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Abstract

DNA/RNA motif mining is the foundation of gene function research. The DNA/RNA motif mining plays an extremely
important role in identifying the DNA- or RNA-protein binding site, which helps to understand the mechanism of gene
regulation and management. For the past few decades, researchers have been working on designing new efficient and
accurate algorithms for mining motif. These algorithms can be roughly divided into two categories: the enumeration
approach and the probabilistic method. In recent years, machine learning methods had made great progress, especially the
algorithm represented by deep learning had achieved good performance. Existing deep learning methods in motif mining
can be roughly divided into three types of models: convolutional neural network (CNN) based models, recurrent neural
network (RNN) based models, and hybrid CNN–RNN based models. We introduce the application of deep learning in the field
of motif mining in terms of data preprocessing, features of existing deep learning architectures and comparing the
differences between the basic deep learning models. Through the analysis and comparison of existing deep learning
methods, we found that the more complex models tend to perform better than simple ones when data are sufficient, and
the current methods are relatively simple compared with other fields such as computer vision, language processing (NLP),
computer games, etc. Therefore, it is necessary to conduct a summary in motif mining by deep learning, which can help
researchers understand this field.

Key words: motif mining; deep learning; protein binding site; recurrent neural networks; convolutional neural network

Introduction
Motif plays a key role in the gene-expression regulating both
transcriptional and posttranscriptional levels. DNA/RNA motifs
involve many biological processes, including alternative splicing,
transcription and translation [1–4]. From the late 1990s to the
early 21st century, researchers through biological experiments
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gradually identified a large number of proteins with binding
functions and their corresponding binding sites on the genome
sequences, the binding sites of the same protein are certain
conservative short sequences regarded as motifs, people ini-
tially used conservative sequences to describe protein binding
sites [5–8]. With the deepening of researchers’ understanding
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of motif research, various motif mining algorithms emerge [9].
Early motif mining methods are mainly divided into two prin-
cipal types: enumeration methods and probabilistic methods:
enumeration approach and probabilistic method [10].

The first class is based on simple word enumeration. Yeast
Motif Finder (YMF) algorithm used consensus representation to
detect short motifs with a small number of degenerate positions
in the yeast genome developed by Sinha et. al [11]. YMF is mainly
divided into two steps: the first step enumerates all motifs of
search spaces and the second step calculates the z-score of all
motifs to find the greatest one. Bailey proposed discriminative
regular expression motif elicitation algorithm that calculated the
significance of motifs using Fisher’s Exact test [12].

To accelerate the running speed of word enumeration-based
motif mining methods, some special methods were used, like
suffix trees, parallel processing [13]. Besides, motif mining algo-
rithms, such as LMMO [14], DirectFS [9], ABC [15], DiscMLA [16],
CisFinder [12], Weeder [17], Fmotif [18] and MCES [19] all used
this idea in the model.

In probabilistic-based motif mining methods, a probabilistic
model that needs a few parameters will be constructed [20].
These methods provided a base distribution of bases for each
site in the binding region to distinguish the motif is exist or not
[21]. These methods usually built distribution by the position-
specific scoring matrix (PSSM/PWM) or motif matrix [22]. PWM
was an m by n size matrix (m represents the length of a specific
protein binding site, and n represents the type of nucleotide
base), which was used to indicate the degree of preference of
a specific protein binding motif at each position [23]. Just as
Figure 1 shows, PWM can intuitively express the binding pref-
erence of a specific protein with fewer parameters, so if a set
of specific protein binding site data is given, the parameters of
PWM can be learned from these binding site data. Some methods
are based on PWM approaches such as MEME [11], STEME [24],
EXTREME [25], AlignACE [26] and BioProspector [27].

