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Abstract

Background: The functional significance of proenkephalin systems in processing pain remains an open question and indeed
is puzzling. For example, a noxious mechanical stimulus does not alter the release of Met-enkephalin-like material (MELM)
from segments of the spinal cord related to the stimulated area of the body, but does increase its release from other
segments.

Methodology/Principal Findings: Here we show that, in the rat, a noxious mechanical stimulus applied to either the right
or the left hind paw elicits a marked increase of MELM release during perifusion of either the whole spinal cord or the
cervico-trigeminal area. However, these stimulatory effects were not additive and indeed, disappeared completely when the
right and left paws were stimulated simultaneously.

Conclusion/Significance: We have concluded that in addition to the concept of a diffuse control of the transmission of
nociceptive signals through the dorsal horn, there is a diffuse control of the modulation of this transmission. The ‘‘freezing’’
of Met-enkephalinergic functions represents a potential source of central sensitization in the spinal cord, notably in clinical
situations involving multiple painful foci, e.g. cancer with metastases, poly-traumatism or rheumatoid arthritis.
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Introduction

The sites of the first synapses in pain pathways, namely the

dorsal horn of the spinal cord and its trigeminal homologue in the

brainstem, the nucleus caudalis, are amongst the main loci for the

integrative processing of nociceptive information. These areas are

rich in opioid receptors and in neurons containing proenkephalin-

A and B derivatives [1]. Although electrophysiological, biochem-

ical, behavioral and clinical studies have all illustrated the potential

of spinal opioidergic systems to control the transmission of pain

signals, the question still remains open as to the functional

significance of such systems.

Direct measurements of the release of endogenous opioids from

the spinal cord of the rat and the cat have shown that noxious

stimuli can trigger activity in spinal opioidergic systems [1].

Noxious pinches increased the spinal release of Met-enkephalin-

like material (MELM). However, noxious mechanical stimuli do

not alter the release of MELM from neural segments related to the

stimulated area of the body, but increase its release from other

segments [2]. Together with lesion experiments [2], these findings

suggested the simultaneous triggering of excitatory and inhibitory

processes by noxious mechanical stimuli, the former triggering the

neuronal firing of met-enkephalinergic neurons through a spino-

bulbo-spinal loop and the latter blocking such a firing at a

segmental level. This theoretical possibility opens up a large

number of hypotheses involving interneuronal networks.

Since many areas of the body could be the trigger for the release

of MELM from a given spinal segment, the aim of the present

study was to determine the type of interaction between stimuli-

induced MELM release triggered from several distant areas. We

have chosen the hind paws for convenience. Either the whole

spinal cord or the cervico-trigeminal area was perifused. The

former was chosen for a general view of the spinal release, and the

latter for the investigation of release in parts of the spinal cord,

which are unambiguously distant from where afferent projections

from the hind paws terminate. We show here that a noxious

mechanical stimulus applied either to the right or the left hind paw

elicited a marked increase of MELM release during perifusion of

either the whole spinal cord or the cervico-trigeminal area.

However, when the right and left paws were stimulated

simultaneously, not only were these stimulatory effects not additive

but they completely disappeared.

