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Single-cell transcriptomics of murine mural cells reveals cellular
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Mural cells (MCs) wrap around the endothelium, and participate in the development and homeostasis of vasculature. MCs have
been reported as heterogeneous population morphologically and functionally. However, the transcriptional heterogeneity of MCs
was rarely studied. In this study, we illustrated the transcriptional heterogeneity of MCs with different perspectives by using
publicly available single-cell dataset GSE109774. Specifically, MCs are transcriptionally different from other cell types, and
ligand-receptor interactions of different cells with MCs vary. Re-clustering of MCs identified five distinct subclusters. The
heterogeneity of MCs in tissues was reflected by MC coverage, various distribution of MC subclusters, and ligand-receptor
interactions of MCs and parenchymal cells. The transcriptomic diversity of MCs revealed in this article will help facilitate further
research into MCs.

mural cells, single-cell analysis, heterogeneity

Citation: Guan, Y.N., Li, Y., Roosan, M., and Jing, Q. (2021). Single-cell transcriptomics of murine mural cells reveals cellular heterogeneity. Sci China Life Sci
64, 1077–1086. https://doi.org/10.1007/s11427-020-1823-2

INTRODUCTION

Mural cells (MCs), which support the structure of vessels
and play vital roles in maintaining vascular homeostasis
(Armulik et al., 2011), mainly consist of vascular smooth
muscle cells (VSMCs) and pericytes (PCs) in vasculature.
MCs are ubiquitously distributed along the abluminal en-
dothelium and the phenotype varies with the hierarchically
distributed microvascular tree, which contains arterioles,
precapillary arterioles, capillaries, postcapillary venules, and
venules (Hartmann et al., 2015). Specifically, PCs extend
along the capillary bed with nearly rounded cell bodies and
their derived cytoplasmic processes (Armulik et al., 2005;
Borysova et al., 2013). VSMCs cover larger blood vessels

with different morphology (Rensen et al., 2007). Generally,
arteriolar endothelium-encircled VSMCs are spindle-shaped,
tightly arranged cells without cytoplasmic process. By con-
trast, VSMCs along the venules are bigger, stellate-shaped,
with many slender, branching cytoplasmic processes. The
phenotype of mural cells in precapillary arterioles and
postcapillary venules gradually transits from VSMCs to PCs
and vice versa.
The diversity of mural cells extends beyond the pheno-

types mentioned above. In fact, the ultrastructure and func-
tion of MCs in different tissues are diverse, presumably to
meet the distinct physiological need (Augustin and Koh,
2017). For instance, MCs in the brain are densely branched
and regulate the permeability (Daneman et al., 2010), an-
giogenesis (Arnold et al., 2014) and neuroinflammatory
(Kovac et al., 2011) responses of the blood-brain barrier
(BBB). While cardiac MCs, which have long processes
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ubiquitously wrapping the continuous endothelium, regulate
blood flow and communicate with the myocardial micro-
vasculature (Nees et al., 2012). Cardiac pericyte was also
recently reported as potential mechanism of heart injury in-
fected by SARS-CoV-2, due to its relatively higher expres-
sion of ACE2 (Chen L. et al., 2020). Furthermore, MC
abundance, which was reflected by the ratio of MCs and
ECs, is tissue-dependent. The central nervous system (CNS)
microvasculature was reported as the highest MC coverage,
with a ratio of 1:1 to 1:3 (Mathiisen et al., 2010; Armulik et
al., 2010). The lowest MC coverage up to now was stated as
human skeletal muscle, with a ratio of 1:100 (Shepro and
Morel, 1993). The degree of MC abundance is highly related
to the activity of ECs in the tissue, blood pressure, and the
barrier properties of blood-tissue, such as blood-brain barrier
in CNS, blood-air barrier in the lung (Diaz-Flores et al.,
2009; Sims et al., 1994; Kato et al., 2018). Any abnormality
of MCs in structure or abundance may lead to diseases, such
as diabetes, cancer or other diseases related with vascular
instability (Winkler et al., 2018; Cooke et al., 2012; Hinkel et
al., 2017).
With the development of sequencing methods, plenty of

genes were reported to be highly expressed in MCs (Table S1
in Supporting Information), which facilitates their further
exploration. However, controversy still remains, mainly due
to lack of sensitive, specific molecular marker for MCs
(Chen W. C. et al., 2015; Guimarães-Camboa et al., 2017).
Besides, the heterogeneity of MCs in transcriptomics was
also rarely studied, despite the known diverse functions of
MCs.
In this article, we explored the transcriptional diversity of