ChIP-seq and high-throughput sequencing have tremen-
dously increased the amount of data available in vivo [28], which
makes it possible to study the motif mining by deep learning
[29]. In bioinformatics, although deep learning methods are not
many at present, it is now on the rise [30]. Known applications
include DNA methylation [31, 32], protein classification [33–35],
splicing regulation and gene expression [36–38] and biological
image analysis tasks [39–42]. Of particular relevance to our work
is the development of applications for motif mining, such as
DNA-/RNA-protein binding sites [43], chromatin accessibility
[36, 44–46], enhancer [47–49], DNA-shape [50, 51].

DeepBind [43] is the first study to apply deep learning in
motif mining. Just as Figure 2 shows, DeepBind attempted to
describe the method by CNN and predicts DNA-protein/RNA-
protein binding sites in a way that machine learning or genomics
researchers can easily understand. It treated a genome sequence
window as a picture. Unlike an image composed of pixels with
three color channels (R, G, B), it treated the genomic sequence
as a fixed-length sequence window composed of four channels
(A, C, G, T) or (A, C, G, U). Therefore, the problem of DNA pro-
tein binding site prediction is similar to the problem of binary
classification of pictures.

After this, a series of research on deep learning in motifs min-
ing appeared. Some researchers focused on the impact of various
parameters in deep learning, such as the number of layers, on
motif mining [52]. Some researchers have made more attempts
for deep learning frameworks, adding a long short-term memory
(LSTM) layer to DeepBind, and obtained a new model combining
CNN and RNN for motif mining [53]. Besides, there are methods

such as iDeepS that combine CNN and RNN to target specific
RNA binding proteins (RBP) [54]. The advantage of the combined
model of RNN and CNN is that the newly added RNN layer can
capture the long-term dependency between sequence features
by learning the features extracted by the CNN layer to improve
the accuracy of prediction. Other researchers used a pure RNN-
based method: the KEGRU method [55] created an internal state
of the network by using a k-mer representation and embedding
layer, and it captures long-term dependencies by combining with
a layer of bidirectional gated recurrent units (bi-GRUs). Besides,
many researchers have done a lot of works based on three basic
models, for example, Xiaoyong Pan [56], Qinhu Zhang [51, 57],
Wenxuan Xu [58], Dailun Wang [59] and Wenbo Yu [60].

Although, there are currently many deep learning methods
in motif mining. Those methods compared to the deep learn-
ing methods in the field of computer vision and NLP, such as
image field [61, 62], video field [63] and question answering field
[64], are also relatively primitive and simple. Therefore, it is
necessary to summarize the motif mining through deep learn-
ing to help researchers to better understand the field. In this
paper, we introduce the basic biological background knowledge
about motif mining and provide insights into the differences
between the basic models of deep learning CNN and RNN, and
discuss some new trends in the development of deep learning.
This article hopes to help researchers who do not have basic
deep learning or basic biology Background knowledge to quickly
understand topic mining.

The remainder of this paper is organized as follows: The
second section describes the basic biological background knowl-
edge, several common databases and the basic knowledge of
motif. Then, the third section describes different models of
deep learning algorithms for DNA/RNA motif mining. Finally, we
further discuss some new developments and challenges in motif
mining deep learning and possible future directions in the fourth
section.

Basic Knowledge of Motif
In this section, we introduce the some basic knowledge of motif
mining. Motif mining (or motif discovery) in biological sequences
can be defined as the problem of finding a set of short, similar,
conserved sequence elements (‘motifs’) that are often short
and similar in nucleotide sequence with common biological
functions [65]. Motif mining has been one of the widely studied
problems in bioinformatics, such as transcription factor binding
site (TFBS) because its biological significance and bioinformatics
significance is highly significant [66, 67].

As shown in Figure 3, it shows how multiple sequences rec-
ognize the same transcription factor (CREB). Their ‘consensus’
means that each position has its own more friendly nucleic acid
by the transcription factor. Since transcription factor binding
can tolerate approximate values, all oligos that differ from the
consensus sequence to the maximum number of nucleotide
substitutions can be considered as valid instances of the same
TFBS.

