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Background: Mycosis fungoides (MF) is the most common cutaneous T-cell lymphoma,
for which there is no cure. Immune checkpoint inhibitors have been tried in MF but the
results have been inconsistent. To gain insight into the immunogenicity of MF we
characterized the neoantigen landscape of this lymphoma, focusing on the known
predictors of responses to immunotherapy: the quantity, HLA-binding strength and
subclonality of neoantigens.

Methods:Whole exome and whole transcriptome sequences were obtained from 24 MF
samples (16 plaques, 8 tumors) from 13 patients. Bioinformatic pipelines (Mutect2,
OptiType, MuPeXi) were used for mutation calling, HLA typing, and neoantigen
prediction. PhyloWGS was used to subdivide malignant cells into stem and clades, to
which neoantigens were matched to determine their clonality.

Results: MF has a high mutational load (median 3,217 non synonymous mutations),
resulting in a significant number of total neoantigens (median 1,309 per sample) and high-
affinity neoantigens (median 328). In stage I disease most neoantigens were clonal but
with stage progression, 75% of lesions had >50% subclonal antigens and 53% lesions
had CSiN scores <1. There was very little overlap in neoantigens across patients or
between different lesions on the same patient, indicating a high degree of heterogeneity.

Conclusions: The neoantigen landscape of MF is characterized by high neoantigen load
and significant subclonality which could indicate potential challenges for immunotherapy
in patients with advanced-stage disease.

Keywords: neoantigen, cutaneous T-cell lymphoma, mycosis fungoides, immunogenicity, immunotherapy
INTRODUCTION

Mycosis fungoides (MF) is the most common type of cutaneous T-cell lymphoma (CTCL) that
develops from clonotypically diverse malignant T-cell precursors seeding the skin (1, 2). Prognosis
in the early stages (T1-T2, patches and plaques) is excellent, however the development of tumors
(T3) or erythroderma (T4) is associated with a significant decrease in survival (3, 4). Despite
intensive research, MF remains incurable and treatments for advanced disease are mostly
palliative (4).

There is robust evidence that MF is an immunogenic tumor and that the immune system is an
essential factor limiting its progression [reviewed in ref. (5)]. It has been well documented that
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iatrogenic immunosuppression causes a catastrophic dissemination
of MF (6, 7). Many current therapies (interferons, imiquimod,
extracorporeal photopheresis and allogeneic stem cell
transplant) are considered to act primarily via stimulation of
the antitumor immunity (8–11). However, the experience with
immune checkpoint inhibitors has been disappointing in MF (5).
The literature comprising approximately 50 cases of MF treated
with various immune checkpoint inhibitors reports response
rates ranging from 9% to 56% with only a few documented
complete remissions (12–16). Of the few anticancer vaccine
studies in CTCL, response rates have ranged from 33% to 50%
(17–19). Those rather discouraging results are surprising in view
of the fact that MF is a mutationally rich tumor with a mutation
load in the range of 500–4,500 somatic mutations/genome (20).
The number of mutations is usually correlated with the number
of neoantigens and consequently the immunogenicity of the
cancer, which is predictive for immune checkpoint inhibitor
efficacy (21–23).

It has recently been suggested that in addition to mutational
load and the number of neoantigens, tumor heterogeneity has a
major impact on the ability of the host immune system to mount
an effective antitumor defense. Neoantigens can be classified as
clonal (present on all cancer cells) or subclonal (present only on a
subset (subclones) of cancer cells) (21). A high clonal neoantigen
burden, for instance in malignant melanoma, favors effective
immune surveillance, response to immunotherapy and
significantly prolonged survival (21). In contrast, a tumor with
a branched subclonal structure will be poorly recognized by the
immune system, even if the mutation load is high, as
documented for some immunotherapy-resistant tumors such
as glioblastomas (24).

