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Abstract

Background: Knowledge of HLA haplotypes is helpful in many settings as disease association studies, population
genetics, or hematopoietic stem cell transplantation. Regarding the recruitment of unrelated hematopoietic stem
cell donors, HLA haplotype frequencies of specific populations are used to optimize both donor searches for
individual patients and strategic donor registry planning. However, the estimation of haplotype frequencies from
HLA genotyping data is challenged by the large amount of genotype data, the complex HLA nomenclature, and
the heterogeneous and ambiguous nature of typing records.

Results: To meet these challenges, we have developed the open-source software Hapl-o-Mat. It estimates
haplotype frequencies from population data including an arbitrary number of loci using an expectation-
maximization algorithm. Its key features are the processing of different HLA typing resolutions within a given
population sample and the handling of ambiguities recorded via multiple allele codes or genotype list strings.
Implemented in C++, Hapl-o-Mat facilitates efficient haplotype frequency estimation from large amounts of
genotype data. We demonstrate its accuracy and performance on the basis of artificial and real genotype data.

Conclusions: Hapl-o-Mat is a versatile and efficient software for HLA haplotype frequency estimation. Its capability

of processing various forms of HLA genotype data allows for a straightforward haplotype frequency estimation
from typing records usually found in stem cell donor registries.

Keywords: HLA, Immunogenetics, Population genetics, Bioinformatics, Haplotype, Expectation-maximization
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Background

The use of current high-throughput genotyping tech-
nologies [1-4] provides information on alleles present
at a locus of a diploid individual’s DNA, but not on the
assignment of alleles along the same chromosome
defining a haplotype. Knowledge of haplotypes of indi-
viduals from a population sample is important for infer-
ring population evolutionary history [5]. Besides,
haplotypes are examined in disease association studies
to map patterns of genetic variation to diseases [6, 7].
In the context of unrelated hematopoietic stem cell
transplantation (HSCT), population-specific human
leukocyte antigen (HLA) haplotypes and their respect-
ive frequencies are of particular interest in strategic
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donor registry planning [8—11] and donor searches for
individual patients using HLA matching algorithms
[12-14].

Haplotypes can be inferred using genealogical informa-
tion in families combined with targeted typing [15-17].
However, especially in large-scale studies this approach
might not be feasible, as required information is not avail-
able or its provision is associated with additional costs.
For instance, data as found in registries of unrelated po-
tential HSCT donors generally lack information on family
pedigrees. As an alternative, haplotype frequencies can be
estimated from population-specific genotype data using a
maximum likelihood estimation via an expectation-
maximization (EM) algorithm [18-21].

Estimating HLA haplotype frequencies from potential
HSCT donor registry typing records faces particular
challenges. These challenges include large data sets, the
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complex HLA nomenclature [22], the heterogeneous na-
ture of typing data in donor registries which originates
from genotype data being recorded over extended pe-
riods of time using different strategies for applied typing
resolution and typing profile [23], and genotyping
ambiguities. Genotyping ambiguities result from typing
techniques not being able to identify exactly two poten-
tially different alleles at an individual’s specific HLA
locus. Two types of genotyping ambiguities exist [24]:
allelic and phase ambiguities. The former can occur when
the nucleotide sequence is not completely examined, the
latter when the chromosomal phase between polymor-
phisms cannot be established.

Typing results are recorded using designations assigned
to HLA alleles by the WHO Nomenclature Committee
for Factors of the HLA System [22]. These designations
consist of up to four colon separated fields with digits
which give information on the underlying nucleotide se-
quences. In HSCT, nucleotide sequences of exons encod-
ing peptide and antigen binding domains are of particular
importance [25]. HLA class I (class II) alleles with identi-
cal nucleotide sequences of exons 2 and 3 (exon 2 only)
are summarized as G groups, whereas HLA class I (class
II) alleles with identical amino acid sequences of exons 2
and 3 (exon 2 only) are summarized as P groups [22]. Al-
leles can also be summarized as g groups [26], which are
defined analogous to P groups but include null alleles.
The HLA nomenclature [22] provides HLA codes for P
and G groups but not for g groups.

