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Abstract

Introduction: Human induced pluripotent stem cell-derived cardiomyocytes

(hiPSC-CMs) have recently been shown to express key cardiac proteins and

improve in vivo cardiac function when administered following myocardial infarction.

However, the efficacy of hiPSC-derived cell therapies, in direct comparison to

current, well-established stem cell-based therapies, is yet to be elucidated. The

goal of the current study was to compare the therapeutic efficacy of human

mesenchymal stem cells (hMSCs) with hiPSC-CMs in mitigating myocardial

infarction (MI).

Methods: Male athymic nude hyrats were subjected to permanent ligation of the

left-anterior-descending (LAD) coronary artery to induce acute MI. Four

experimental groups were studied: 1) control (non-MI), 2) MI, 3) hMSCs (MI+MSC),

and 4) hiPSC-CMs (MI+hiPSC-derived cardiomyocytes). The hiPSC-CMs and

hMSCs were labeled with superparamagnetic iron oxide (SPIO) in vitro to track the

transplanted cells in the ischemic heart by high-field cardiac MRI. These cells were

injected into the ischemic heart 30-min after LAD ligation. Four-weeks after MI,

cardiac MRI was performed to track the transplanted cells in the infarct heart.

Additionally, echocardiography (M-mode) was performed to evaluate the cardiac

function. Immunohistological and western blot studies were performed to assess

the cell tracking, engraftment and cardiac fibrosis in the infarct heart tissues.
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Results: Echocardiography data showed a significantly improved cardiac function

in the hiPSC-CMs and hMSCs groups, when compared to MI. Immunohistological

studies showed expression of connexin-43, a-actinin and myosin heavy chain in

engrafted hiPSC-CMs. Cardiac fibrosis was significantly decreased in hiPSC-CMs

group when compared to hMSCs or MI groups. Overall, this study demonstrated

improved cardiac function with decreased fibrosis with both hiPSC-CMs and

hMSCs groups when compared with MI group.

Introduction

Myocardial infarction (MI) involves the death or damage of the myocardium [1].

Approximately 1,450,000 Americans suffer from an MI each year [2], with thirty

five to forty percent of all acute myocardial infarctions producing fatal outcomes

[3]. Stem cell-based cardiac therapy has been proposed as a viable candidate to

mitigate cardiomyocyte loss and impaired cardiac function subsequent to a MI

and thus improve patient prognosis. Many cell types, including mesenchymal

stem cells [4], skeletal myoblasts [5], embryonic stem cells [6], and cardiospheres

[7] have been investigated in both pre-clinical and clinical MI studies to evaluate

their potential efficacy in improving cardiac function and regenerating necrotic

myocardium. In a recent murine study by Laflamme et al., administration of

human embryonic stem cell-derived cardiomyocytes (hESCs) prevented cardiac

functional loss between 48 hours and four weeks following MI, as determined

from the fractional shortening of treated animals [6]. However, the possibility of

teratoma formation [8], in addition to a negative ethical stigma, limits the full

realization of potential hESC-based therapies [8, 9].

Recent groundbreaking work in the field of stem cell research by Takashi and

Yamanaka demonstrated that mouse fibroblasts can be reprogrammed by ectopic

expression of four transcription factors, Oct4, Klf4, Sox2, and c-Myc to induced

pluripotent stem (iPS) cells [10]. Induced pluripotent stem cells (iPSC) possess

many of the distinguishing qualities characteristic of embryonic stem cells (ESC),

such as unlimited replication [11] and pluripotency, without the negative

connotations associated with ESC research [12]. In addition, the possibility for the

immune rejection of transplanted cells may be greatly reduced as the iPS cells can

be derived from autologous patient-specific cells [11]. IPS cells can be generated

by ‘‘reprogramming’’ cells from various unique sources, including human dermal

fibroblasts [12] and skeletal myoblasts [13], using viral gene transduction [14].