After understanding the basic concept of motif, we introduce
common databases and data preprocessing methods. The com-
monly used motif mining database is as follows: TCGA database
[68], NCBI database [69] and ENCODE database [70]. Generally
speaking, two data preprocessing methods are the following
methods as shown in Figure 4, bottom left.

The simple method is to use the one-hot encoding. One-hot
is often used for indicating the state of a state machine [71].
For example, using one-hot codes to encode DNA sequences
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Figure 1. The process of generating PSSM, position frequency matrix (PFM) and logo of SPI1 [104]. The process of as follows generating PSSM, PFM and logo of SPI1.

First, generate a PFM based on the number of times each type of nucleotide appears in each position of the alignment. Then, convert the PFM into a logarithmic scale

PSSM/PWM. By adding the corresponding nucleotide values of PSSM, the score of any DNA sequence window with the same length as the matrix can be calculated and

drawn into a logo map.

as binary vectors: A = (1,0,0,0), G = (0,1,0,0), C = (0,0,1,0) and
T = (0,0,0,1). RNA sequences can also be encoded similarly by
simply changing T to U. It is easy to design and modify, and
easy to detect illegal states. However, it is easily sparse and
context-free.

Another method is to label with k-mers and vectorize by
embedding [44]. For example, we can tokenize the DNA sequence
‘ATCGCGTACGATCCG’ as different k-mers, as shown in Table 1.
Different k-mers can be vectorized using the embedding method
widely used in the NLP field [72], such as word2vec [73]. RNA
sequences can be represented similarly.

Deep Learning in Motif Mining
In recent years, deep learning has achieved great success in
various application scenarios, which makes researchers try to
apply it to DNA or RNA motif mining. Next, we introduce these
models in detail. There are three main types of deep learn-
ing frameworks in motif mining: CNN-based models (Figure 4,
left), RNN-based models (Figure 4, center), hybrid CNN–RNN-
based models (Figure 4, right). We summarize several classic
deep learning methods in motif mining, as shown in Table 2.

DeepBind [43] is the first attempt to use CNN to predict DNA
or RNA motifs from original DNA or RNA sequences. DeepBind
used a single CNN layer, which consists of one convolutional
layer, followed by rectification and pooling operation, and one

fully connected network (FCN) augmented at the end to trans-
form feature vectors into a scalar binding score. It also opened
up a precedent for deep learning in motif mining and provides
a basic framework for other deep learning methods. It corre-
sponded to each base to four channels similar to the RGB channel
in color and used one-hot encoding to complete vectorization.
Many subsequent methods use this to build their models.

DeepSEA [38] was a deep learning method based on CNN,
which used three convolution layers with 320, 480 and 960
kernels, respectively. Higher-level convolutional layers receive
input from a larger spatial range, and lower-level convolutional
network layers can represent more complex features. DeepSEA
added an FCN layer on top of the third convolutional layer, in
which all neurons receive input from all outputs of the previous
layer so that the information of the entire sequence data can
be completely obtained. The convolution step of the DeepSEA
model consisted of three convolutional layers and two maxi-
mum merge layers, and the motif was learned in alternating
order.

DeepSNR [74] was a deep learning method based on CNN. The
convolution part of the DeepSNR model had the same structure
as the DeepBind network. But DeepSNR added that the deconvo-
lution network is a mirrored version of the convolution network,
which can reduce the size of the activation and enlarges the acti-
vations through combinations of unpooling and deconvolution
operations.
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Figure 2. The parallel training process of Deepbind [43]. (A) The DeepBind model processes five independent sequences in parallel. The data first passes through the

convolutional layer to extract features, then passes through the pooling layer to optimize the features. Finally, features go through the activation function to output

the prediction result and compare with the target to calculate the loss and update weight to improve the prediction accuracy. (B) It is shown in detail that the dataset

is divided into validate set, train set and test set, which are used to calculate validate AUC (area under the curve), training AUC and test AUC, respectively, to select the

optimal parameters.