Results

In halothane anesthetized rats, either the whole spinal cord or

the cervico-trigeminal area were perifused with an artificial

cerebro-spinal fluid and fractions were collected where the

spontaneous release of MELM corresponded to 2.460.6 and

1.960.2 pg per 5 minutes, respectively. Calibrated noxious

pinches were applied for 30 min either to the right, the left or

both hind paws. In whole spinal cord perifusates (Fig. 1A), MELM
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Figure 1. Effects of mechanical stimuli on the release of Met-enkephalin-like material (MELM) during the perifusion of the whole
spinal cord (A) or the cervico-trigeminal area (B). Following a 30-minutes control period (spontaneous release: A = 2.460.6 and B = 1.960.2 pg/
5 min), calibrated noxious pinches (10 N/cm2, 10 s duration, 3 times per min) were applied repetitively for 30 minutes (black areas) in four groups of
animals in a Latin square experimental design. From top to bottom: no stimulation (controls), stimulation of the right hind paw, stimulation of the left
hind paw, stimulation of both the right and the left hind paws. Note that MELM release increased markedly when pinches were applied to either hind
paw. No effect was seen when both hind paws were stimulated simultaneously. Results are expressed in terms of percentage of the mean basal value
observed during the control period. ANOVA and post hoc PLSD Fisher tests indicated highly significant effects of both individual factors of variation
and their interactions (see table S1), respectively.
doi:10.1371/journal.pone.0006874.g001
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release was found to increase markedly when pinches were applied

to either hind paw (mean increases: by 105.3620.9 and

88.5627.4% for the right and left hind paws, respectively) and

then rapidly returned to the control values after the cessation of

stimulation. When both hind paws were stimulated simultaneous-

ly, no effect was seen. Very similar results were seen during

perifusion of the cervico-trigeminal area (Fig. 1B; mean increases:

by 90.9617.7 and 88.9614.1% for the right and left hind paws,

respectively). Again, when the right and left paws were stimulated

simultaneously, the stimulatory effect disappeared. During perifu-

sion of both the whole spinal cord and the cervico-trigeminal area,

the interaction between the two factors of variation was found to

be highly significant indeed (F1-27 = 24.33 and F1-22 = 30.17,

respectively, p,0.0001; Table S1).

Discussion

It was confirmed that noxious mechanical stimuli increased the

release of MELM heterosegmentally in the rat spinal cord [2].

Since bilateral lesions of the dorsolateral funiculus (DLF)

completely blocked such stimulatory effects [2], they must be

mediated via an ascending-descending pathway (Fig. 2A). In

addition, the similarity of results observed during whole spinal

cord or cervico-trigeminal perifusion, confirmed that segmental

and/or propriospinal mechanisms were not involved in these

processes.

However, as shown here, such increases were blocked when

multiple noxious foci were involved. Several hypotheses could

explain the negative interaction seen following stimulation of the

two hind paws. First, it could be hypothesized that a too large

release of MELM provided by stimulation of both hind paws

triggered a presynaptic inhibition of the peptide release. Indeed, a

feedback inhibition of MELM release from the rat spinal cord has

been demonstrated [3]. However, this interpretation appears to be

very unlikely. When the extracellular levels of enkephalins are

elevated by the blockade of their enzymatic degradation (e.g. by

kelatorphan), a noxious mechanical stimulation is as efficient as in

the absence of the peptidase inhibitor for producing a sharp

increase in MELM outflow: absolute levels of released MELM

were higher, but the relative effect of the noxious stimulation was

identical [4]. One could also hypothesize that the spinal release of

Met-enkephalin is highly modulated by supraspinal controls,

which themselves are activated by the noxious foci and involve an

ascending/descending drive to the enkephalinergic interneurons

(Fig. 2B). Many structures in the brain have been reported to be

the source of a descending inhibitory control of dorsal horn

Figure 2. Hypothetical pathways regulating MELM release elicited by noxious mechanical stimuli. A. Stimulus applied on a single area.
The peripheral input (blue) activates dorsal horn neurons (1) that project to the brain. Descending controls are triggered (2) that produce a series of
influences on dorsal horn neurons through the DLF. One of these triggers a diffuse release of Met-enkephalin (3). However, such a release is
prevented by the blockade of afferent inputs at the segmental level (4) (see references 2 & 3). B. Stimuli applied to two body areas (e.g. right and left
paws). Identical processes are triggered from each stimulation site (1, 2, 3, 4) but the power of DNIC is strong enough to produce a functional block of
firing as early as the dorsal horn (5).
doi:10.1371/journal.pone.0006874.g002
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neurons involved in the spinal transmission of nociceptive

information [5–7]. On the basis of anatomical links between

ascending pain pathways and some of these structures, the

triggering of descending inhibition by noxious stimuli has been

postulated (5–7). There are three main possibilities regarding such

structures.