It has been shown that high-resolution (P group level)
HLA matching is beneficial for transplantation outcome
[27, 28]. The relevance of sequence differences outside
the antigen-recognition domain (exons 2 and 3 for HLA
class I, exon 2 for HLA class II) is still under debate
[29]. A summary of typing resolutions and allele groups
together with their definitions is shown in Table 1.

The National Marrow Donor Program (NMDP) has
developed a broadly used system for reporting typing
ambiguities by the introduction of HLA multiple allele
codes known as NMDP codes [30]. If a typing yields an
allelic ambiguity, all fields in the allele name except the
first one are replaced by a letter code, currently compris-
ing two to five letters, which encodes the possible alleles.
Additionally, some NMDP codes represent alleles of
different allele groups. However, since NMDP codes only
consider information included in the first two fields,
their use leads to a loss of information beyond the
amino acid sequence. Furthermore, as NMDP codes do
not include any phase information, phase ambiguities
are transformed to and recorded as allelic ambiguities.
This introduces new genotypes in addition to the original
genotyping result [24]. An alternative to the NMDP code
system are genotype list (GL) strings [24]. GL strings rep-
resent genotyping results including allelic and phase
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Table 1 Definitions of HLA typing resolutions and allele groups.
For example, HLA alleles whose names share the same first two
fields code for identical amino acid sequence. Hapl-o-Mat is able
to translate between these typing resolutions and groups

Resolution/group Definition
1 field
2 fields

3 fields®

HLA alleles of identical allele group
HLA alleles with identical amino acid sequences

HLA alleles with identical nucleotide sequences
within the coding region

4 fields? HLA alleles with identical nucleotide sequences
within coding and non-coding (introns or 5' or 3'

untranslated) regions

G HLA class | (I) alleles with identical nucleotide
sequences across exons 2 and 3 (2)

P HLA class | (Il) expressed alleles with identical
amino acid sequences across exons 2 and 3 (2)

g HLA class | (Il) expressed and null alleles with
identical amino acid sequences across exons
2 and 3 (2)

®Within the HLA nomenclature, 2 field designations comprise more field
designations if the 2 field designation actually groups more than one allele,
only. If the 2 field designation is already the full length designation, it is used
as equivalent to 3 and 4 field designations in this paper

ambiguities without any coding-induced loss of informa-
tion. P, G, and g groups are multiple allele codes as well.
However, unlike GL strings and NMDP codes that impose
no or virtually no restriction to members of a specific
code, P, G, and g groups are only available as sets of alleles
matching specific criteria (see Table 1).

Although several programs implement the EM algo-
rithm for estimating HLA haplotype frequencies, none
is able to entirely deal with the above mentioned chal-
lenges. One of the first freely available implementations
of the EM algorithm was the software “Haplo” [31]. It
handles incomplete typing data on some individuals
and includes typing data from an individual’s relatives
to complete or partially resolve the genotype. Addition-
ally, it estimates errors on the derived haplotypes using
a jackknife approach or the binomial standard error.
The software “Arlequin” [32] supports different types
of input and output data and includes several methods
for population genetics data studies. It provides the
standard EM algorithm and an extended version, the
EM zipper algorithm, where haplotypes are recon-
structed locus-wise. Furthermore, it supports the esti-
mation of errors on derived haplotype frequencies
using a bootstrap method. However, neither Haplo nor
Arlequin are able to translate between different typing
resolutions or to handle genotyping ambiguities. The
software “Pypop” [33] includes several methods for per-
forming population genetic analyses including the EM
algorithm and focuses on analyses across many popula-
tion data sets. With regard to the challenges found in
potential HSCT donor registry typing records, Pypop
checks HLA alleles in an input population for validity
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and can translate between typing resolutions of alleles but
is currently restricted to a limited selection of possible
translations. It is not capable of handling genotyping am-
biguities. Besides various population genetics methods,
the set of GENE[RATE] [34] programs includes a gene
counting tool claimed to be equivalent to the EM
algorithm to estimate haplotype frequencies. Optionally,
the computation can include deviations from Hardy-
Weinberg equilibrium (HWE) via an inbreeding coeffi-
cient. The tool is able to handle genotyping ambiguities.
However, it does not support NMDP codes or GL strings
but relies on its own syntax. Furthermore, translations of
allelic to other typing resolutions are not supported. All
GENE[RATE] tools are executed online via a web service,
only.