MCs, leveraging publicly available single-cell dataset
GSE109774 (Schaum et al., 2018). We found MCs are het-
erogeneous. Ligand-receptor interactions of MCs and other
cell-types vary. Further-clustering of MCs identified five
distinct subpopulations. The heterogeneity of MCs in tissues
was reflected by MC coverage, the distribution of sub-
populations and ligand-receptor interactions between MCs
and parenchymal cells.

RESULTS

MC coverage and interaction with other cells varied

To delineate the transcriptional characteristics of MCs, all
samples of published single-cell dataset GSE109774, which
contains data of 20 tissues with two different sequencing
methods (Schaum et al., 2018), were interrogated and ana-
lyzed at single-cell resolution. Eight out of 46 tissues were
found to have cluster of MCs. As shown in Figure 1, cells in
each tissue were divided and defined as different populations
by differentially expressed genes (DEG) of each cluster (as
listed in Table S2 in Supporting Information with marker
genes highlighted). Percentage of each cluster was demon-
strated by histogram, and ratios between MC and EC are
summarized in Table 1. Obviously, MC coverage in different
tissues varied. Among them, the MC coverage of bladder
was the highest, with a ratio of 1:1.3, that is, almost every EC
was covered by one MC on average. While pulmonary ratio
was the lowest, with more than 20 ECs were covered by one
MC. The MC coverage in the brain was quite consistent with
reported studies, while the ratio in limb muscle was much
higher than the reported 1:100 in skeletal muscle, which
might be due to different sampling location.
Furthermore, we sought to perform unbiased ligand-re-

ceptor interaction analysis between MCs and other cell types
by taking advantage of CellphoneDB (Vento-Tormo et al.,
2018). As shown in Figure 1 and Table S3 in Supporting
Information, MCs interact with almost every cell type.
Overall, interactions of MCs and non-parenchymal cells,
including ECs, fibroblasts, monocytes (include B cells, T
cells, neutrophils, and macrophages) were similar in each
tissue with different extent. Specifically, the receptor of
CD74 on monocytes directs the strongest ligand-receptor
interaction with MIF and APP produced by MCs (Figure S1
in Supporting Information). Most common interactions be-
tween fibroblasts and MCs were collagen-a1b1 complex,
AXL-GAS6, PDGFA-PDGFRA, and LGALS9-CD44 (Fig-
ure S2 in Supporting Information). Interactions between ECs
and MCs were studied most. Except canonical PDGFB-

Table 1 Mural cell coverage varies in each tissue

Source tissue Method Total EC MC MC:EC

Bladder Droplet 2,500 33 24 1:1.375

Brain FACS 3,106 695 154 1:4.512987

Trachea FACS 1,247 111 24 1:4.625

Heart FACS 4,513 1,247 221 1:5.642534

Kidney Droplet 2,782 392 55 1:7.127273

Muscle Droplet 4,506 1,339 161 1:8.31677

Fat FACS 4,570 602 33 1:18.24242

Lung FACS 1,681 710 30 1:23.66667
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PDGFRB, we found ECs interacted with MCs by secreting
LGALS9 (Figure S3 in Supporting Information). Besides,
interactions of MCs and parenchymal cells (except ubiqui-
tously distributed cells like ECs, fibroblast, and monocyte)
were more tissue-specific (Figure S4 in Supporting In-

formation). For instance, MCs communicated with bladder
urothelial cells (Figure 1B) and cardiomyocytes (Figure 1G)
by NRP-VEGF interactions. Interactions of PLXNB2-SE-
MA4D, GPR37-PSAP, and GPR37L1-PSAP (Figure 1D)
were brain-specific. NOTCH2-JAG1 and MET-HGF were