It has been shown that many lamina 1, noxious-specific neurons

in the dorsal horn send axons through the DLF towards the

parabrachial area [8,9], which can be a source of descending

inhibition [5–7]. On the other hand, the rostral ventromedial

medulla sends many axons through the DLF towards all levels of

the dorsal horn [10] and is the source of powerful inhibitions of

dorsal horn neurons involved in the processing of nociceptive

information [5–7]. However, negative interactions between

activities resulting from stimuli applied to distant parts of the

body were not described in studies involving recordings of

parabrachial or rostral ventromedial medulla neurons. To the

best of our knowledge, only one brain structure has been reported

to contain neurons in which strong negative interactions have been

observed as a result of noxious stimuli being applied simulta-

neously to two different areas of the body - namely the subnucleus

reticularis dorsalis (SRD) in the caudal medulla. The SRD

contains neurons with characteristics that suggest they play a key

role in the processing of nociceptive information [11]. Indeed, they

are preferentially or exclusively activated by nociceptive stimuli

from ‘‘whole-body’’ receptive fields, they encode the intensity of

cutaneous and visceral stimulation within noxious ranges and they

are excited exclusively by activity in cutaneous Ad- or Ad- and C-

fibres. In addition, they send descending projections through the

DLF that terminate in the dorsal horn at all rostro-caudal levels of

the spinal cord. The firing of SRD neurons during simultaneous

noxious stimulation of the two hind paws was found to be much

less than the firing elicited by stimulating either one or the other

paw [12]. Since such effects disappeared in animals with bilateral

DLF lesions [12], it follows that the SRD is a good candidate as a

brain structure involved in the effects described in the present

study.

At the spinal level, supraspinally mediated inhibitory controls

triggered by noxious stimuli have been described as ‘‘Diffuse

Noxious Inhibitory Controls’’ (DNIC). In the rat [13–21], the

mouse [22], the cat [23,24] and the monkey [25,26], most wide-

dynamic-range and some nociceptive-specific neurons in the

dorsal horn are strongly inhibited by a noxious stimulus applied

outside their excitatory receptive fields. Such effects are not

organized somatotopically but apply to the whole body. For

example, a neuronal response to a pinch applied to a hind paw is

inhibited by a pinch applied to any other part of the body,

including the controlateral hind paw. Interestingly, systemic

naloxone (an opioid receptor antagonist) reduces DNIC in both

rats [27] and man [28]. Thus, it is very likely that the enhanced

release of MELM observed in the present study following

stimulation of only one hind paw might participate in DNIC. In

addition, several lines of evidence lead us to believe that the

interactions between noxious inputs described herein could also be

sustained by DNIC. Most particularly, there are several features

which are shared by the two phenomena, notably the fact that

DNIC are elicited specifically by any heterotopic noxious stimuli,

have no apparent somatotopic organization even on a very large

scale, and disappear following DLF lesions [29]. Interestingly,

lesions of the SRD strongly reduced DNIC [30].

In summary, DNIC have all the requirements of diffuse

inhibitory mechanisms necessary to explain the negative interac-

tions between noxious inputs observed during measurements of

spinal MELM release and described herein. Although this

assertion is supported by converging arguments, none of them

are sufficient for a definite conclusion to be put forward.

The present study suggests that DNIC indirectly affect the

activities of spinal met-enkephalinergic neurons. DNIC are

triggered by a large variety of stimuli including traditional manual

acupuncture (lifting, thrusting and rotating the needle in a

clockwise and anti-clockwise fashion at 2–4 Hz). We observed

that such a stimulus, which is known to elicit widespread

extrasegmental antinociceptive effects [31], is able, under identical

experimental conditions: (1) to activate SRD neurons [32]; (2) to

inhibit the activities of dorsal horn wide-dynamic-range neurons

[33]; and (3) to activate spinal met-enkephalinergic neurons [34].