To meet the challenges encountered in HLA haplotype
frequency estimation from typical potential HSCT donor
registry data, we developed the open-source software
Hapl-o-Mat [35]. Hapl-o-Mat computes haplotype fre-
quencies from population samples with arbitrary num-
bers of loci using an EM algorithm. Although it is not
restricted to, it is specifically developed for HLA typing
records (see Table 1). Thus, it has the functionality of
translating between various typing resolutions of a given
HLA gene. The result of an HLA gene typing in a given
resolution can be expressed by its comprised alleles or
by a G, P, or g group [22, 26] or it can be reduced to
fewer fields in the allele name. Thus, typing records can
be transformed to a uniform resolution rendering the
typing resolution of input data for the EM algorithm
homogeneous. The typing resolution is specified per
locus by the user according to his needs. Furthermore,
Hapl-o-Mat checks input data including HLA alleles for
validity and processes genotyping ambiguities recorded
as multiple allele codes (e.g. NMDP codes, G groups) or
GL strings. Finally, its efficient implementation in C++
makes the estimation of haplotype frequencies from
large data sets of up to millions of unphased genotypes
feasible.

In the following, we review the EM algorithm and de-
scribe the implementation aspects Hapl-o-Mat uses to
process genotype data and to estimate haplotype fre-
quencies including translating between typing resolu-
tions, resolving genotyping ambiguities, and initializing
haplotype frequencies. We present Hapl-o-Mat valid-
ation results in terms of accurate haplotype frequency
estimation using artificial data with known haplotype
frequency distribution and comparisons with results pro-
vided by the software Arlequin [32]. Finally, we evaluate
the computational performance of Hapl-o-Mat.

Expectation-maximization algorithm
Haplotype frequencies can be estimated from population
data using an EM algorithm. It computes the most
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probable set of haplotypes explaining the unphased
genotype input data via a maximum likelihood estima-
tion. Starting from arbitrary initial haplotype frequen-
cies, it calculates genotype frequencies under the
assumption of HWE (expectation step). After normaliz-
ing, these genotype frequencies are used to estimate
haplotype frequencies (maximization step). Expectation
and maximization steps are repeated until a stop criter-
ion with predefined value is fulfilled.

The estimated likelihood is maximal within the preci-
sion of the stop criterion. However, the likelihood can
reach multiple local maxima due to the non-linearity of
the EM algorithm. The chance of arriving at a global
maximum can be increased by running the EM
algorithm several times with different initial haplotype
frequencies.

Implementation

The workflow of Hapl-o-Mat is divided into two major
parts. First, Hapl-o-Mat preprocesses the input genotype
data. This step includes resolving genotyping ambiguities
and translating alleles to a uniform resolution per locus.
Second, Hapl-o-Mat computes the most likely set of
haplotypes including their frequencies via the EM algo-
rithm. The workflow is illustrated in Fig. 1.

Data preprocessing

Input data to Hapl-o-Mat is a population sample of
genotype data. The data is read individual by individual
and each multiple-locus genotype (MLG) is split into
one genotype per locus (single-locus genotype (SLG)).
The process of data preparation is exemplarily illustrated
by two examples given in Additional file 1.

Hapl-o-Mat starts processing SLGs by resolving existing
genotyping ambiguities. If the genotyping result was pro-
duced by Sanger sequencing-based typing, the number of
resulting allele combinations can be reduced by applying
an optional ambiguity filter. It only includes allele pairs
that are possible but cannot be distinguished due to impli-
cit ambiguities [36]. Otherwise, alleles are combined via a
Cartesian product over both locus positions.

Next, alleles at the SLG are checked for validity. To
this end, allele designations are compared to a list of all
existing allele designations. This list is a copy of the
allele designations database maintained by the WHO
Nomenclature Committee for Factors of the HLA
System [22] and is simply extracted by running a script
before starting Hapl-o-Mat.

