precipitation during 
premonsoon. (c) SA:LA versus cumulative 
precipitation during monsoon. Colored lines 
are regressions for each treatment. Shaded 
areas are confidence intervals of each 
regression. Results of linear regressions 
are found in Table S6b. For readability, 
an artificial abscissa offset was added for 
droughted and ambient treatments in (a)
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have numerous advantages for pine development and maintenance 
under drought and does not necessarily imply an increase in drought 
stress similar to other pine species (Jacquet, Bosc, O’Grady, & Jactel, 
2014).

Lower SA:LA in droughted trees might increase the carbon used 
for respiration. In Pinus strobus, mean respiration of foliage during the 
growing season is about double that of the sapwood (Vose & Ryan, 
2002). Accordingly, droughted piñons in our experiment could have 
reached almost neutral leaf level carbon balance during summer days, 
with daily respiration matching daily assimilation (Limousin, Yepez, 
McDowell, & Pockman, 2015). This would suggest that droughted fo-
liage may not have produced extra carbohydrates for woody biomass 
growth and/or maintenance.

4.4 | Extreme drought and nonlinear responses

Simultaneous occurrence of extreme soil drought (low precipita-
tion) and atmospheric drought (high VPD) in 2011 led to an extreme 
response in evaporative structure in trees from the ambient and 
droughted treatments. Under these conditions, piñons developed the 
shortest needles, a reduced leaf area, and the lowest yearly SA:LA 
and SA:LA/d. In semiarid regions, decoupling the impact of VPD from 

precipitation on evaporative structure can be difficult because high 
VPD and low precipitation are often strongly correlated (Novick et al., 
2016). The strong correlation between precipitation and VPD during 
the monsoon does not allow us to statistically reject the effect of VPD 
on needle length and functional ratios. However, comparison of needle 
length, SA:LA, and SA:LA/d in three specific years (2009, 2011, 2013) 
supports the implication of VPD in the extreme response of evapo-
rative structure. Ambient trees in 2009 had the same seasonal water 
input as irrigated trees in 2011 (~25% below the experimental mean, 
Figure 1a–c), and despite the extreme VPD in 2011, in both cases trees 
had similar needle length and yearly incremental SA:LA (Figures 3a 
and 6b). However, ambient trees in 2011 had similar seasonal water 
inputs as droughted trees in 2013 (~50% below experimental mean, 
Figure 1a–c), but needle length and SA:LA values in 2011 were half 
those in 2013 (Figures 3a and 6b). Mean monsoonal VPD in 2011 was 
9% higher than the experiment average, while in 2013 it was 14% 
lower. These singular observations confirm that when atmospheric 
drought is combined with soil drought, foliar development is limited 
(Weiss, Betancourt, & Overpeck, 2012), and suggest that the evapora-
tive structure response may become highly nonlinear. While little is 
known about the physiological disruption leading to these changes in 
evaporative structure, it is clear that climate extremes can significantly 

F I G U R E   8 Relation between climate 
variables and SA:LA∕d calculated for 
each branch on the period 2007-2013 
(N=163). (a) SA:LA∕d versus number of 
days of VPD > 4.5kPa during monsoon. (b) 
SA:LA∕d versus cumulative precipitation 
during premonsoon. (c) SA:LA∕d versus 
cumulative precipitation during monsoon. 
Colored lines are regressions for each 
treatment. Shaded areas are confidence 
intervals of each regression. Results of 
linear regressions are found in Table S6c. 
For readability, an artificial abscissa offset 
was added for droughted and ambient 
treatments in (a)
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alter the annual functional ratios and challenge our ability to model the 
responses of structure and function in piñon pine.
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