Figure 1 Single-cell clustering and ligand-receptor analysis in samples of published datasets GSE109774. Single-cell clustering and ligand-receptor
analysis were performed in the kidney (A), bladder (B), muscle (C), brain (D), trachea (E), fat (F), heart (G), and lung (H) tissues. The distribution of each
cluster was demonstrated by histogram. Definition of each cluster was based on established markers. Different colors denote different cell types. EC:
endothelial cell; MC: mural cell; Fib: fibroblast; MoCT: monocyte; TC: T cell; BC: B cell; MP: macrophage; DC: dendritic cell; NT: neutrophil; EpC:
epithelial cell; PCT: podocyte; DCTC: distal convoluted tubule cell; CDPC: collecting duct principal cell; PTC: proximal tubule cell; BUC: bladder urothelial
cell; NC: neuron cell; OD: oligodendrocyte; ODPC: oligodendrocyte precursor cell; ATCT: astrocyte; SMSC: skeletal muscle satellite cell; CM: cardio-
myocytes; ECC: endocardial cell; AC: alveolar cell.
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restricted to the trachea (Figure 1E) and the lung (Figure 1H),
respectively.
Collectively, MC coverage and ligand-receptor interac-

tions were diverse in tissues with different extent.

Mural cells are transcriptionally different from other
cell types

Next, eight tissues selected above were aggregated compu-
tationally to facilitate the heterogeneity analysis of MCs at
the transcriptional level. As shown in Figure 2A, cells of the
integrated results can be divided into six distinct populations,
including EC (cluster 1, Pecam1+Cdh5+), fibroblast (cluster

0, Pdgfra+Col1a1+), MC (cluster 10, Myh11+Acta2+/
Pdgfrb+Cspg4+), macrophage (cluster 2, Csf2ra+Cd14+),
immune cell (cluster 3, including B cells of Cd79a+Cd19+,
and T cells of Cd2d+Lck+), and parenchymal cell (cluster 4–
9, cells within grey line). Gene ontology (GO) biological
function (BP) analysis of DEG in MCs (Table S4 in Sup-
porting Information) in Figure 2B was in agreement with
reported potential of MCs in blood-flow control and angio-
genesis (Peppiatt et al., 2006; Gerhardt and Betsholtz, 2003;
Nehls et al., 1992; Teichert et al., 2017).
To evaluate reported mural cell biomarkers, expression

profiles of genes listed in Table S1 in Supporting Information
were plotted as shown in Figure 2C–G. Genes listed in

Figure 2 Integrative analysis of eight tissues from published datasets GSE109774.A, Cells from eight tissues were classified into 11 clusters. Left: different
colors denote different cell types. Right: different colors denote different tissues. B, Gene ontology (GO) biological function (BP) analysis of differentially
expressed genes (DEG) in cluster 10. C–G, Expression profiles of reported markers for MCs. H, Expression profiles of newly found marker genes for MCs.
EC: endothelial cell; MC: mural cell; Fib: fibroblast; MP: macrophage.
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Figure 2C were highly but not exclusively expressed in MCs.
Negative filters were necessary for them to mark MCs. The
expression profiles of Mcam were consistent with reported
studies that Mcam was highly expressed in ECs, MCs and
some parenchymal cells in the brain (Gao et al., 2017; Chen
J. et al., 2017). Pdgfrb was highly expressed in both MCs and
Fibroblasts. Des was highly expressed in MCs and some
muscle cells. The expression of Cspg4 in mural cells was
lower than others, and was also expressed in parenchymal
cells of the brain. Genes listed in Figure 2D and E were
complementary to each other, and expressed in part of the
mural cells. Considering the constitution of mural cells and
gene functions, we assumed genes in Figure 2D and E were
markers of VSMCs and PCs, respectively. Noticeably, most
genes in Figure 2E were still not exclusively expressed in
PC. Genes listed in Figure 2F were lowly expressed in mural
cells, and not good enough to mark mural cells. Rgs5 was the
best molecular marker for MCs in Table S1 in Supporting
Information, due to its high specificity in expression (Figure
2G). Furthermore, we offered some other potential genes
relatively highly and exclusively expressed in MCs, as in
Figure 2H.
Conclusively, MCs were transcriptionally different from

other cell types. Genes highly and exclusively identified in
MCs will facilitate further exploration.