Table 1. Different parameters for k-mers

Length Window Tokenized Vectorization

3 3 ATC GCG TAC GAT CCG 0321 3412 4532 4214
4 4 ATCG CGTA CGAT 0123 3412 4532
5 5 ATCGC GTACG ATCCG 4124 5124 2134
4 2 ATCG CGCG CGTA TACG CGAT ATCC 2563 3124 4236 3578 2145
4 3 ATCG GCGT TACG GATC 4252 5134 2136 3451 2411

It shows DNA sequence ‘ATCGCGTACGATCCG’ is cut into multiple different k-mers and his vector when the length is (3,4,5,4,4) and the window is (3,4,5,2,3).

Table 2. Deep learning algorithm in DNA motif mining

Model DeepBind DeepSNR DeepSEA Dilated DanQ BiRen KEGRU iDeeps

Architecture CNN CNN CNN CNN CNN + RNN CNN + RNN RNN CNN + RNN
Embedding NO NO NO NO NO NO YES NO
Input One-hot One-hot One-hot One-hot One-hot k-mer k-mer One-hot

It shows the architecture, embedding and input of eight classic deep learning models in motif mining.

Dilated [75] was a deep learning method based on dilated
multilayer CNN. This method learns the mapping from the DNA
region of the nucleotide sequence to the position of the regula-
tory marker in this region. The dilated convolution can capture a
hierarchical representation of the input space that is larger than
the standard convolution so that they can be scaled to larger
before and after sequences.

DanQ [53] used a single layer CNN followed by a bidirectional
LSTM (BLSTM). The first layer of the DanQ model aimed to scan
the position of the motif in the sequence through convolution
filtering. The convolution step of the DanQ model was much
simpler than DeepSEA. It contained a convolutional layer and
a maximum merge layer to learn the motif. After the largest
pooling layer was the BLSTM layer. Motifs can follow the
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Figure 3. A set of binding sites recognized by the same TF (CREB) [65]. It

shows how multiple sequences recognize the same transcription factor (CREB).

First, Zambelli built their ‘consensus’ (bottom left) by counting the frequency

of each nucleic acid in the sequence [65]. And ‘consensus’ (bottom left) with

the highest frequency of nucleotides at each position to indicate the motifs

they form a ‘degenerate’ consensus, which includes nucleotides that have no

obvious preference position (K = G or T; M = A or C; N = any nucleotide; according

to IUPAC codes [105]). Besides, motifs can be converted into an alignment matrix

of the nucleotide frequency (top right) by dividing each column by the number

of sites used, as well as a ‘sequence logo’ (bottom left) [106] showing nucleotide

conservation and corresponding information.

adjustment grammar determined by physical constraints, which
determine the spatial arrangement and frequency of the pattern
combination in vivo, which is a feature related to tissue-specific
functional elements (such as enhancers). So the LSTM layer is
after the maximum pooling layer. The last two layers of the
DanQ model were dense layers of rectified linear units and
multitask sigmod output, similar to the DeepSEA model. The
advantage of the combined model of RNN and CNN was that the
newly added RNN layer can capture the long-term dependency
between sequence features by learning the features extracted
by the CNN layer to improve the accuracy of prediction.

BiRen [49] developed a hybrid architecture based on
deep learning, which combines the sequence encoding and
representation capabilities of CNN and bidirectional recurrent
neural network of processing long sequences of DNA excellent
ability. BiRen had undergone limited experimental verification
of enhancer element training, which comes from the VISTA
enhancer browser [76], and has enhanced gene activity, as
evaluated in transgenic mice. BiRen could learn regulatory codes
directly from genomic sequences, and demonstrate excellent
recognition accuracy, overcoming the robustness of noisy data,
and two new methods for other species based on sequence
features for other species General k-mer for enhancer prediction.
BiRen enabled researchers to have a deeper understanding of the
regulatory codes of enhancer sequences.