To better understand the potential for immunotherapeutic
approaches in MF we studied the landscape of neoantigen
expression in this malignancy. Using whole transcriptome and
whole exome sequencing, we determined the pattern of
neoantigens in early lesions of patches and plaques and
compared them to those of clinically advanced disease. We
show that disease progression is correlated with an increase in
mutational load and the number of neoantigens. However,
advanced lesions of MF exhibit a high proportion of subclonal
neoantigens which may limit the efficacy of immunotherapies.
MATERIALS AND METHODS

Materials, Sequencing, Datasets
Institutional ethics approval was obtained under the application
HREBA.CC-16-0820-REN1. We performed whole exome
sequencing (WES) and whole transcriptome sequencing (WTS)
of 24 MF samples (16 plaque, 8 tumor) and matched peripheral
blood mononuclear cell (PBMC) in 13 patients (patient
characteristics in Supplementary Table S1). DNA and RNA
sequencing libraries were prepared from tumor cell clusters
microdissected from skin biopsies using laser capture
microdissection and sequenced as described previously (20, 25)
(Figure 1). The mean sequencing depth across samples was
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162.62x (individual sequencing depths in Supplementary Table
S2). Additional datasets comprised sequencing data (study
characteristics in Supplementary Table S3) published by
McGirt et al. (5 whole genome sequences (WGS) from 5
patients with MF) (26) and by Choi et al. (31 WES from 31
patients with Sézary syndrome) (27).

Identification of Neoantigens
Bioinformatics analysis involved a series of pipelines shown in
Figure 1. GATK (v4.0.10) best practices guidelines (28) were
used to process the initial WES fastq files. Reads were aligned to
the hg38 reference genome. MuTect2 (v2.1) was used for variant
calling to identify missense and indel mutations. OptiType
(v1.3.1) (29) was used with default settings to predict class I
human leukocyte antigen (HLA) types from WES of PBMC for
the corresponding samples. Kallisto (v0.45.0) (30) was used to
process the raw RNA fastq files with the bootstrapping function
set to 500 to obtain the variance and expression level. The
outputs of these pipelines (.vcf files from MuTect2, HLA types
from Optitype and.tsv files from Kallisto) were imported into
MuPeXi (v1.2) (31) to predict neoantigenic peptides (8-11 amino
acids long). Of note, MuPeXi penalizes neopeptides that are
identical to their wildtype, as these are likely not immunogenic
due to central tolerance. Neopeptides are prioritized based on
their dissimilarity to their unmutated form. NetMHCpan 4.0
(32) (incorporated in MuPeXi pipeline) was used to predict
peptide binding affinities to up to 6 patient-specific HLA types.

Neoantigen Filtering
We will refer to the raw output of prediction software as ‘putative
neoantigens’ and the result once filtering criteria is applied as
‘filtered neoantigens’. Our filtering criteria included: (1) Mutant
peptide binding strength, defined as eluted ligand (EL) likelihood
percentile rank ≦0.5%, (2) RNA expression level >0.1 transcripts
per million (TPM) (33), (3) Top peptide, applied last to group all
predictions arising from the same mutation (chromosome and
genomic position) and select the peptide with the lowest binding
strength. While all peptides <0.5% rank are generally considered
to be strong binders (34), we further divided these into high
strength binders (<0.05%rank), intermediate strength binders
(0.05≧%rank<0.15) and low strength binders (0.15≧%rank≦0.5).

Mutant Peptide Characterization
To further characterize mutant peptides, we identified the most
frequently overlapping peptides between samples. We then used
the mutant peptide sequence to search the IEDB database (35)
for homologous peptides that were known immune epitopes. We
searched for exact matches and if none were found, we reduced
the threshold to blast >90%. If a known epitope was found, we
further searched the Uniprot database (36) for details of the gene
encoding the protein, and the protein function.