Our results extend the notion of diffuse controls triggered by

noxious inputs from affecting the transmission of nociceptive

signals (i.e. DNIC) to also affecting the modulation of this

transmission. Regarding clinical pain, our results strongly suggest

that the occurrence of multiple painful foci, as seen for example

with cancer pain with metastases or poly-traumatisms, could result

in a ‘‘freezing’’ of the Met-enkephalinergic functions in the spinal

cord. We have only considered here, short-lasting noxious stimuli;

the evolution of such a freezing during the development of chronic

pain needs to be investigated carefully. There are elements to

suggest this is the case with rheumatoid arthritis. Polyarthritis

elicited by the immunogenic complete Freund’s adjuvant is a

validated model of human rheumatoid arthritis [35] that produces

behavioral disturbances related to spontaneous pain [36].

Increased basal tissue concentration of MELM was seen in the

spinal cord of these animals [37] and this was associated with a

clear reduction of release [38]. The ‘‘freezing’’ of Met-enkepha-

linergic functions could therefore be an important source of central

sensitization in the spinal cord. Indeed, the inhibitory role of Met-

enkephalin is a classical notion that confers to this molecule, the

physiological potential of reducing pain. Blocking its release would

tilt the beam of the balance in the opposite direction, an

exacerbation of pain, which would be felt more intensely than

normal.

Materials and Methods

Male Sprague-Dawley rats weighing 320–380 g were kept

under controlled environmental conditions (22uC, 12 h alternate

light-dark cycles, 50% humidity, food and water ad libitum) for at

least 7 days before being used in the experiments. The National

Institute of Health’s ‘‘Guide for the care and use of Laboratory

animals’’, the European Communities Council Directive 86/609/

EEC, and the Committee for Research and Ethical Issues of the

International Association for the Study of Pain (IASP) on ethical

standards for investigations of experimental pain in animals were

followed. The surgical procedures were performed under deep

anesthesia (2% halothane in a nitrous oxide-oxygen mixture, 66/

33, v/v). After tracheal cannulation, allowing artificial ventilation,

and insertion of a catheter in the right inner jugular vein, the

animal was immobilized in a ventroflexed position using a

Horsley-Clarke apparatus. The rat was artificially ventilated, the

rate and the volume being adjusted to maintain a normal acid-

base equilibrium [39]. All along the experiment, vital parameters

were controlled.

The method of perifusion of the whole intrathecal space was

adapted from that described by Yaksh and Tyce [40]. A transverse

incision was made over the external occipital crest and on the

midline overlying the cisterna magna. Muscles were drawn aside

from the skull and atlas, and the occipital-atlantoidal membrane

was carefully retracted from the cisterna dura. A small incision of

the dura and the arachnoid was made over the obex. A nylon
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inflow catheter (Polyethylene tubing PE10; 0.28 mm inner

diameter, 0.61 mm outer diameter) was then carefully inserted

and conveyed 85 mm into the subarachnoid space to the lumbar

region. An outflow catheter (same tubing) was inserted parallel to

the former, with its extremity overlying the lower medulla.

For the perifusion of the cervico-trigeminal area, the inflow

catheter was inserted to a point 15 mm caudal to the obex (i.e. to

the C4–C5 segments), so that the perifused zone corresponded to

the trigeminal and cervical (C1–C3) areas.