KEGRU [55], which usesd a layer of GRU and k-mer embed-
ding, was a pure RNN layer model without CNN layer. KEGRU
mainly used the k-mer and embedding layer to achieve the
purpose of CNN feature extraction tasks in other models. Such a
structure made it perform better in sequence relationships and
achieves a good structure in RNA motif mining.

iDeeps [54] which used convolutional neural networks (CNNs)
and a BLSTM network to simultaneously identify the binding
sequence and structure motifs from RNA sequences. The CNN
module embedded in iDeep can also automatically capture the
interpretable binding motif of RBP. The BLSTM network made
the iDeep framework to not only achieve better performance on
binding sequence but also easily capture structure motifs.

Model selection may be the most challenging step in
deep learning because the performance of deep learning

algorithms is very sensitive to different parameters [77]. The
deepRAM [78] provides implementations of several existing
architectures and their variants: DeepBind (single layer CNN),
DeepBind∗ (multilayer CNN), DeepBind-E∗ (multilayer CNN, k-
mer embedding), DanQ (single layer CNN, bidirectional LSTM),
DanQ∗ (multilayers CNN, bidirectional LSTM), Dilated (multilayer
dilated CNN), KEGRU (k-mer embedding, single layer GRU),
ECLSTM (k-mer embedding, single-layer CNN and LSTM) and
ECBLSTM (k-mer embedding, single-layer CNN and bidirectional
LSTM). They conducted a lot of experimental comparisons,
which gave researchers a deeper understanding of these
methods.

Before introducing the experimental results of deepRAM [78],
we introduce two sets of datasets used in the experiment. The
first group is the DNA datasets include 83 ChIP-seq data from
the ENCODE project [70]. The second group is the RNA datasets
include 31 CLIP-seq data for 19 proteins [79–81].

The deepRAM [78] has conducted a large number of exper-
iments on these two datasets of experimental data and con-
ducted an in-depth comparison and description of the above
deep learning models. The experimental results of the model on
these datasets are shown in Figure 5.

Among all models, the ECBLSTM model performed best,
whether it was a median AUC of 0.930 on ChIP-seq data or
a median AUC of 0.951 on CLIP-seq data, and the simplest
DeepBind of all models is here. The median AUC on the two
datasets was 0.902 and 0.914, respectively. DeepBind is the
simplest model considered here: it uses a single hot sequence
encoding and a single convolutional layer. By comparing the
performance of ECBLSTM with the model of DeepBindE∗, it
can be seen that adding an LSTM layer can further improve
performance. Because LSTM layers are better at capturing long-
term dependencies than CNN layers. Compared with the original
DeepBind, both DeepBind∗ or DeepBind-E∗ can provide improved
performance. By comparing the performance of DanQ and
DanQ∗, it is further found that the performance of models deeper
than single-layer CNN tends to perform better. Experiment
results demonstrate the performance advantages of deeper
and more complex networks. Zhang [17] found that the simpler
model performs best in this task, and the conclusions found
through deepRAM’s experiment are just the opposite. Based on
the experimental results and theoretical analysis, it is found
that the complexity of the model should be related to the task
and data. Too many parameters can easily cause over-fitting [82].
Generally, the parameters of our task model should not exceed
the data sample too much.

Discussion
From the traditional method of motif to the latest development
process of deep learning, we can find great progress with the
development of sequencing technology and new algorithms. We
analyzed the existing models, and their variants found that the
more complex models tend to perform better when data are
sufficient in the third section. The recent research trends can
be found that the model is usually more and more complex.
For example, researchers try to combine existing models with
new models, such as combining attention units [83, 84], capsule
network [85], multiscale convolutional gated recurrent unit net-
works [86], weakly supervised CNN [87] and multiple-instance
learning [88]. However, the existing deep learning models in
motif mining are too simple, no more than three layers, com-
pared to the model in the image field usually over 10 layers.
Therefore, there is still much room for improvement.
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Figure 4. Sequence representation of motif mining [78]. It shows two data preprocessing methods(bottom left) and three architectures include CNN-only (left), RNN-only

(center) and hybrid CNN–RNN models (right).