In order to deal with heterogeneous typing data, Hapl-
o-Mat transforms SLGs to a uniform typing resolution.
To this end, Hapl-o-Mat is capable of translating locus-
wise between all typing resolutions and allele groups
listed in Table 1. The translation process is explained in
Additional file 2. If a translation yields several alleles per
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Resolve ambiguities

via ambiguity filter)

Validate allele names
Translate typing
resolutions

Combine resulting alleles
to SLGs

Combine alleles (optionally

Data preprocessing

Haplotype frequency
estimation

Individual multi-locus
genotype

1st single :gfgj genotype Ind SLG 3rd'SLG ainls

Combine SLGs to MLGs

Discard initial genotypes
leading to too many target
MLGs

Construct diplotypes and
haplotypes

Initialize haplotype
frequencies
Expectation step

Maximization step

Fig. 1 Workflow of Hapl-o-Mat. The main process is divided into data preprocessing and estimation of haplotype frequencies via the EM algorithm.
The data preparation is illustrated for one individual MLG, which is split into several SLGs. After all individuals are processed, the estimation of
haplotype frequencies starts. Expectation and maximization steps alternate until the stop criterion is fulfilled

After processing all
individual MLGs

Stop criterion
fulfilled?

l Yes
Final haplotypes
with frequencies

locus position, the alleles are combined via a Cartesian
product over both locus positions.

Referring to the HLA nomenclature, a HLA typing with
more fields contains more information on the underlying
nucleotide sequence. However, translating typing results
to a higher resolution is not associated with an informa-
tion gain, since an expansion always includes all enclosed
allele names equally weighted. On the other hand, trans-
lating to a lower resolution causes an information loss,
due to the exclusion of fields from the allele designation.

After resolving genotyping ambiguities and translating
to a uniform typing resolution, the resulting SLGs are
combined to a set of MLGs using a Cartesian product.

Thus, the original genotype from one individual can
split into several genotypes of the envisaged target reso-
lution. These are weighted by fractions summing up to
one, as an individual actually only carries one genotype.
If the initial genotype splits into a large amount of
target genotypes, corresponding fractions can become
small. As the effect of occasional low-weighted geno-
types in haplotype frequency estimation is negligible
[37, 38] and additional genotypes are computationally
expensive in terms of speed and memory requirements,
Hapl-o-Mat discards genotypes which split into more
target resolution genotypes than a user-defined number
from further analysis.
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Finally, Hapl-o-Mat constructs diplotypes (pairs of
haplotypes) and haplotypes from the resulting genotypes.
These enter the second part of Hapl-o-Mat, the estimation
of haplotype frequencies via the EM algorithm.

Haplotype frequency estimation

Hapl-o-Mat computes the most likely set of haplotype
frequencies accounting for the unphased input genotype
data via an EM algorithm. It supports three different
routines to initialize haplotype frequencies. First, fre-
quencies are set to 1/Ny with Ny being the initial num-
ber of haplotypes. Second, frequencies are initialized
according to numbers of occurrence of the respective
haplotypes. Third, frequencies can be assigned randomly.
The latter approach is implemented as adding a perturb-
ation to frequencies initialized by the second method or
as a completely random initialization. Random numbers
are generated by a Mersenne Twister pseudorandom
number generator [39].

After initialization, expectation and maximization steps
are repeated until the maximal change in haplotype fre-
quency between consecutive estimations is smaller than
the stop criterion, a parameter specified by the user. After
reaching the stop criterion, estimated haplotype frequen-
cies smaller than a user-specified threshold are removed
and, if specified by the user, the remaining haplotype fre-
quencies are normalized. Eventually, inferred haplotypes
with their respective frequencies are saved in an ASCII file
format.