Neoantigen Clonality Analysis
For phylogenetic analysis, Strelka2 (v2.9.10) (37) was used for
mutation calling to identify missense mutations that overlapped
with those called by MuTect2. TitanCNA (38) was used to
predict copy number aberrations (CNA). Default parameters
November 2020 | Volume 11 | Article 561234
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were used except for alphaK which was changed to 2,500 as
recommended for WES data. PhyloWGS (v1.0-rc2) (39) was
used to build phylogenetic trees by clustering missense mutations
using CNA. The stem and clade mutations producing
neoantigens were then highlighted on the phylogenetic trees to
determine the clonality of the neoantigens.
Frontiers in Immunology | www.frontiersin.org 3
Cauchy-Schwarz Index of Neoantigens
(CSiN)
CSiN combines neoantigen load, neoantigen clonality and
immunogenicity in a single score and is believed to reflect the
sensitivity of the tumor to immunotherapy (40). We used
transcripts per million (TPM) counts calculated by Kallisto (30)
FIGURE 1 | Summary of methods and study design. Biopsies of lesional skin and blood were obtained. 13 mycosis fungoides (MF) patients were divided into group
1 (multiple samples) and 2 (single samples) according to the number of biopsies contributed. The lesions were categorized according to the clinical stage and the
morphology of the lesion: ESP (early stage plaques, i.e. MF plaques in stage I), LSP and TMR (respectively, late stage plaques and tumors biopsied from patients in
stage ≥IIB). MuPeXi was used to predict neoantigens. For clonality analysis we used mutation data obtained from MuTect2 and Strelka2, as described previously
(20). Predicted neoantigens were mapped to the clades and stems of the phylogenetic trees constructed using PhyloWGS (20).
November 2020 | Volume 11 | Article 561234
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for RNA expression, and neoantigen binding strengths calculated
by MuPeXI (31). We used seven binding strength thresholds (%
rank) of 0.375, 0.5, 0.625, 0.75, 1.25, 1.75, and 2. Only
neoantigens that had an expression ≥ 1 TPM and were also
produced by the top 500 most common variants (variants with
the highest variant allele frequency) were included in the CSiN
score calculation.

Data Visualization
Visual data representations were created using the R package
beeswarm (www.cbs.dtu.dk/~eklund/beeswarm/), GraphPadPrism
(v8.3.0, www.graphpad.com), jvenn (41), Venn Diagram Tool
(http://bioinformatics.psb.ugent.be/webtools/Venn/), PhyloWGS
(39) and Microsoft Excel.
RESULTS

Tumor Mutation Burden in MF Is
Dominated by Frameshift Mutations
Early-stage MF (IA-IIA) is characterized by thin cutaneous
lesions of patches and plaques (T1-T2). The emergence of
tumors (T3) heralds progression to the advanced stage IIB. It
is important to note that most advanced-stage patients may
exhibit plaques persisting from the early stages in addition to the
stage-defining tumors. To capture the impact of disease stage on
mutation burden and neoantigen expression we classified
biopsies into the following categories: early stage plaques
(ESP), i.e. the lesions T1 and T2 (patches or plaques) obtained
from patients in stage IA-IB, and late stage plaques (LSP) and
matched tumors (TMR) from patients in a clinical stage ≥ IIB
(Figure 1). In those lesions, we determined tumor mutation
burden (TMB) defined as the number of non-synonymous
mutations producing neoantigens. The median TMB was 3,217
Frontiers in Immunology | www.frontiersin.org 4
mutations per sample, or 35 mutations/kB consisting primarily
of frameshift mutations (70.3%), in-frame missense mutations
(28.4%), insertions (1.1%) and deletions (0.2%) (Figure 2). The
median TMB in ESP was 2,455 (range 1,440-7,198), and its upper
range increased in LSP (median 5014, range 890-8,697) and in
TMR (median 2,697; range 1306-8,722).

Increase in Neoantigen Load During
Disease Progression
When examined by lesion type, patients with advanced disease
had a greater number of putative neoantigens compared to early
stage plaques (LSP - 27,179,348, TMR - 19,647,017 vs ESP -
15,645,072), though this was not statistically significant
(P=0.368) (Figure 3A). There was no difference in median
binding strength between ESP (median 56%), LSP (median
57%) and TMR (median 58%).