Although iPS cells can be used in their native, undifferentiated form, such use

has been shown to promote tumor genesis in control and MI rats regardless of the

administered dose [15]. To avoid tumor genesis, and thereby improve therapeutic

potential, iPS cells may be differentiated to a particular lineage, such as

endothelial [16] or cardiomyocyte [17] prior to in vivo use. Cardiac progenitor

cells, generated from hiPS cells, have been shown to express cardiac proteins
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essential to the development of an adult ventricular myocyte phenotype, such as

connexin-43 and myosin chain complexes, when cultured in vitro [18]. Similarly,

cardiomyocytes differentiated from mouse skeletal myoblast-derived iPS cells have

been shown to form fully-developed, spontaneously-beating sarcomeres when

cultured in vitro [19]. Through examination of action potential characteristics,

iPS-derived cells have likewise demonstrated sensitivity to b-adrenergic stimula-

tion and differentiation potential for ventricular, atrial, and nodal cardiomyocyte

lineages [20]. When administered in vivo, iPS-derived cardiomyocytes have been

shown to effectively integrate with host myocardium and thus significantly

decrease fibrosis while significantly increasing fractional shortening in a murine

model of MI [17]. In a study by Pasha et al., a significant decrease in cardiac

fibrosis and improvement in cardiac function were observed in post-MI mice

treated with cardiac progenitors differentiated from skeletal myoblast-derived iPS

cells (SiPS-CP) [13]. In addition, mouse iPSC-derived myocardial tissue sheets,

known as bioengineered myocardium, have recently been shown to increase

cardiac contractility, relative to No-MI animals, four weeks following MI [21].

In recent years, both preclinical and clinical studies have demonstrated

attenuation of acute MI injury with MSC therapy [22, 23]. Based on our

previously published work on MSCs and myocardial repair, we have chosen

hMSCs as a control to compare with hiPSC-CMs in attenuating MI [22, 23].

Therefore, the main objective of this study was to compare the effect of hiPS-CM

with hMSC transplantation, on recovery of cardiac function in a rat model of

acute MI. To our knowledge this is the first study to directly compare these two

different types of stem cells for cardiac therapy. Our results demonstrate that

hiPSC-CMs are equipotent with hMSCs in improving cardiac function following

MI. Engrafted hiPSC-CMs cells expressed cardiomyocyte markers and decreased

cardiac fibrosis in the infarct heart when compared with hMSCs. No tumors or

arrhythmias were observed in hiPSC-CMs or hMSCs transplanted heart.

Materials and Methods

Culturing and labeling of stem cells with SPIO for tracking their

engraftment in the heart

Human inducible pluripotent stem cells (hiPSC-CMs) were procured from CDI

(Cellular Dynamics International; Madison, Wisconsin). These cells expressed

enhanced red fluorescence protein (RFP) for in-vivo tracking. The hiPSC-CMs

were cultured in the plating media provided by CDI for 48 h in a T75 flask and

incubated at 37uC, with a mixture of air and 5% CO2 in a humidified chamber.

After 2 days of culture, 10 mL of pre-warmed fresh maintenance growth media

was added to each flask. The maintenance culture media was changed every 2–3

days. Human iPSC-CMs were beating spontaneously at one week after culture (S1

Video).

Human MSCs were acquired from Lonza (Lonza Biologics Inc, Portsmouth

NH). hMSCs were cultured in a T75 flask containing MSC plating media provided
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by Lonza and incubated at 37uC, with a mixture of air and 5% CO2 in a

humidified chamber. hMSCs were cultured until they reached 80–90%

confluency. The cell culture media was replaced every 2–3 days. Both hiPSC-CMs

and hMSCs were incubated with super paramagnetic iron oxide (SPIO) particles

(0.9 mm diameter, 1.256105/mL medium; Bangs Laboratories, IN, USA) for

24 hours. The SPIO particles used during this study were labeled with Dragon-

green fluorophores. To remove un-internalized SPIO particles, cells were rinsed

three times with PBS and placed in fresh media. Using a series of three

intramyocardial injections, hMSCs and hiPSC-CMs (16106 cells total, in 100 mL

serum-free medium) were transplanted into the infarct and peri-infarct regions of

the left ventricular myocardium thirty minutes following permanent LAD

coronary artery ligation.

Expression of cardiac markers by hiPSC-CMs in vitro

Immunofluorescence staining was performed in cells or cardiac sections fixed with

paraformaldehyde. The fixed cells were washed with PBS and then incubated with

2% goat serum and 5% bovine-serum albumin in PBS to reduce nonspecific

binding. The cells or cardiac sections were then incubated for 2 hours at room

temperature with mouse, anti-a-sarcomeric actinin (1:500, Sigma-Aldrich, MO),

cardiac troponin-T (1:200, Santa Cruz, CA), myosin heavy chain (1:200, Santa

Cruz, CA) and connexin-43 monoclonal antibodies (1:500, Cell Signaling, MA).