Results and Discussion

We validated Hapl-o-Mat by checking its estimated haplo-
type frequencies for correctness. As translating between
allele resolutions and resolving genotyping ambiguities are
not supported by other software for haplotype frequency
estimation, we followed two approaches. First, we vali-
dated Hapl-o-Mat against artificial HLA population data
including different typing resolutions and genotyping
ambiguities. For such artificial populations haplotype
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frequencies were known per construction. Taking the
complete population data as an input sample, we used
Hapl-o-Mat to resolve genotype data and to reproduce
haplotype frequencies. Second, we compared results
obtained from Hapl-o-Mat to results from the easy to
use and well-established software Arlequin [32]. We
used real samples of typing records from the DKMS
donor center and artificial population data as input for
both implementations. Furthermore, we evaluated the
computational performance of Hapl-o-Mat in general
and in comparison to Arlequin. The target resolution
for all validation experiments are g groups unless noted
otherwise.

For observables to compare haplotype frequencies
and for the construction of artificial populations, see
Methods in Additional file 3. All results are summa-
rized in Table 2.

First population model

The first artificial population was built by combinatorial
construction of genotypes from all possible combina-
tions of the 1,000 most frequent German haplotypes
with replacement, as explained in Additional file 3. The
population was in almost perfect HWE as indicated by
the effect size statistic W, =6.65 x 107®. To check
translations between typing resolutions of Hapl-o-Mat,
we replaced typing results with results in higher typing
resolution including the original typing result, e.g.
each occurrence of C*16:04 was randomly replaced by
C*16:04:01, C*16:04:03, or C*16:04P or left unchanged
as C*16:04. We used Hapl-o-Mat to translate the
modified typing resolutions back to g groups and to
estimate haplotype frequencies. The distance between
estimated and original population haplotype frequen-
cies was d = 1.3 x 10*, the maximal absolute differ-
ence was A =9.04 x 1077, and no relative deviation
larger than 0.05 was found. These results indicated
reproduction of the original population haplotype fre-
quencies. Exact reproduction cannot not expected, as

Table 2 Comparison of haplotype frequencies using distanced, maximal absolute difference between frequencies , and first rank

with a relative deviation larger than 0.05, p

Data Remark d A 0

First artificial population Integer-valued genotype numbers 1.3x107* 9.04 x 1077 None
Integer-valued genotype numbers and NMDP codes 0.1+ 0.02 (4+£1)x1073 14+6

Second artificial population Hapl-o-Mat — Population 0.200 3.1 %1073 1
Arlequin - Population 0.202 3.2x 1073 1
Arlequin — Hapl-o-Mat 0.027 2.2x 107 106

Real genotype data Hapl-o-Mat — Arlequin 0.072 4+ 0.002 (9+2) x 107* 41423

The observables were computed on basis of original and estimated haplotype frequencies. For the first artificial population, where we compared Hapl-o-Mat to
population data, the column “Remark” indicates details of construction. For the other two genotype data sets, it indicates the sets of haplotype frequencies that
are compared to each other, e.g. “Hapl-o-Mat - population” means haplotype frequencies obtained from Hapl-o-Mat were compared to original population

haplotype frequencies
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approximating genotype frequencies by integer num-
bers in the population data escapes floating point
precision.

To validate the estimation of haplotype frequencies
from genotype data including genotyping ambiguities, we
introduced, in a second test, NMDP codes to the genotype
population data. To this end, we randomly replaced 5% of
typing results with NMDP codes. The codes were selected
randomly except for the requirements to include the
original typing and to have appeared in the original real
population data. For example, all alleles typed as
A*31:01 g were replaced with A*31:VSCB, which encodes
A*31:01, A*31:41, and A*31:68 yielding two additional al-
leles (A*31:01 translates to A*31:01 g). Hapl-o-Mat with
its ambiguity filter was used to resolve these ambiguities,
translate the resulting alleles back to g groups, and com-
pute haplotype frequencies. We repeated this procedure
ten times to compute mean and standard deviation of
observables.

