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Abstract: Rift Valley fever virus (RVFV) causes severe disease in humans and ungulates. 

The virus can be transmitted by mosquitoes, direct contact with infected tissues or fluids, 

or aerosol, making it a significant biological threat for which there is no approved vaccine 

or therapeutic. Herein we describe the evaluation of DEF201, an adenovirus-vectored 

interferon alpha which addresses the limitations of recombinant interferon alpha protein 

(cost, short half-life), as a pre- and post-exposure treatment in a lethal hamster RVFV 

challenge model. DEF201 was delivered intranasally to stimulate mucosal immunity and 

effectively bypass any pre-existing immunity to the vector. Complete protection against 

RVFV infection was observed from a single dose of DEF201 administered one or seven 

days prior to challenge while all control animals succumbed within three days of infection. 

Efficacy of treatment administered two weeks prior to challenge was limited. 

Post-exposure, DEF201 was able to confer significant protection when dosed at 30 min or 

6 h, but not at 24 h post-RVFV challenge. Protection was associated with reductions in 

serum and tissue viral loads. Our findings suggest that DEF201 may be a useful 

countermeasure against RVFV infection and further demonstrates its broad-spectrum 
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capacity to stimulate single dose protective immunity. 

Keywords: Rift Valley Fever Virus (RVFV); phlebovirus; bunyavirus; interferon alpha; 

DEF201; antiviral  

 

1. Introduction 

Rift Valley fever virus (RVFV; Bunyaviridae, Phlebovirus) has been the cause of multiple 

epizootics throughout sub-Saharan Africa and the Arabian Peninsula [1]. It is a mosquito-borne virus 

that causes significant losses in livestock largely from high mortality in newborn animals [2]. RVFV 

transmission to humans occurs through the bite of infected mosquitoes or contact with tissue from 

infected animals. The infection generally causes a mild febrile illness, but can lead to severe disease in 

the form of retinitis, fulminant hepatitis, encephalitis, or viral hemorrhagic fever, with the mortality 

rate estimated at 10%–20% for hospitalized patients [3,4]. Presently, there are no FDA-approved 

vaccines or antivirals to prevent or treat RVFV infection, which highlights the need to develop new 

intervention strategies. Because the virus is also infectious by the airborne route, it poses a potential 

bioterrorism threat, which is amplified by the fact that mosquitoes native to the United States can 

readily transmit RVFV and serve as vectors [5]. To this end, the Centers for Disease Control and 

Prevention (CDC) and the National Institute of Allergy and Infectious Diseases (NIAID) have listed 

RVFV as a priority Category A pathogen [6]. In addition, RVFV is classified as an overlap select agent 

regulated by the US Departments of Health and Human Services (DHHS) and Agriculture (USDA). 

DEF201 is an adenovirus-vectored human interferon (IFN) alpha with long-lasting antiviral activity 

in several in vivo models of viral infection [7–9], including Punta Toro virus (PTV) [10], a related 

bunyavirus used to model RVFV infection [11,12]. RVFV is reportedly sensitive to the effects of 

exogenous interferon (IFN). Previous work modeling RVF disease in macaques demonstrated a 

correlation between reduced disease severity and early presence of IFN [13]. Moreover, administration 

of recombinant or native human IFN-alpha were highly effective when given prophylactically 1 day 

prior or 6 h post RVFV challenge [14]. Despite this success, a number of factors including cost, the 

requirement for multiple injections by healthcare workers, and high bolus dosing to counter the short 

half-life have precluded recombinant IFN use. In contrast, DEF201 can be manufactured in large scale 

at manageable cost using widely available methodology, and using the adenovirus to deliver 

constitutive in situ IFN internally allows for more consistent dosing, thereby reducing IFN-related 

toxicity associated with bolus dosing [15]. Although the usage of PEGylation has improved the 

efficacy of IFN and reduced the frequency of dosing, therapy remains costly and invasive [16,17]. 

Because the dosing route of DEF201 is intranasal, it can be administered by a non-healthcare 

professional using a simple device, which is essential in an outbreak scenario. 

In the present study we evaluated DEF201 as a pre- and post-exposure prophylactic intervention in 

the hamster RVFV infection model to demonstrate its activity against the highly pathogenic ZH501 

strain of the virus. Because RVFV is rapidly lethal in hamsters, post-exposure treatments were 

administered shortly after challenge and a higher dose of 10
8
 plaque-forming units (PFU) of DEF201 
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was used. This dose is well tolerated in hamsters and induces considerable levels of IFN for enhancing 

antiviral activity [10]. 