The sections were then incubated with the appropriate anti-mouse secondary

antibodies (1:1000) conjugated to Texas red and FITC. The nuclei were

counterstained with HardSet mounting medium with DAPI (Vector Labs). The

cells were visualized by inverted Nikon fluorescence microscope (TE 2000).

Separate cells were also stained without primary antibodies to identify nonspecific

binding.

Induction of myocardial infarction

Male athymic nude rats (Hsd:RH-Foxn1rnu, Harlan Laboratories, Greenfield, IN),

200–250 grams were randomly separated into four groups (Fig. 1, n56/group) as

following: (i) Control group (No-MI); (ii) MI group (treated with serum-free

medium); (iii) hMSCs group (MI treated with hMSCs transplantation); (iv)

hiPSC-CMs group (MI treated with hiPSC-CMs). Rats were anesthetized initially

with ketamine (50 mg/kg; I.P.) and xylazine (5 mg/kg; I.P.) and maintained using

a 1.5–2.0% isoflurane. Anesthesia was confirmed by the absence of the pedal

reflex. MI was induced by permanently ligating the LAD coronary artery. The

LAD ligation was standardized in all similar sized animals by ligating the LAD 3-

mm distal to the left atrium. Complete ligation is assessed by the rapid change in

the color, pallor and akinetic movement of the distal LAD perfused myocardium.

ST elevation was observed with continuous ECG monitoring obtained during the

procedure. The chest was closed and animals were extubated and removed from
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anesthesia following restoration of spontaneous respiration as published

[4, 22, 23].

Ethics

All animal procedures performed during this study were approved by the

Institutional Animal Care and Use Committee of The Ohio State University and

complied with the Guide for the Care and Use of Laboratory Animals (NIH

Publication No. 86-23).

Cardiac magnetic resonance imaging (MRI) for non-invasive

tracking of cell engraftment in vivo

Cardiac magnetic resonance imaging (MRI) was performed using a Bruker 9.4T

horizontal-bore imaging system equipped with Paravison 4.0 (Bruker BioSpin,

Billerica, MA, USA) as published earlier [22]. Cardiac function was analyzed four

weeks following hiPSC-CMs and hMSCs transplantation. Rats were anaesthetized

initially with 1.5–2% isoflurane mixed with carbogen (1 L/min). Utilizing an

Fig. 1. Experimental Design. Schematic representation of experimental design, indicating relative timing of
LAD coronary artery ligation, stem cell administration, and functional analyses.

doi:10.1371/journal.pone.0116281.g001
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abdominal pneumatic pad and electrode pads placed on the forepaw and foot of

each animal, physiologic parameters such as the EKG and respiration were

monitored using an MRI-compatible system (Model 1025, Small Animal

Instruments, Stonybrook, NY, USA). Each animal was secured to a water-heated

animal bed and placed near the isocenter of the MRI scanner. Cardiac gated,

short-axis T1-weighted (T1W) images were acquired in order to cover the entire

left ventricle of each rat (FLASH-cine sequence parameters: TR516 ms;

TE51.6 ms; a510u; matrix52566192; FOV55.165.1 cm; slice thickness52

mm, N58, movie cycles adjusted based on animal heart rate). The length of each

imaging session was between 45 and 90 minutes [22].

M-mode echocardiography

M-mode echocardiography was also performed to assess cardiac functional

recovery following infarction. During imaging, animals were anesthetized using

1.5–2.0% isoflurane in air. Echocardiography was performed 4 weeks following

hiPSC-CMs and hMSCs transplantation using a high-resolution Vevo-2100

ultrasound imaging system (Visualsonics; Toronto, Canada) as published earlier

[23]. Echocardiographic measurements were taken utilizing both long and short

axes B and M-mode views. The B-mode cuts are used to standardize the anatomic

location of the M-mode acquisition in the heart.

Engraftment of transplanted hiPSC-CMs in the heart

At four weeks after MI, hiPSC-CMs engraftment was assessed using fluorescence

microscopy. Transplanted hiPSC-CMs were identified in the LV myocardial

sections by RFP fluorescence and by SPIO dragon green fluorescence as published

previously [23].