Mural cells are transcriptionally heterogeneous

To illustrate the heterogeneity of MCs at single-cell resolu-
tion, re-clustering was performed to MCs (cluster 10 in
Figure 2A). As shown in Figure 3A, MCs from eight organs
can be classified into five subclusters, of which four clusters
were multi-tissue-derived, except cluster 4, in which cells
were derived from the lung, and we named it as cluster
pulmonary MC (PMC). Figuring the widely accepted tissue-
specific heterogeneity of ECs (Schaum et al., 2018; Paik et
al., 2018; Kalucka et al., 2020) and re-clustering analysis by
aggregation ECs of each tissue (Figure S5 in Supporting
Information), we assumed that the heterogeneity of MCs in
tissues was less than that of ECs.
To characterize other clusters, the expression profiles of

genes marking VSMCs (Tagln, Myh11, Acta2), PCs (Kcnj8,
Vtn, Abcc9), and ECs (Pecam1, Egfl7, Cdh5) in all MCs
were plotted and analyzed. As shown in Figure 3B–D,
markers of VSMCs were highly expressed in cluster 0 and
cluster 2. Markers of PCs were highly expressed in cluster 1
and cluster 2. Markers of ECs were highly expressed in
cluster 3. Based on the expression profiles, we assumed
cluster 0–cluster 3 as VSMC (cluster 0), PC (cluster 1),
transitional mural cells between VSMCs and PCs (TMC,
cluster 2), which express markers of both VSMCs and
pericytes, and endothelial-like mural cells (EMC, cluster 3),
which express markers of both MCs and ECs. Therefore, we

assumed MCs are heterogeneous in transcriptome (Figure
3E), which is partially consistent with their morphological
distribution. Genes exclusively and highly expressed in each
cluster are shown in Figure 3F by interrogating DEGs of
each cluster (Table S5 in Supporting Information). Heatmap
analysis of the top-10-ranking expressed gene sets performed
by gene set variation analysis (GSVA) revealed that MCs in
each cluster were involved in different biological processes
(Figure 3G). Gene sets of VSMC and PC were indeed rela-
tively enriched in TMC, consistent with the status of TMC.
Furthermore, we analyzed the proportion of the five sub-
clusters in each tissue. As shown in Figure 3H, the ratio
varied in each tissue, which was assumed to meet the tissue-
specific vasculature.

DISCUSSION

As supporting cells in vasculature, endothelial cells (ECs)
and mural cells (MCs) play vital roles in vascular home-
ostasis (Armulik et al., 2005). The heterogeneity of ECs in
transcriptomics, structures, and functions have been well-
studied, especially with the development of the single-cell
RNA sequencing (Kalucka et al., 2020; Nolan et al., 2013;
Aird, 2007a, 2007b; Potente and Mäkinen, 2017). However,
research about MCs was limited, potentially owing to (1)
fewer MCs than ECs in organism; (2) difficulty of detach-
ment MCs from vascular bed while isolating single cells; (3)
lack of differentiation methods of MCs in vitro. With the
development of next-generation and single-cell sequencing,
several genes were declared to mark MCs, as listed in Table
S1 in Supporting Information. Despite such advancement,
controversy still exists on the heterogeneity and functions of
MCs in various tissues.
In this article, we dissected the characteristics of MCs in

different tissues by taking advantages of single-cell RNA
analysis. To start with, we interrogated samples of eight
tissues and revealed the diverse coverage and ligand-receptor
interactions. Varied mural cellular coverage was assumed to
meet different characteristics including blood-tissue barrier
and EC turnover in each tissue. For instance, the high MC
coverage in the bladder and brain indicates low-permeability
and less passive transport of materials, which ensures the
function of urine storage in the bladder and restricts the
exchange of harmful substances in the brain. In fact, de-
creased MCs may lead to bladder tumors and arteriovenous
malformation of the brain (O’Keeffe et al., 2008; Winkler et
al., 2018). On the contrary, the low MC coverage in the lung
facilitates oxygen metabolism of the alveoli. Excessive MCs
are associated with pulmonary hypertension (Ricard et al.,
2014). Various ligand-receptor interactions of MCs with
other cells illustrated multiple functions. For instance,
common interactions of MCs and non-parenchymal cells like
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Figure 3 Cells defined as mural cells were heterogeneous. A, Re-clustering of mural cells identified five subclusters. Different colors denote different cell
types (left). Different colors denote different tissues (right). B–D, Expression profiles of markers for vascular smooth muscle cells (B), pericytes (C), and
endothelial cells (D). E, Heatmap of the top 20 highly expressed genes in each cluster of mural cells. Columns denote cells; rows denote genes. F, Genes
highly and relatively exclusively expressed in each cluster of mural cells. G,Heatmap showing processes enriched in different clusters performed by gene set
variation analysis (GSVA). H, Percentage of each cluster in different tissues varies. Different colors denote different tissues. VSMC: vascular smooth muscle
cell; PC: pericyte; TMC: transitional mural cells between VSMCs and PCs; PMC: pulmonary specific mural cells; EMC: endothelial-like mural cells.
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monocytes, ECs, fibroblasts were consistent with potential
functions of MCs, including immunoregulation and neuror-
egulation (Matsuda et al., 2009; Pantouris et al., 2018), cell
migration and inflammatory processes (Wu et al., 2014;
MacDonald et al., 2001; Shibata et al., 2020; Chou et al.,
2013), vascular stability, and angiogenesis (Saban et al.,
2008; Fantin et al., 2014). Tissue-specific interactions of
MCs and parenchymal cells also reminded us of tissue-de-
pendent potentials, like VSMC hyperplasia (Boucher et al.,
2013), epithelial homeostasis in the alveolar (Jung et al.,
2019).
Then, we sought to explore the mural cellar characteristics