Comparison between estimated and original popula-
tion haplotype frequencies showed an average distance
of d=0.11+£0.02, and an average maximal absolute
difference of A = (44 1) x 1073, The average rank for
the first haplotype with a relative deviation larger than
0.05 was p = 14 £ 6. Compared to the first test, these
larger values are explained by the occurrence of NMDP
codes, which introduce additional alleles and thus mask
real alleles. This obscures the identification of haplotypes
by increasing the number of haplotypes not present in
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the original population set (“additional haplotypes”) and
haplotypes only present in the original population set
(“missing haplotypes”). The number of additional haplo-
types is expected to be larger than the number of missing
ones, since an NMDP code replaces only one allele but
can yield several others when decoded. In the ten repeti-
tions of the second test, on average 314 + 98 ((25 =+ 8)%)
haplotypes were “additional” and 50+ 18 ((4+1)%)
“missing”. These haplotypes made the major contribu-
tion to the difference between estimated and popula-
tion haplotype frequencies. Excluding additional and
missing haplotypes from computing the distance
yielded d = 0.028 £ 0.007.

Original population and estimated frequencies are
shown in Fig. 2a. As additional haplotypes have an ori-
ginal population frequency of /s = 0 and missing haplo-
types have an estimated frequency of % = 0, additional
and missing haplotypes are not shown in Fig. 2a or in
further log-log plots to come. Major deviations in haplo-
type frequencies were due to the occurrence of NMDP
codes. If a haplotype included an allele which was
masked by an NMDP code, its estimated frequency was
reduced. If, on the other hand, a haplotype included
additional alleles from an NMDP code, its estimated
frequency increased. Only in few cases the frequency
gain from additional alleles is transferred to haplotypes
already present in the original population data. For this
reason, almost no overestimation of haplotype frequen-
cies (estimated frequency larger than original population

Estimated frequency
=
o

Estimated frequency

= Arlequin
4 Hapl-o-Mat

Population frequency

Fig. 2 Haplotype frequencies from artificial population data. Plot a shows haplotype frequencies estimated via Hapl-o-Mat compared to original
population frequencies from the first population model including genotyping ambiguities. Only one of ten runs is illustrated. Plot b shows a
comparison between original population haplotype frequencies and frequencies estimated via Arlequin and Hapl-o-Mat on basis of the second
population model. Due to the logarithmic scales, both plots neither show additional nor missing haplotypes

107 10"
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frequency) occurs in Fig. 2a. However, the frequency loss
from masked alleles belonging to haplotypes present in
the original population data results in underestimation
as found in Fig. 2a. Haplotypes which did not share al-
leles via NMDP codes only showed minor deviations be-
tween original population and estimated frequencies.

The fact that some estimated haplotype frequencies
have a constant offset with regard to their original popu-
lation frequency follows from sharing alleles found in
the same NMDP code. The frequencies are reduced in
proportion to the number of additional alleles emerging
from the NMDP code. As a consequence, frequencies of
haplotypes including alleles from the same NMDP code
are reduced by the same factor.

Second population model

The second population was built by constructing geno-
types from randomly combining two haplotypes according
to their frequency distribution as explained in Additional
file 3. The effect size statistic averaged over all loci for this
population was W, = 3.0 x 10~ indicating no significant
devation from HWE. We computed haplotype frequencies
from these population data using Arlequin and Hapl-o-
Mat. The estimated and original population haplotype fre-
quencies are shown in Fig. 2b. The corresponding observ-
ables are given in Table 2. Both implementations
performed equally well demonstrating the correct imple-
mentation of Hapl-o-Mat. However, in contrast to the first
population model, deviations between estimated and ori-
ginal population frequencies were much larger both for
Arlequin and Hapl-o-Mat. This resulted from applying
the EM algorithm to data with a large amount of genotype
diversity. As the data consisted of only N = 50,000 indi-
viduals but included 41,489 different genotypes, the EM
algorithm was not able to exactly reproduce the original
population haplotype frequency distribution. For this rea-
son Arlequin and Hapl-o-Mat, both based on the EM al-
gorithm, showed similar deviations between estimated
and original population frequencies as observed in Fig. 2b.