Expression of cardiac markers in the engrafted hiPSC-CMs in the

infarct heart

Immunofluorescence staining with primary antibodies against a-actinin, myosin

heavy chain and conexin-43 was performed as mentioned above [23].

Assessment of cardiac fibrosis

Rats were anaesthetized after 4 weeks following MI or stem cell transplantation,

and their hearts were excised and washed with ice-cold PBS. The hearts were then

frozen for 10-minutes at 220uC and sliced into 2 mm sections using a heart

matrix. The LV myocardial sections were then incubated overnight in formalin to

perform masson-trichrome staining for assessment of cardiac fibrosis. To

determine the fibrosis, images were acquired by a dissecting microscope (Nikon;

Tokyo, Japan). The fibrosis area (Blue color) was expressed as a percentage of

total LV area and quantified as by computerized planimetry using MetaMorph
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image analysis software (Molecular Devices; Sunnyvale, CA) as described

previously [23].

Data analysis

The statistical significance of the results was evaluated by one-way analysis of

variance (ANOVA) and all pairwise multiple comparison procedures were done

by Tukey’s Post Hoc Test. The values were expressed as mean ¡ S.D. A p value of

,0.05 was considered statistically significant.

Results

Expression of cardiac markers by hiPSC-CMs in vitro

Immunofluorescence studies showed that hiPSC-CMs express cardiomyocyte

markers including a-actinin, troponin-T and conexin-43 in vitro (Fig. 2).

Additionally these cardiomyocytes started to beat spontaneously at one-week after

cell culturing (S1 Video).

Assessment of cardiac function by M-mode echocardiography

Cardiac function was evaluated by using transthoracic M-mode echocardiography

at four weeks following myocardial infarction (Fig. 3A). The LV ejection fraction

(EF) and fractional shortening (FS) significantly improved in both hMSCs and

hiPSC-CMs groups compared to the MI group and although not statistically

significant, hiPSC-CMs showed a trend of superior improvement in cardiac

function when compared to the hMSCs group (Fig. 3B). We did not observe any

significant difference in cardiac function at baseline (pre-MI) among different

groups.

Cardiac MR imaging for engraftment of hiPSC-CMs and hMSCs in

the infarct heart

The iron oxide labeled hiPSC-CMs and hMSCs (Fig. 4A) were visualized in the

LV of the infarct myocardium by cardiac MR imaging at both end-systole and

end-diastole (Fig. 4B). The hypointense regions of the LV myocardium indicated

the engraftment of transplanted iron oxide-labeled hiPSC-CMs and hMSCs

(Fig. 4B). MR images confirmed the engraftment of stem cells in the infarct

myocardium at four weeks after MI. Similarly, Immunohistology results further

confirmed the engraftment of transplanted hiPSC-CMs in the infarct heart as

indicated by RFP and dragon green fluorescence in the LV area (Fig. 4C).

Attenuation of cardiac fibrosis by hiPSC-CMs transplantation

Cardiac fibrosis (%) was assessed at 4 weeks following MI (Fig. 5A, 5B). Masson-

trichrome staining showed a significant decrease in cardiac fibrosis in the hiPSC-
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Fig. 2. In-vitro expression of cardiac markers in hiPSC-CMs. Immunohistological staining shows
expression of (A) a-actinin, (B) Troponin-T and (C) Connexin-43, by human iPSC-derived cardiomyocytes.
RFP (red fluorescence protein, red color); DAPI (blue color).

doi:10.1371/journal.pone.0116281.g002
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Fig. 3. Cardiac functional recovery following hiPSC-CMs and hMSCs transplantation. (A) Transthoracic M-mode echocardiography images indicating
recovery of ventricular wall movement for the hiPSC-CMs hearts. (B) LV functional data acquired four weeks following myocardial infarction. Significant
improvements in Left ventricular internal diameter at systole (LVIDs), Left ventricular internal diameter at Diastole (LVIDd) ejection fraction (EF%) and
fractional shortening (FS%) were observed in hiPSC-CMs and hMSCs groups, relative to the MI group. Although hiPSC-CM showed superior improvement
in cardiac function, no significant difference was observed between hiPSC-CMs and hMSCs groups. All values expressed as Mean ¡ SD (n55). *p,0.05
vs. control; **p,0.05 vs. MI.

doi:10.1371/journal.pone.0116281.g003
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CMs (12.9¡1.1) transplanted group when compared to the MI (31.1¡2.04) or

hMSCs (22.7¡1.6) groups (Fig. 5B). We did not observe any fibrosis in no-MI

group. These results suggest that transplantation of hiPSC-CMs attenuates adverse

cardiac remodeling.