in transcriptome. We invested the uniqueness of MCs by
comparing them with other cell types and integrating single-
cell datasets of eight tissues. We also evaluated genes re-
ported as MC markers, and offered some more genes highly
and relatively specially expressed in MCs. All these marker
genes will ultimately facilitate the illustration of function and
mechanism in MCs. Re-clustering analysis of all MCs in
each tissue indicated the heterogeneity of MCs. With the
expression profiles of several marker genes, MCs can be
divided into five heterogeneous subpopulations of VSMCs,
PCs, EMCs (endothelial-like mural cells), TMCs (transi-
tional mural cells between VSMCs and PCs), and PMCs
(pulmonary mural cells), and the heterogeneous character-
istic was consistent with the morphology of MCs. However,
the tissue-specific heterogeneity of MCs was less than that of
ECs, which may be due to the limited number of tissue-
specific MCs in the analysis. Future studies need to include a
larger number of MCs in single-cell analysis to facilitate the
further identification of additional MC characteristics.

MATERIALS AND METHODS

Data resources

A publicly available single-cell sequencing dataset used in
this study was downloaded from Gene Expression Omnibus
(GEO) repository (GSE109774). The dataset contains two
different sequencing methods—FACS and Droplet (Schaum
et al., 2018).

Single-cell data analyses

All analyses in this article were performed using the Seurat
package version 3.0 in the R statistical language (Butler et
al., 2018). Seurat objects were created from the aggregated
datasets as matrix or text containing gene-by-cell expression
data. Cells with expression of fewer than 200 genes and cells
with more than 25% expression of mitochondrial genes were
filtered out. The raw reads or UMI counts were log-nor-
malized for downstream analysis. Highly variable genes
were identified with the Seurat function of FindVaria-

bleFeatures. Genes with log-normalized expression values
between 0.0125 and 3 and with a dispersion threshold 0.5
were considered variable. The ScaleData function was used
to regress out cell-cell variation.
Principal component analysis (PCA) was performed for

dimension reduction with the Seurat function of RunPCA.
ElbowPlot function was used for determination of the
numbers of principle components. The Seurat functions of
FindNeighbors and FindClusters were used for clustering of
cells. Dimension reduction was based on uniform manifold
approximation and projection (UMAP), which was per-
formed with the function of RunUMAP.
Genes significantly expressed in each cluster were

screened by differential expression analysis (DEA) between
cells inside and outside of the cluster with the Seurat function
FindMarkers. Marker genes of each subpopulation used in
heatmap were identified with the FindAllMarkers function.
Visualization of the cellar atlas was performed with Seurat

function Dimplot. Visualization of the gene expression pro-
files was performed with Seurat function FeaturePlot and
VlnPlot. Heatmap was performed with Seurat function Do-
Heatmap.
Integration of multiple single-cell datasets was based on

identifying common gene-gene correlation patterns in dif-
ferent datasets. The identification of shared populations
across datasets was performed with Seurat function Fin-
dIntegrationAnchors. The integration was performed with
Seurat function IntegrateData.

Code availability

R scripts enabling the main steps of the analysis are available
from the corresponding authors on reasonable request.
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