Real data samples

Finally, we estimated haplotype frequencies from real
population data. Ten samples of N = 50,000 individuals
were drawn from N = 1,825,721 individuals of self-
assessed German origin registered with DKMS donor
center and typed for HLA-A, -B, -C, -DRB1, -DQBI,
and -DPB1. We only included typing results translating
unambiguously to 2-field resolution in order to be able
to include Arlequin into analysis. By averaging over ten
samples, we give mean and standard deviation of each
observable. The effect size statistic averaged over all loci
and samples was W, = (2.1 £0.4) x 10~ indicating no
significant deviation from HWE.
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Fig. 3 Comparison of haplotype frequencies estimated via Arlequin
and Hapl-o-Mat from one sample of real population data. Due to
the logarithmic scales, the plot neither shows additional nor
missing haplotypes

Comparing resulting haplotype frequencies between
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magnitude as results from comparing Arlequin to Hapl-
0-Mat on basis of the second artificial population model,
see Table 2, indicating a correct implementation of
Hapl-o-Mat. The similarity of estimated haplotype fre-
quencies is depicted in Fig. 3.
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Table 3 Average runtimes of Arlequin and Hapl-o-Mat for
estimation of haplotype frequencies from real population data

Sample size  Runtime Arlequin [s]  Runtime Hapl-o-Mat [s]  Ratio

5000 242+ 4 10+2 24+5
20000 6617 £ 971 39+4 170 + 30
50000 40539 + 2,383 83+10 488 + 65

Computational performance

We evaluated Hapl-o-Mat in terms of computational
performance by measuring its runtime for different
amounts of input data and different target resolutions.
All computations were performed using a computer run-
ning Ubuntu Linux 14.04.5 with 768 GB RAM (although
this was never exhausted), and 32 Intel® Xeon® CPU E5-
2630 v3 cores at 2.40GHz. However, Hapl-o-Mat does
not make use of parallelism, hence all runtime are in ref-
erence to a single core.

The runtime for estimating haplotype frequencies by
Hapl-o-Mat from N=1,825,721 individuals with self-
assessed German origin was t~11.4h with g groups as
target resolution.

We further drew random subsamples of sizes N =1,
000, N = 5,000, N = 10,000, N = 50,000, and N = 100
,000individuals. For more information on the compos-
ition of these data please refer to Additional file 3. The
sampling process was repeated ten times per sample size
and target resolution to compute average times for run-
ning Hapl-o-Mat. The target resolution was varied be-
tween g, P, and G groups. Hapl-o-Mat was run with
activated normalization, without ambiguity filter, and
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starting from perturbed initial haplotype frequencies.
The runtimes are illustrated in Fig. 4.

In order to compare the performance between
Arlequin and Hapl-o-Mat, we repeated the haplotype
frequency estimation from real population data. We
varied the sample size between N = 5,000, N = 20,
000, and N = 50,000 and similarly included only sam-
ples with unambiguous 2-field translation. Averaging
both implementations over ten runs on the same machine
yielded runtimes as given in Table 3. Especially in the case
of large sample sizes, Hapl-o-Mat was considerably faster
demonstrating its efficient implementation.

We also evaluated Hapl-o-Mat’s abilities to cope with
the heterogeneous and ambiguous nature of typing re-
cords. We recorded runtime and memory usage on the
machine described above as we varied the share of
NMDP codes we introduced in the genotype population
data for the first population model in the same manner
as described above for a varying fraction of masked al-
leles from 2.5% to 50%. Hapl-o-Mat with its ambiguity
filter was used to resolve these ambiguities, translate
the resulting alleles back to g groups, and compute
haplotype frequencies. We repeated this procedure ten
times to compute mean and standard deviation of
memory usages and runtimes. The results are visualized
in Fig. 5.

Conclusions

We have presented Hapl-o-Mat, an open-source software
for HLA haplotype frequency estimation. It is the first
publically available software that meets the challenges en-
countered in hematopoietic stem cell donor registry data.
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It supports translations between typing resolutions, is
capable of resolving genotyping ambiguities, and handles
large-scale HLA genotype data, due to its efficient imple-
mentation in C++. Its conjunction of data preprocessing
and EM algorithm in one software offers a straightforward
way of haplotype frequency estimation from HLA popula-
tion data.
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