Recently, since the adversarial training of neural networks
can lead to regularization to provide higher performance, this
field has developed rapidly, including involving adversarial gen-
erative networks [89] and a series of related research such as
Wasserstein GAN [90], MolGAN [91] and NetGAN [92]. In motif
mining, GAN may be used to automatically generate negative
examples instead of simple random generation or shuffling the
positive sequence. Besides, pretraining models [93] that have
achieved significant results in the NLP field, from word2vec [73,
94] to now Bert [95] and GPT [96]. In motif mining, pretraining
can be used to enhance the robustness and generalization ability
of the model. The great success of AlphaGo [97] has set off
an unprecedented change in the Go world, and it has made
deep reinforcement learning familiar to the public. In particular,
AlphaGo Zero does not require any history of human chess, and
only uses deep reinforcement learning [98]. The achievement of
training from 0 to 3 days has far exceeded the knowledge of Go
that humans have accumulated for thousands of years. In motif
mining, reinforcement learning may enable people to learn more
motifs beyond human knowledge.

As we enter the era of big data, whether it is in academic
or industrial, deep learning is already a very important
development direction. In bioinformatics, which has made
great progress in traditional machine learning, deep learning
is expected to produce encouraging results [99]. In this review,
we conducted a comprehensive review of the application of deep
learning in the field of motif mining. We desire that this review
will provide help researchers understand this field and promote
the application of motif mining in research.

Of course, we also need to recognize the limitations of deep
learning methods and the promising direction of future research.
Although deep learning is promising, it is not a panacea.

In many applications of motif mining, there are still many
potential challenges, including unbalanced or limited data,
interpretation of deep learning results [71] and the choice of
appropriate architecture and hyperparameters. For unbalanced
or limited data, the common methods are enhanced datasets [48]
or few-shot learning [100]. For interpretation of deep learning
results, common methods are the interpretability of the model
itself [101] or the interpretation after the prediction [71]. For
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Figure 5. Comparison results of nine deep learning models [78]. It compares the performance of these models in predicting DNA and RNA motif mining tasks. (A) The

AUC distribution of nine models in 83 ChIP-seq datasets. (B) P-value annotated heat maps using paired models of nine models in 83 ChIP-seq datasets. (C) The AUC

distribution of nine models in 31 CLIP-seq datasets. (D) P-value annotated heat maps using paired models of nine models in 31 datasets.

the choice of appropriate architecture and hyperparameters,
frameworks such as Spearmint [102], Hyperopt [103] and
DeepRAM [78] allow to automatically explore the hyper-
parameter space. Besides, how to make full use of the ability of
deep learning to accelerate the training process of deep learning
also needs further research. Therefore, we hope that the issues
discussed in this article will be helpful to the success of future
deep learning methods in motif mining.

Key Points
• Motif mining (or motif discovery) in biological

sequences can be defined as the problem of finding
a set of short, similar, conserved sequence elements
(‘motifs’) that are often short and similar in nucleotide
sequence with common biological functions. Motif
plays a key role in the gene-expression regulating
both transcriptional and posttranscriptional levels.

• In recent years, deep learning has achieved great suc-
cess in various application scenarios, which makes
researchers try to apply it to DNA or RNA motif mining.
There are three main types of deep learning frame-
works in motif mining: CNN-based models, RNN-
based models and hybrid CNN–RNN-based models.

• Briefly, we also introduce the application of deep
learning in the field of motif mining in terms of
data preprocessing, features of existing deep learning
architectures and comparing the differences between
the basic deep learning models.
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