Expression of cardiac markers by engrafted hiPSC-CMs in the

infarct heart

Four weeks following stem cell transplantation, engrafted hiPSC-CMs were

visualized by RFP fluorescence. Immunofluorescence staining revealed that the

engrafted cardiomyocytes expressed a-actinin, myosin heavy chain and connexin-

43 (Fig. 6A–F). This data demonstrates that the engrafted cells were able to

express cardiomyocyte markers including gap junctional marker connexin-43 in

the infarcted heart tissue.

Fig. 4. In vivo tracking of SPIO-labeled hiPSC-CMs and hMSCs in the infarct heart at four weeks
following MI. (A) In vivo images of hiPSC-CMs labeled with SPIO particles. (B) Transaxial T1W FLASH-cine
MR images acquired four weeks following MI using a horizontal bore 9.4T MRI system. The dark, hypodense
regions, indicated by arrows, represent the presence of SPIO-labeled hiPSC-CMs in the LV myocardium of
the athymic nude rats (n53–4). (C) Immunohistochemistry of LV cardiac tissue shows engraftment of RFP
transfected hiPSC-CMs in the infarct heart 4 weeks following MI. Additionally, Merge image shows green
fluorescence in the engrafted hiPSC-CMs labeled with SPIO.

doi:10.1371/journal.pone.0116281.g004
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Discussion

The findings of this study demonstrated that both hiPSC-CMs and hMSCs

therapy significantly enhances the recovery of cardiac function at four weeks

following myocardial infarction, when compared to MI group. The current study

further demonstrated the engraftment of hiPSC-CMs in the infarct heart leading

to decreased cardiac fibrosis and superior improvement in cardiac function when

compared to hMSCs group. The engrafted cells, previously labeled with SPIO

particles were tracked and visualized by cardiac MRI and immunohistology

respectively. Our study showed that hiPSC-derived cardiomyocytes were able to

Fig. 5. Assessment of cardiac fibrosis in the stem cell transplanted heart. (A) Representative images of
Masson-trichrome staining of the heart indicating cardiac fibrosis (blue color) in MI, hMSCs and hiPSC-CMs
groups at 4 weeks following MI. (B) Cardiac fibrosis was significantly attenuated in the hiPSC-CMs group
compared to hMSCs or MI groups. All values expressed as Mean ¡ SD (n53). *p,0.05 vs. MI; **p,0.05 vs.
hMSCs.

doi:10.1371/journal.pone.0116281.g005
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express key cardiac markers, such as a-actinin and the gap junction protein

connexin-43, both in vitro and in vivo, thus demonstrating their progression

towards a functional cardiomyocyte phenotype.

Bone marrow derived mesenchymal stromal cells (MSCs) have shown

improvement in LV function following acute MI [24, 25]. Rose et al demonstrated

that murine MSC’s display plasticity towards cardiomyocyte lineage while

retaining mesenchymal stem cells [26]. In another study, Yannarelli et al showed

that infusion of green fluorescent protein (GFP) MSCs into the murine hearts

after acute MI led to variable degrees of cardiomyocyte reprogramming of MSCs

and majority of cells co-expressed cardiomyocyte and stromal markers [27].

However, MSCs have generally shown a lower engraftment rate in the ischemic

myocardium and their primary beneficial effects appear to be paracrine [28].

Fig. 6. Immunofluorescence imaging of cardiac markers in engrafted hiPSC-CMs at 4 weeks following
MI. (A, B) a-actinin (C, D) Myosin heavy chain (MYH) and (E, F) Connexin-43 (Cx-43) in two regions of LV
myocardium at different magnifications.

doi:10.1371/journal.pone.0116281.g006
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Controversy remains as to whether these MSC’s differentiate into cardiomyocytes

after transplantation in the heart. Therefore, in the present study we used human

inducible pluripotent stem cells derived cardiomyocytes (hiPSC-CMs) to compare

its efficacy with hMSCs in improving the cardiac function and attenuating cardiac

remodeling in an acute MI model.