2. Results 

We first evaluated DEF201 as a pre-exposure prophylaxis in the hamster RVFV infection model by 

intranasal (i.n.) instillation at either −21, −14, −7, or −1 day relative to time of subcutaneous (s.c.) 

challenge. As shown in Figure 1A and B, pre-exposure treatment with 10
8
 PFU of DEF201 at either 1 

or 7 days prior to infection provided complete protection from mortality when compared to their 

respective empty vector (EV)-treated groups (p < 0.001), all of which succumbed to RVFV challenge 

by day 3 post-infection. Only 1 of 10 animals receiving DEF201 two weeks prior to challenge survived 

the infection (Figure 1C); however, the mean time of death was significantly extended out to 5.5 days, 

3 days longer than the matched EV-treated group. The protective effect was completely lost when 

DEF201 was administered 3 weeks prior to RVFV challenge (Figure 1D). 

Figure 1. Pre-exposure prophylaxis with DEF201 protects hamsters from lethal s.c. RVFV 

challenge. Hamsters in each experimental group (n = 10) were treated i.n. with 10
8
 PFU of 

DEF201 or empty vector (EV) on (A) day −1, (B) day −7, (C) day −14, or (D) day −21 

relative to the time of infection with 30 PFU of RVFV. Kaplan-Meier survival curves are 

shown. **p < 0.01, ***p < 0.001 compared to respective EV controls. 

 

 

Animal weights were also determined during the pre-exposure efficacy study as a general measure 

of health. The percent weight change of hamsters relative to their starting weights on day −21 relative 
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reported data indicative of a temporary reduction in food and water consumption in response to the 

in situ production of consensus IFN [10]. The surviving animals all recovered and gained weight at a 

similar rate to the sham-infected normal controls (Figure 2A–C). 

Figure 2. DEF201 treatment results in temporary weight loss. The percent weight change 

during the course of the DEF201 RVFV pre-exposure prophylaxis experiment presented in 

Figure 1 is shown. The data for the (A) day −1, (B) day −7, (C) day −14, or (D) day −21 

treatments are represented as the group mean and standard deviation of the percent change 

in weight of surviving animals relative to their starting weights on day −21 and measured 

every 3rd day. Sham-infected normal controls are included for comparison. 

 

 

The antiviral effect of DEF201 pre-exposure treatment on reducing RVFV titers was evaluated on 

day 2 in a pre-designated subset of hamsters from each experimental group. Despite only very limited 

protection from mortality in the 14 day DEF201 pre-treatment group, the substantial reduction in 

serum and tissue viral burden was comparable to that observed with the 1 and 7 day pre-treatments 

(Figure 3). The two remaining animals in the 21 day pre-treatment group had maximal RVFV titers. 

Because many of the animals in the EV groups succumbed prior to the time of sacrifice (Figure 3), it 

was not possible to fully appreciate the impact of DEF201 on viral titers since the sickest animals were 

not included in the analysis. Notably, the serum and liver viral titers for 1 of the 4 animals in the d −1 

DEF201 treatment group were higher than expected (Figure 3A,B). This was unexpected since all the 

DEF201 d −1 animals observed for morbidity and mortality survived RVFV challenge without any 

noticeable clinical disease. Because the tissues analyzed were not perfused, the liver and spleen 
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viral titers shown may reflect virus present in the small amount of residual blood remaining in the 

samples collected. 

Figure 3. Reduced viral titers associated with protective effect of DEF201. Subgroups of 

hamsters (n = 4/group) treated and infected in parallel to the animals in the observation 

groups described in Figure 1 were sacrificed on day 2 post-infection for analysis of 