Filtering putative neoantigens is necessary to narrow down
epitopes that are most likely expressed in patients. When we
applied all filters (“RNA” column in Figure 3B), an average of
70% of predicted neoantigens were expressed at the RNA level
(median neoantigens per sample was 1,309). A median of 328
were high strength binders (<0.05%rank), 376 were intermediate
strength binders (0.05≧%rank<0.15) and 540 were low strength
binders (0.15≧%rank≦0.5).

We further compared the association between tumor
mutation burden and the filtered neoantigen load (Figure 4A),
which showed a strong positive linear relationship (r=0.92). The
tumor mutation burden also demonstrated a positive linear
relationship with the number of high strength neoantigens
(r=0.81). The tumor mutation burden, filtered neoantigen load
and number of high strength neoantigens are summarized in
Figure 4B.

Comparing our data to the two previous CTCL studies of
McGirt et al. (26) and Choi et al. (27), we found that our dataset
FIGURE 2 | Tumor mutation burden. Samples are arranged in descending order of tumor mutation burden (TMB) and sample names enclosed in boxes with colors
corresponding to the lesion type - early stage plaque (green), late stage plaque (yellow) and tumor (red).Frameshift mutations comprise the majority of non-
synonymous mutations.
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A

B

FIGURE 3 | Characterization of neoantigens in mycosis fungoides (MF). (A) Beeswarm plot representation of putative neoantigens prior to filtering. Due to the extensive size
of the dataset, a random 1% of all data points were plotted to demonstrate the overall distribution and density of the data. The vertical axis shows mutant peptide binding
strength as a percentile rank, with lower values representing increasingly strong binding peptides to human leukocyte antigen (HLA) types. 0.5% rank (dashed line) represents
the commonly used cutoff below which peptides are considered strong enough binders to be neoantigens. The width of each plot is proportional to the number of
neoantigens at each binding strength. Overall, early stage plaques (ESP) lesions had fewer neoantigens compared to late stage plaques (LSP) and matched tumors (TMR). The
darker shade within each plot represents the neoantigens expressed in RNA (TPM>0.1). (B) Neoantigen load before and after applying the RNA filter. For each sample, the
“DNA” column has all filters applied with the exception of the RNA filter. The median number of filtered neoantigens per sample was 1,309. The “RNA” column has all filters
including the RNA filter (expression >0.1 TPM) applied. On average 70% of predictions were expressed in RNA. Samples names enclosed in boxes with colors corresponding
to the lesion type - early stage plaque (green), late stage plaque (yellow) and tumor (red).
Frontiers in Immunology | www.frontiersin.org November 2020 | Volume 11 | Article 5612345
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had a much higher neoantigen count (total 54,073,746 vs
615,761 in Choi et al. (27) or 135,042 in McGirt et al. (26),
Supplementary Figure S1). Tumor mutation burden and
neoantigen count is influenced by various factors including
CTCL subtype, methodology and sequencing depth. Choi’s
samples, as they were all Sezary Syndrome, permitted the use
of cell sorting which improves tumor cell fraction (the percent of
sample composed of tumor cells). While ours and McGirt’s study
comprised mycosis fungoides samples, our use of laser capture
microdissection (instead of whole biopsies) increased tumor cell
fraction. Additionally, the use of whole exome sequencing with
greater sequencing depth in ours and Choi’s studies increased
sensitivity to mutations compared to McGirt’s whole genome
sequencing (which includes non-coding intronic regions) at
lower sequencing depth. Details of the 3 studies are included
in Supplementary Tables S2 and S3.

Increase in Proportion of Subclonal
Neoantigens in Advanced MF
To determine the subclonality of the neoantigens we first
constructed phylogenetic trees showing the subclonal
architecture of MF, as described previously (20). Then we
mapped the neoantigens to the stem and clades, the latter
representing the subclonal neoantigens (Figure 5A). This
Frontiers in Immunology | www.frontiersin.org 6
analysis demonstrated an increasing branching with a higher
proportion of clade neoantigens in advanced lesions, as
demonstrated in LSP (median 62% clade neoantigens) and
TMR (median 70%), compared to ESP (median 39%) (Figures
5A, B).

