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Abstract. The ability to predict subcutaneous (SC) absorption rate and tissue distribution of therapeutic
proteins (TPs) using a bottom-up approach is highly desirable early in the drug development process
prior to clinical data being available. A whole-body physiologically based pharmacokinetic (PBPK)
model, requiring only a few drug parameters, to predict plasma and interstitial fluid concentrations of TPs
in humans after intravenous and subcutaneous dosing has been developed. Movement of TPs between
vascular and interstitial spaces was described by considering both convection and diffusion processes
using a 2-pore framework. The model was optimised using a variety of literature sources, such as tissue
lymph/plasma concentration ratios in humans and animals, information on the percentage of dose
absorbed following SC dosing via lymph in animals and data showing loss of radiolabelled IgG from the
SC dosing site in humans. The resultant model was used to predict tmax and plasma concentration profiles
for 12 TPs (molecular weight 8–150 kDa) following SC dosing. The predicted plasma concentration
profiles were generally comparable to observed data. tmax was predicted within 3-fold of reported values,
with one third of the predictions within 0.8–1.25-fold. There was no systematic bias in simulated Cmax

values, although a general trend for underprediction of tmax was observed. No clear trend between
prediction accuracy of tmax and TP isoelectric point or molecular size was apparent. The mechanistic
whole-body PBPK model described here can be applied to predict absorption rate of TPs into blood and
movement into target tissues following SC dosing.
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INTRODUCTION

Therapeutic proteins (TPs) have been used clinically for
many years (e.g. insulin, erythropoietin (EPO), growth
hormone), and with the more recent development of mono-
clonal antibodies (mAbs), fusion proteins, antibody-drug
conjugates, etc. represent a fast-growing sector of pharma-
ceutical development (1,2). Subcutaneous (SC) dosing is a
common administration route for TPs, which cannot usually
be given orally due to their poor bioavailability (3,4).

SC dosing delivers drugs into the interstitial space of the
hypodermis, located between the skin and the muscle. The
thickness and structure of the hypodermis varies between
species and also with body location (5). The interstitial space
is the area between the capillary endothelial cells and the
tissue cells themselves (6). There have been several reviews
of the structure of the interstitial space and the transport of

proteins from the interstitium into the blood and lymph (5–9);
therefore, only brief details will be given here. The intersti-
tium is filled with extracellular matrix, comprised mainly of
collagen, elastin and glycosaminoglycans. Together these
elements give the interstitial fluid a gel-like consistency and
a net negative charge, which influences drug distribution and
transport at the administration site (5). From the interstitial
space, drugs can gain access to the systemic circulation by
either direct diffusion/transport across the endothelial cells
into capillaries or by movement with the convective flow of
interstitial fluid into the lymphatic vessels, which eventually
drain into the blood.

Due to their size and polarity, TPs have limited direct
diffusion across endothelial cell membranes and movement to
the blood occurs mainly via diffusion and convection through
pores in the endothelial wall, which is limited by protein size
(6,7,10). For large TPs, a substantial portion of absorption into
the systemic circulation following SC administration occurs via
the lymphatic system (11–14). Supersaxo et al. (13) showed a
positive correlation between increasing protein size and the
contribution of lymphatic absorption following SC dosing in
sheep (11–14). As lymph flow is much slower than blood flow
from the tissues (7), absorption via the lymphatics is likely to
contribute to the late maximum concentration (Cmax) observed
following SC administration of many TPs (7,12,14).
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Several pharmacokinetic (PK) models have been con-
structed to describe/predict the rate and extent of SC
absorption of TPs; these have been reviewed recently (15).
The vast majority of these models are empirical in nature and
require fitting of clinical data to parameterise the models,
hindering the prediction of SC absorption in early drug
development when such data are unavailable. In addition, the
accuracy of the prediction of SC absorption and bioavailabil-
ity using allometry of animal data is inadequate (5). Ibrahim
et al. (11) presented a PK model for dermal clearance, where
lymph and blood absorption of free and protein-bound
solutes was described based on the 2-pore hypothesis. The
model predicted blood capillary permeability and percentage
of dose absorbed through the lymph for a variety of solutes
with good accuracy and precision relative to the observed
clinical data (11). However, this model was not linked to a PK
model describing drug disposition in the rest of the body.
Therefore, the model predictions for absorption could not be
compared to clinical data for Cmax and time of Cmax (tmax). In
addition, the dermal clearance model could not account for
the return of drug to the interstitial fluid at the SC site via
recirculation which is known to be an important factor in
interpretation of experimental data (15). A whole-body
physiologically based PK (PBPK) model incorporating the
SC dosing site as part of the skin was reported recently (16).
This model accounted for the recirculation of TP to the SC
site and allowed prediction of Cmax and tmax. However, the
movement of protein was based solely on lymphatic transport
and hence the model may not be suitable for smaller TPs
where direct absorption of drug into blood at the SC site may
be an important absorption route (13).