(A) serum, (B) liver, and (C) spleen virus titers. Unique symbols in each treatment group 

represent values for the same animal across all parameters. Several groups have less than 4 

data points due to death prior to time of sacrifice. Two animals in the DEF201 d −21 group 

and nine animals in the EV groups (including all of the d −1 group) succumbed prior to 

day 2. The gray hashed lines represent the saturation level indicating that actual titers are 

equal to or greater than the plotted concentration. *p < 0.05, **p < 0.01 compared to 

respective EV controls. 
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A second experiment was conducted to investigate the potential use of DEF201 as a post RVFV 

exposure intervention. The treatment times of 0.5, 6 and 24 h post-challenge were selected based on 

uniform lethality in approximately 2–3 days following s.c. injection with a 30 PFU inoculum. As 

shown in Figure 1A and B, treatment with a single 10
8
 PFU dose of DEF201 at 0.5 and 6 h 

post-infection provided 60% and 90% protection from mortality from lethal RVFV challenge. It is 

possible that the stress associated with the 0.1 mL i.n. instillation treatment 30 min after RVFV 

infection had a negative impact on the survival of the DEF201 0.5 h post-infection group. A single 

hamster that received the EV at 24 h survived the study, while all of the animals receiving DEF201 24 h 

post-challenge succumbed to the infection by day 4 (Figure 4C). 

Figure 4. Post-exposure treatment with DEF201 protects hamsters from lethal s.c. RVFV 

infection. Hamsters (n = 10 per group) were treated with 10
8
 PFU of DEF201 or EV at 

(A) 0.5 h, (B) 6 h, or (C) 24 h post-infection with 30 PFU of RVFV. Kaplan-Meier 

survival curves are shown. ***p < 0.001 compared to respective EV controls. 
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Animal weights were also measured during the post RVFV exposure DEF201 efficacy study.  

The 0.5 and 6 h DEF201 groups showed a slight decrease (5%–10%) in weight gain during the  

first 6–9 days, and thereafter gained weight at a similar rate to the sham-infected control group 

(Figure 5). Evidence of weight loss and subsequent recovery in the only surviving animal in the EV 

group treated at 24 h post-infection indicates that this animal was ill and then recovered from the 

infection. Due to death prior to weight determinations on day 3, these data are limited to the 0.5 and  

6 h DEF201 groups, the 24 h EV group, and the sham-infected controls. 

Figure 5. Surviving hamsters recover from initial weight loss due to DEF201 treatment. 

The percent weight change during the course of the DEF201 RVFV post-exposure 

treatment experiment presented in Figure 4 is shown. The data are represented as the group 

mean and standard deviation of the percent change in weight of surviving animals relative 

to their starting weights on day 0 and measured every 3rd day. Sham-infected normal 

controls are included for comparison. 

 

 

As shown in Figure 6, the virus titer data from the post RVFV exposure DEF201 treatment study 

was consistent with the survival findings (Figure 4). Serum and tissue viral titers assessed on day 2 of 

infection were dramatically reduced or absent in animals treated within 6 h of RVFV infection, as 

compared to the EV control groups (Figure 6). Maximal viral loads were observed in most of the 

available samples from animals in the EV groups. Notably, however, many of the EV-treated hamsters 
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available for pre- and post-exposure prophylaxis, which may be useful in limiting RVF disease in 

high-risk populations such as veterinarians, abattoir workers, herdsmen, and any individuals that work 

with susceptible ungulate species. In addition, safe and broadly active post-exposure prophylaxis 
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countermeasures would also be of great value to laboratory personnel that study RVF and other severe 

viral diseases. 

Figure 6. Post-exposure intervention with DEF201 within 6 h of RVFV challenge 

effectively reduces serum and tissue viral titers. Subgroups of hamsters (n = 4/group) 

treated and infected in parallel to the animals in the observation groups described in 

Figure 4 were sacrificed on day 2 post-infection for analysis of (A) serum, (B) liver, and 

(C) spleen virus titers. Several groups have less than 4 data points due to death prior to 

time of sacrifice. The gray hashed lines represent the saturation level indicating that actual 

titers are equal to or greater than the plotted concentration. *p < 0.05, **p < 0.01,  

***p < 0.001 compared to the 24 hpi EV control. 
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In the present study, we show that i.n. treatment with DEF201 one week prior to s.c. challenge of 

hamsters with a uniformly lethal dose of RVFV was highly efficacious. Greatly reduced but significant 

protection (p < 0.01 by log-rank analysis) was observed with DEF201 treatment administered 2 weeks 

prior to challenge, suggesting that animals may have been fully protected by treatment initiated several 

days beyond day 7. To this end, we have previously demonstrated with the 10
8
 PFU dose of DEF201 

that systemic levels of cIFN produced from the vector peaks between 4 and 7 days after treatment, and 

although on the decline, substantial amounts are still detectable after 8 days [10]. Consistent with these 

data, virus titers reductions were similar in hamsters treated with DEF201 at the 1, 7 or 14 days prior to 

infection, despite the fact that most of the animals in the 14 day pretreatment group did not survive the 

challenge. Because of the delay in time of death in the 14 day pretreatment group, it is likely that 

increased titers would have been resolved at a later sampling time. As a post-exposure intervention, 

DEF201 was highly efficacious when administered up to 6 h after RVFV challenge. The reduced 

efficacy observed at the 0.5 h administration time may have been due to the added stress associated 

with the i.n. treatment shortly after the infection. 