The Cauchy-Schwarz index of Neoantigens (CSiN) reduces
the number of neoantigens, their clonality and immunogenicity
in the sample to a single number (40). CSiN has been argued to
out-perform existing metrics as a biomarker of tumor
immunogenicity and response to immune checkpoint
inhibitors across different neoplasms (40). The CSiN scores of
our samples are shown in Figure 5C. As expected, there was no
significant correlation between CSiN and non-synonymous
mutational burden (P = 0.637), however a greater proportion
of early lesions (ESP) had the higher, advantageous CSiN scores
>1 compared to the late-stage lesions (LSP and TMR). However,
higher CSiN scores did not predict more favorable prognosis
(defined as lack of stage progression) in our cohort (Figure 5C,
regression analysis, P = 0.142).

Neoantigen Overlap and Peptide Identity
We examined the overlap in filtered neoantigens by lesion type
(Figure 6A) and within the same patient sampled longitudinally
(Figure 6B). The overlap between late stage plaques (LSP) and
A

B

FIGURE 4 | Relationship between tumor mutation burden and filtered neoantigen load in mycosis fungoides (MF). (A) A strong positive linear association (r=0.92,
blue dashed trendline) was observed between tumor mutation burden and filtered neoantigen load. Each bubble represents a single sample, with its size proportional
to the number of high strength neoantigens (<0.05%rank). A positive linear association was also observed between tumor mutation burden and the high strength
neoantigen load (r=0.81). (B) Mutations and neoantigen numbers by lesion type.
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A

B

C

FIGURE 5 | Clonality of neoantigens in mycosis fungoides (MF). (A) Proportion of stem and clade missense mutations producing putative neoantigens. Sample
codes are enclosed in boxes with colors corresponding to the lesion type - early stage plaque (green), late stage plaque (yellow) and tumor (red). The dashed red line
represents the 50% mark that distinguishes whether the majority of the sample is composed of stem or clade neoantigens. Early stage plaques have a greater
proportion of stem mutations producing neoantigens compared to late stage plaques and tumors where more clade mutations produce neoantigens.
(B) Phylogenetic trees with putative neoantigen analysis. The size of the blue circles represents the proportion of missense mutations that comprise each node.
‘Stem’ nodes are those present prior to branching which then produces ‘clade’ nodes. The yellow pie chart in whole represents all neoantigens from the sample.
Each slice of the pie chart represents the proportion of neoantigens originating from a node. With advancing disease stage, a greater proportion of neoantigens
originate from clade mutations. (C) Cauchy-Schwarz index of Neoantigens (CSiN) scores of MF samples. The bubble plot shows individual CSiN scores and the
number of non-synonymous mutations in ESP, LSP and TMR samples. Samples from patients who progressed in disease stage are colored in blue. Median CSiN
scores are: ESP (0.027822, n=8), LSP (−0.01709, n=8) and TMR (0.004234, n=8).
Frontiers in Immunology | www.frontiersin.org November 2020 | Volume 11 | Article 5612347
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tumors (TMR) was greater than between early stage plaques
(ESP) and either lesion type. This was expected, as we separated
advanced disease into LSP andTMR for analysis in our study.We
also examined neoantigens from one patient from whom
multiple, longitudinal samples were obtained. Among six
samples (three TMR, three LSP) obtained at three time points
(0, 9, and 10months respectively), we foundno overlap infiltered
neoantigens (Figure 6B). Most peptides were unique to each
plaque or tumor site, further underscoring the predominantly
subclonal structure of neoantigens in advanced disease. Finally,
we examined the overlap of filtered neoantigens across samples
(Figure 6C). No neoantigens were common to all samples, and
Frontiers in Immunology | www.frontiersin.org 8
the most common neoantigen was present in half of the 24
samples. Overlapping neoantigens were mostly present in late
stage plaques and tumors. This is likely because advanced disease
samples produced more neoantigens overall, increasing the
likelihood of overlap.