Following the surgical procedures, the rats were paralyzed by

slow i.v. infusion of gallamine triethiodide, and the level of

halothane was lowered to 0.9% for the remainder of the

experiment to achieve an adequate level of anesthesia for ethical

considerations while not excessively depressing neuronal responses

to noxious stimuli [41]. The spinal cord was then perifused with an

artificial cerebrospinal fluid (in mM: NaCl 126.5; NaHCO3 27.5;

KCl 2.4; KH2PO4 0.5; CaCl2 1.1; MgCl2 0.85; Na2SO4 0.5;

glucose 5.9) adjusted to pH 7.3 by bubbling with an O2/CO2

mixture (95: 5, v/v) and maintained at 37uC at the output of the

inflow catheter. The flow rate was 0.1 ml/min. Perifusion for 30–

45 min before collecting the first samples allowed the release of

MELM to be stable for at least the following 180 min,

corresponding to the whole perifusion [42]. Thereafter 0.5 ml

fractions (corresponding to 5 min) were collected on dry ice and

stored frozen at 230uC until the measurement of their MELM

content. Six fractions (corresponding to 30 min of perifusion) were

collected before any treatment was applied. MELM was measured

in the perifusates using a radioimmunoassay procedure. The

antiserum used in the present study was raised in a rabbit by

injections of Met-enkephalin coupled to ovalbumin with 1-ethyl-

3(3-dimethyl-aminopropyl)carbodiimide. The reaction was per-

formed in the presence of [3H]met-enkephalin. After extensive

dialysis treatment against 0.9% NaCl, the conjugate was estimated

to contain 6 enkephalin residues per molecule of ovalbumin. An

aliquots corresponding to 1.5 mg of the conjugate was emulsified

in complete Freunds’s adjuvant (final volume: 1.2 ml) and injected

intradermally into the axillar and crural regions of a white male

rabbit (2.5 kg, HY/CR strain). It was bled 3 weeks later and

repeatedly boosted with 0.75 mg of the antigen conjugate

approximately every month. The collected serum was heated

(30 min a 56uC), then mixed with an equal volume of glycerol and

kept at 230uC. Results presented in this paper were obtained with

the serum obtained 1 month after the 5th booster injection.

MELM was measured in the superfusates using a slight

modification of the procedure already described [43]. Briefly,

each 0.5 ml fraction was thawed and mixed with 0.05 ml of

0.025 M Tris-Hcl, pH 7.6, containing 0.5 mg/ml bovine serum

albumin and 0.05 ml of the antiserum (1:10,000 final dilution).

Standard curves were obtained under the same conditions using

0.5 ml of artificial cerebrospinal fluid. After 48 h at 4uC, 0.05 ml

of a [Tyrosyl-125I]met-enkephalin solution (corresponding to

2000–3000 counts/min) was added and the incubation continued

for 24 h. The assay was stopped by adding 1 ml of a charcoal

suspension (1 mg/ml) in 0.025 M Tris-Hcl, pH 7.6, containing

0.1 mg/ml of Dextran T70. After centrifugation (6,000 g, 15 min,

4uC), [Tyrosyl-125I]met-enkephalin bound to the antibodies was

measured in the supernatant using a gamma counter. Under these

conditions, as little as 0.5 pg of ME could be quantitatively

estimated in 0.5 ml of perifusate. Analysis of the binding

characteristics of the antiserum indicated that, among all the

possible derivatives of proenkephalin-A and -B and pro-opiome-

lanocortin, only ME-Arg6, ME-Arg6-Phe7 and ME-Lys6 interfered

in the assay (36%, 19% and 3% cross-reactivity, respectively, as

compared to 100% with ME). In addition, the sulphoxide

derivative of ME cross-reacted at 360%. In contrast, cholecysto-

kinins, substance P and somatostatin were inactive (less than

0.01% cross-reactivity) [42].

The rate of spontaneous release of MELM was stable, allowing

the mean MELM content of the 6 fractions preceding the

application of noxious mechanical stimuli (noxious pinches of 10

seconds duration applied 3 times per minute for 30 min to the

hindpaw using calibrated forceps) to be taken as the control value

(100%), and any subsequent changes in MELM release to be

expressed as percentages of this value.

The means6S.E.M. were calculated from such data obtained in

6–9 rats. Statistical analyses were carried out using ANOVA

followed by Post hoc PLSD Fisher tests, when needed.

Supporting Information

Table S1

Found at: doi:10.1371/journal.pone.0006874.s001 (0.03 MB

PDF)
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