DEF201 has been shown to confer complete protection in hamsters challenged with the related 

Punta Toro phlebovirus when dosed 3 weeks prior to challenge, and 40% survival is observed when 

treatment is given 4 weeks prior to infection [10]. The difference in the DEF201 prophylactic window 

between pretreatment of RVFV and PTV infection in hamsters is likely attributed to the reduced 

susceptibility and less severe disease in the latter. Most of the hamsters receiving the EV control virus 

devoid of the consensus IFN gene encoded in DEF201 succumbed within two days of the RVFV 

challenge, with the remaining animals expiring by the third day. In contrast, PTV infection is often 

sublethal with a s.c. challenge dose of 50 PFU and results in a more protracted disease [10]. Thus, 

despite the encouraging results, it is difficult to translate the findings in hamsters to the human 

condition because of the peracute nature of the disease and exquisite sensitivity of the animals to the 

ZH501 strain of RVFV [21–24]. In fatal cases of RVF, humans can succumb within 3–6 days of the 

onset of clinical illness, but death can also occur in some cases more than two weeks after the initial 

signs of disease [3]. Fortunately, most infections result in only mild to moderate illness with estimated 

overall case fatality rates in the 0.5%–2% range [25]. Based on the virus titer data in the pre-exposure 

prophylaxis setting (Figure 3), it is likely that humans prophylactically given DEF201 would become 

ill due to some level of viral replication, but most would control the infection through the effects of 

cIFN sufficiently enough to prevent severe forms of RVF including hemorrhagic disease, acute 

hepatitis, late-onset encephalitis and retinitis that can lead to varying degrees of blindness. Naturally, 

the RVFV hamster infection model does not reproduce the neurologic or ocular disease seen in some 

human cases; however, we recently reported the development of late-onset encephalitis following 

ribavirin treatment of RVFV-infected hamsters [24]. RVFV infection in ACI rats and common 

marmosets has been shown to produce encephalitis and, therefore, may be good models for evaluating 

DEF201 against the development of neurologic disease [26,27].  

We did not evaluate DEF201 against i.n. RVFV challenge, but based on slower disease progression 

and a higher LD50 [28], we would predict a broader post-exposure prophylaxis window. We also did 

not investigate whether protective immunity to re-challenge with RVFV was induced in surviving 

animals. However, in previous work in the hamster PTV and Pichinde arenavirus infection models, 

there was a direct correlation between survival to a second challenge and moderate levels of viral 
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replication [7,10]. Based on these data, it is likely that in cases where the effects of DEF201 did not 

fully prevent RVFV replication (Figure 3), the adaptive immune response would confer protective 

immunity against repeat infection. Thus, we would expect that the surviving animals from the  

pre-exposure study would have been much more refractory to secondary challenge compared to 

hamsters from the 0.5 and 6 h post-exposure treatment groups where the effect of DEF201 was 

sterilizing in many cases (Figure 6). 

Administration of adenovirus type 5 vectors via the i.n. route has been demonstrated to effectively 

bypass circulating pre-existing immunity to the vector, allowing the proteins expressed to induce 

protective immunity [29,30]. This allows for the usage of these effective and clinically-experienced 

viruses as gene delivery vectors for a wide range of applications, including pre- and post-exposure 

prophylaxis against pathogenic viruses. The data presented supports further investigation into the 

potential use of DEF201 to prevent or limit RVF, especially in nonhuman primate models which 

would be more predictive of the prophylactic capacity of DEF201. In addition to public health 

implications of the disease in endemic regions of Africa and neighboring countries, the heightened risk 

of introduction into the United States, Europe, and other areas of the world underscore the need to 

develop simple, cost-effective, and broadly active countermeasures, such as DEF201, to combat 

accidental or intentional release of RVFV into naïve regions where reservoir species and hosts 

susceptible to fulminant disease are most vulnerable [31]. 