Using the neoantigens we found, we searched IEDB for closely
related peptides from humans or human pathogens (Supplementary
Table S4). These known immune epitopes have been tested in
experimental assays and are likely to elicit immunogenic responses in
humans. We included epitopes tested in T-cell, B-cell and MHC
ligand assays and did not require assays to be positive. Only 2
neoantigens were positive in T-cell assays.
A B

C

FIGURE 6 | Intraindividual and interindividual overlap of neoantigens. (A) Each lesion type comprises eight samples, of which only unique peptides are included. The
greatest overlap in filtered neoantigens is between plaques (LSP) and tumors (TMR). Early stage plaques (ESP) are also shown. (B) Venn diagram of filtered
neoantigens from 6 samples obtained from one patient. Each sample name is accompanied by the time point the biopsy was obtained (initial biopsy at T1, T2 at 9
months after T1 and T3 10 months after T1). There is no overlap in peptides between all lesions, and the predominant exclusivity of peptides to their individual sites
indicates the highly branched nature of the tumor. (C) Filtered neoantigens predicted in 10 or more samples out of the total 24 samples. Black indicates the
presence of the peptide in the sample and white indicates the absence. Peptides are arranged from highest frequency (top) to lowest frequency (bottom). Sample
names are arranged in order of those with the most overlapping neoantigens (left) to the least overlapping neoantigens (right). Sample names are enclosed in boxes
with colors corresponding to the lesion type - ESP (green), LSP (yellow), and TMR (red). Overlapping neoantigens are mostly in the advanced stage disease samples
(LSP and TMR) clustered on the left.
November 2020 | Volume 11 | Article 561234
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DISCUSSION

Wehave previously demonstrated that asMFprogresses fromearly
to advanced stages, the tumor accumulates somatic mutations and
evolves to produce multiple genetic subclones (20). The impact of
this genetic diversity on tumor immunogenicity is two-fold. An
increase in mutation load would result in higher neoantigen
expression and increased opportunities for the neoplasm to be
recognized by the immune system. Conversely, the increasing
subclonal distribution of neoantigens would direct the immune
system to discrete subpopulations of themost immunogenic tumor
cells. This in turn would shield the less immunogenic subclones
from the antitumor attack (42).

In this study, which to our knowledge is the first analysis of
neoantigens inMF, we found that the neoantigen load mirrors the
mutational load of MF and increases during disease progression.
Our experimental approach usingmicrodissected tumor tissue and
deep exome sequencing allowed for identification of a markedly
higher number of non-synonymous mutations (median 3,217)
than previous MF studies (42-102) (26, 43, 44). The neoantigen
load in our MF samples was also higher than other malignancies
known tohaveahighneoantigen load suchasmalignantmelanoma
(median 121) and lung adenocarcinoma (median 335) (45). The
differences are not only quantitative, as we were able to detect
numerous frameshift mutations (median 2,604) which have
hardly been captured in previous studies. Frameshift mutations
are an essential source of neoantigens because they often produce
highly immunogenic peptides due to global structural aberrations
that render the peptide dissimilar from self (46, 47). Overall CTCL
is known to have a high number of chromosomal aberrations and
protein fusion is likely an additional source of neoantigens (48),
that should be studied in the future. Thus, MF can be viewed as a
neoplasm of high immunogenic potential expressing a significant
number (median 328) of high strength neoantigenic peptides.

Analysis of the subclonal heterogeneity of the neoantigens by
bioinformatic deconvolution of phylogenetic trees and by
multisampling distinct lesions of MF revealed a complex
neoantigenic landscape. Our analysis demonstrated that different
cutaneous lesions of MF exhibit highly diverse repertoires of non-
overlapping neoantigens. It has been previously demonstrated that
multiple longitudinal CTCL biopsies from a single patient show
molecular heterogeneity (49). Likewise, our analysis of six lesions
from a single patient (Figure 6B) did not demonstrate a single
shared antigenic peptide. Similarly, the overlap between neoantigens
in plaques and tumors from the same patient was poor. Thus, a
single patient with MF presenting with numerous skin lesions may
be considered as having a collection of multiple, immunologically
different neoplasms.