To date, several groups have investigated the potential effectiveness of using

numerous iPSC derived therapies to attenuate the negative outcomes associated

with post-MI cardiac remodeling. Mauritz et al used iPSC derived cardiovascular

progenitor cells to significantly decrease the end-diastolic and end-systolic

volumes (EDV, ESV) following acute MI [29]. Further, treated animals showed a

significant increase in wall thickness and the percentage of viable myocardium, as

well as a significant decrease in infarct size two weeks following MI [29]. Another

study showed a significant decrease in LV systolic wall thickness at four weeks

following transplantation of iPSC-derived bioengineered myocardium (BM) in a

rat model of myocardial infarction [21]. Implantation of iPSC-derived BM also

attenuated the progression of fibrosis, when compared to untreated (No-MI)

animals. In a similar study Carpenter et al showed efficient cardiac differentiation

of human iPS cells to cardiomyocytes and reduced remodeling of the heart after

ischemic damage [30]. Most recently, it has been shown that transplantation of

human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) cell

sheets improved cardiac function and decreased LV remodeling [31]. Similarly,

our present study demonstrated significant improvement in cardiac function and

decreased cardiac fibrosis in hiPSC-CMs transplanted group, when compared to

MI group.

MRI is one of the non-invasive tools to accurately visualize SPIO-induced

hypointense regions within the LV myocardium, thus allowing tracking of hMSCs

and hiPSC-CMs engraftment in vivo. MR imaging showed engraftment of hiPSC-

CMs in the infarct myocardium. This data was further supported by

Immunohistological staining of cardiac tissues for RFP and cardiac markers. The

hiPSC-CMs were able to engraft and align with native cardiomyocytes in the

infarct heart. Moreover, the engrafted hiPSC-CMs stained positive for mature

cardiomyocyte markers sarcomeric a-actinin, myosin heavy chain and connexin-

43 in the infarct heart. The results from our present study strongly suggest that

hiPSC-CMs transplantation leads to regeneration of infarct myocardium. The

transplanted hiPSC-CMs were positive for connexin-43, indicating electrical

coupling and integration with the native heart. However, further studies are

needed to establish electro-mechanical coupling in vivo by optical mapping

studies which is beyond the scope of the present study. We did not observe any

teratoma formation after hiPSC-CMs transplantation.

On the other hand, adverse cardiac remodeling causes fibroblast proliferation

that replaces dead cardiomyocytes with scar or fibrotic tissue, which results in

heart failure. Our results demonstrated attenuation of cardiac fibrosis in both

hiPSC-CMs and hMSCs groups compared to MI group. However, the hiPSC-CMs

group showed a significant reduction in cardiac fibrosis when compared to hMSC

group. Therefore, we postulate that the attenuation of cardiac fibrosis by hiPSC-
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CMs could be attributed to autocrine and paracrine factors released by the

transplanted cells. Previous studies have attributed the attenuation of cardiac

fibrosis due to paracrine factors released by MSCs [32, 33]. However, the factors

released by hiPSC-CMs compared to hMSCs need further investigation.

Conclusions

In summary, this is the first study to compare hiPSC-CMs with hMSCs therapy

for treating acute MI. Our findings strongly suggest that hiPSC-CMs are equally

potent when compared to hMSCs in improving cardiac function and superior in

attenuating fibrosis. However, the exact mechanism by which hiPSC-CMs

attenuated cardiac fibrosis needs further investigation. Transplanted hiPSC-CMs

integrated with the host myocardium and expressed mature cardiomyocyte

markers indicating electromechanical coupling of engrafted cardiomyocytes. Our

results suggest that hiPSC-CMs may possess cogent autocrine and paracrine

mechanism for treating MI and may have a potential clinical impact in future for

treating patients with acute myocardial infarction.

Supporting Information

S1 Video. Human inducible pluripotent stem cells derived cardiomyocytes were

cultured on gelatin coated plates. Human iPSC-CMs demonstrated spontaneous

beating at one week of culture in regular cell culture plate maintained at 37uC and

5% CO2.

doi:10.1371/journal.pone.0116281.s001 (MOV)
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