4. Experimental Section 

4.1. Animals 

Female golden Syrian hamsters were obtained from Charles River (Willimantic, CT, USA). The 

hamsters were quarantined for 7 day prior to each experiment and maintained on Harlan Lab Block 

and tap water ad libitum. All animal procedures used in this study complied with guidelines set by the 

USDA and Utah State University Animal Care and Use Committee. 

4.2. Viruses 

The infectious clone of RVFV, strain ZH501, was obtained from Dr. Stuart Nichol (CDC, Atlanta, 

GA, USA). The virus stock (1 passage in BSRT7 cells, 3 passages in Vero E6 cells) used was titrated 

to have a concentration of 1.1 × 10
8
 PFU/mL and was derived from a clarified cell culture lysate 

preparation. The virus inoculum was prepared by dilution in sterile medium and inoculated by s.c. 

injection of 0.1 mL (ventral, right side of the abdomen). 

The DEF201 adenovirus and the adenovirus empty vector (EV) control were provided by Defyrus 

(Toronto, Ontario, Canada) at a concentration of 6 × 10
9
 PFU/mL and 2 × 10

11
 PFU/mL, respectively. 

Both recombinant adenoviruses were prepared in sterile saline for i.n. instillation in 0.1 mL volumes.  

4.3. Experimental Design 

Experiment 1. Hamsters were weighed on day −21 relative to the day of infection and grouped so 

that the average weight per group (n = 14) across the entire experiment varied by less than 5 grams. 

Animals in each group (70–85 g range) were treated i.n. once with 10
8
 PFU of DEF201 or EV at either 
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−21, −14, −7, or −1 day prior to s.c. challenge with 30 PFU (10 × LD50) of RVFV. Infection by the s.c. 

route models the most common mode of transmission by mosquitoes. Four animals from each 

treatment group were designated for sacrifice on day 2 of infection for analysis of serum and tissue 

viral titers. The remaining animals were observed for 21 days post-infection for morbidity and 

mortality. Sham-infected animals were included as normal controls for morbidity and mortality (n = 4) 

and to define detection limits for virus titer assays (n = 2).  

Experiment 2. Hamsters were weighed on the day of infection and grouped so that the average 

weight per group (n = 14 for each treatment and placebo group) across the entire experiment varied by 

less than 6 grams. Animals in each group (88–121 g) were challenged by s.c. injection with 30 PFU of 

RVFV and subsequently treated by a single i.n. instillation of 10
8
 PFU of DEF201 or EV at either 0.5, 

6, or 24 h post-challenge. Four animals from each treatment group were designated for sacrificed on 

day 2 of infection for analysis of serum and tissue viral titers and the remaining hamsters were 

observed 21 day for morbidity and mortality. Sham-infected normal animals were included as controls 

for morbidity and mortality (n = 3) and virus titer assays (n = 3). 

4.4. Serum, Liver, and Spleen Virus Titers 

Virus titers were assayed using an infectious cell culture assay as previously described [32]. Briefly, 

a specific volume of serum or liver or spleen homogenate was serially diluted and added to triplicate 

wells of Vero (African green monkey kidney) cell monolayers in 96-well microtiter plates. The viral 

cytopathic effect was determined 7 days after plating and the 50% endpoints were calculated as 

described [33]. The upper and lower limits of detection for serum titer were 8.24 and 1.49 log10 50% 

cell culture infectious doses (CCID50)/mL, respectively. The upper and lower limits of detection for 

tissues were 8.72 and 1.97 log10 CCID50/g of tissue, respectively. In samples with saturated or 

undetectable levels of virus, a value representative of the respective limit of detection was assigned for 

statistical analysis. 

4.5. Statistical Analysis 

The Mantel-Cox log-rank test was used for analysis of Kaplan-Meier survival curves. A one-way 

analysis of variance (ANOVA) with a Newman-Keuls posttest was performed to compare differences 

in virus titers. All statistical evaluations were done using Prism software, version 5.0d (GraphPad 

Software, La Jolla, CA, USA) [34]. 

5. Conclusions  

Our findings indicate that DEF201, as a single dose i.n. treatment, is highly effective as a pre- and 

post-exposure prophylactic measure against acute RVFV infection in hamsters. Further studies using 

nonhuman primate models of RVF will evaluate DEF201’s utility for use in the event of an accidental 

laboratory exposure or during a RVF epizootic outbreak. 
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