Not only did different lesions vary by their neoantigens but
significant neoantigenic heterogeneity was also detected in
different lymphoma subclones. Using a bioinformatic approach
we were able to show that a large proportion of neoantigens map
to the subclones (clades) and that this proportion increased
during stage progression. Although it is tempting to speculate
that this high proportion of subclonal neoantigens will render
advanced stage MF resistant to immunotherapy (21), we have to
Frontiers in Immunology | www.frontiersin.org 9
acknowledge certain limitations of our computational approach.
The phylogenetic trees were constructed by statistical modeling
of point mutation distributions in the sample and were not
verified by single-cell sequencing. Therefore we cannot with
certainty equate a branch of the phylogenic tree with a clone of
tumor cells.

Although there was a clear increase in the number of
neoantigens between early stage plaques and lesions in the late
stage disease, it has not escaped our attention that the clinically
more advanced lesions of tumors did not have a higher number
of antigens (some even had a lower neoantigen load) compared
to late stage plaques. This could not have been explained by a
lower degree of genetic heterogeneity because the tumors had a
highly branched subclonal architecture. We hypothesize that the
reduction in neoantigen expression might be a result of immune
editing, whereby the cells bearing the most immunogenic
neoantigens are negatively selected by the immune system (50).
To gain further insight into the significance of the neoantigen
landscape as a biomarker of response to immunotherapies we
calculated the CSiN indexes which provide a simple measure of
cancer immunogenicity. Similar to what was shown previously
(40), the CSiN scores did not correlate with TMB and did not
predict the risk of stage progression. We found however that a
higher proportion of advanced lesions (LSP and TMR) have
lower, unfavorable scores (CSiN<1) predictive of poor response
to checkpoint inhibitor treatment. This may explain why a
significant proportion of MF patients do not respond to
immunotherapy (16). On the other hand, more CSiN scores >1
were found in the early MF lesions which makes those patients
obvious candidates for target enrichment trials with immune
checkpoint inhibitors.

Previous studies have reported that very few neoantigens are
shared across patients in high mutation load malignancies (45) and
as already mentioned, our cohort of MF patients did not share any
neoantigenic peptides. However, several peptides were commonly
found in some patients (Figure 6C) and these could represent
potential therapeutic targets. We therefore searched for known
homologous immune epitopes of the most frequently observed
neoantigens (51). Although none of the homologous sequences
were an exact match to our mutant peptides, there were numerous
promising partial matches (90% sequence similarity) to
immunogenic human sequences and the sequences of human
pathogens such as Mycobacterium tuberculosis and protozoa
(Leishmania and Trypanosoma) (Supplementary Table S4). This
observation was particularly interesting because neoantigenic
peptides homologous to human pathogens are known to be
robust activators of the immune response (34, 52). However, the
relevance of these peptides are unclear as these organisms are
uncommon to Canada and Denmark, from where patients were
recruited. Other notable homologous epitopes included those from
proteins implicated in other cancers, such as the ENA family
(involved in cell motility and adhesion) from breast cancer (53),
and baculoviral IAP repeat-containing protein 6 (involved in anti-
apoptosis through caspase inhibition) from brain cancer (54).
Future studies should validate candidate neoantigen expression at
the protein level and their ability to elicit T-cell activation.
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In conclusion, we have shown a bewildering degree of
neoantigen heterogeneity in MF. Among hundreds of detected
strong neoantigens there is little overlap between different
individuals, between lesions in the same individual and between
different subclones within the same lesion. We hypothesize that
neoantigen heterogeneity may be an important factor limiting
efficacy of immunotherapy in MF, and probably in other highly
mutated, genetically heterogeneous cancers.
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