In the current study, a whole-body PBPK model has
been developed to mechanistically predict the rate of SC
absorption and plasma and interstitial fluid concentrations
of TPs in humans. The model requires a limited number of
drug parameters which makes it suitable even at the early
stage of drug development. The model predicts the TP
absorption rate and tissue distribution based upon the
molecular size of the protein using a 2-pore framework
(10,17,18). A limitation of the model is that at the moment,
bioavailability cannot be predicted mechanistically from
in vitro data, so an empirical estimate of bioavailability is
needed. The prediction accuracy of tissue distribution at
steady state, plasma concentration profiles and tmax follow-
ing SC dosing of TPs, including both small TPs and mAbs,
using the PBPK model is presented.

MATERIALS AND METHODS

Structure of the PBPK Model

A human whole-body PBPK model was developed and
implemented in the Simcyp Simulator (V14 R1, Simcyp,
Sheffield, UK). The model contains 11 tissues, each being
described by two compartments, representing vascular and
interstitial spaces (Fig. 1). This tissue structure was also used
to represent the SC dosing site. In addition to the flow of
blood to and from each organ, the flow of lymph from
individual tissues is accounted for. The lymph flow from each
tissue in the PBPK model is collected into a single compart-
ment (central lymph), and from here, the total lymph flow is

returned to the venous circulation, maintaining fluid balance
(Fig. 1). The differential equations used to describe the
movement of TP in the PBPK model are shown below (Eqs. 1
to 5).

Vvorg � dCv;org

dt
¼ Qorg � Cab

� �
− Qorg−Lorg

� �
� Cv;org− Lorg

� 1−σav;org
� �� Cv;org− PSs;org � Pes;org

ePes;org−1
þ PSl;org � Pel;org

ePel;org−1

� �

� Cv;org−Ci;org
� � ð1Þ

where the subscript org indicates the organ (adipose, bone,
brain, gut, heart, lung, muscle, pancreas, skin, spleen and
SC site) and Vvorg, Cv,org, Qorg, Cab, Lorg, σav,org, PSs,org,
PSl,org, Pes,org, Pel,org and Ci,org are the vascular space
volume, vascular space concentration, blood flow, concen-
tration in arterial blood, lymph flow, average vascular
reflection coefficient, permeability surface area product
(PS) through small pores, PS through large pores, small
pore peclet number, large pore peclet number and inter-
stitial fluid concentration, respectively. For the lung, Qorg

represents the entire cardiac output. σav,org takes into
account the fractional total hydraulic conductance
accounted for by small and large pores and the osmotic
reflection coefficient for small and large pores in a given
organ (10).

V i;org � dCi;org

dt
¼ Lorg � 1−σav;org

� �� Cv;org

þ PSs;org � Pes;org
ePes;org−1

þ PSl;org � Pel;org
ePel;org−1

� �
� Cv;org−Ci;org
� �

− Lorg � 1−σL;org
� �� Ci; org ð2Þ

where Vi,org and σL,org are the interstitial space volume and
lymph reflection coefficient, respectively.

VLN � dCLN

dt
¼
X
tissues

Lorg � 1−σL;org
� �� Ci;org

� �
− Ltotal � CLN

ð3Þ

where VLN, CLN and Ltotal are the central lymph
compartment volume, the central lymph compartment
concentration and total lymph flow (the sum of Lorg for
all tissues), respectively. The summation here is for all
tissues.

Vvb � dCvb

dt
¼

X
tissues

Qorg−Lorg

� �
� Cv;org

 !
−QC � Cvb þ Ltotal � CLN

ð4Þ

where Vvb, Cvb and Qc are the venous blood volume,
concentration in venous blood and cardiac output, respec-
tively. The summation here is for all tissues except lung,
spleen, gut and pancreas.
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Vab � dCab

dt
¼ Qc−Llung
� �� Cv;lung− Qc−Llung

� �� Cab−
CLp

BP
� Cab

ð5Þ

where Vab, Llung, Cv,lung, BP and CLp are the arterial blood
volume, lung lymph flow, lung vascular space concentration,
blood/plasma concentration ratio and plasma clearance,
respectively. Here, flow balance has been imposed, i.e. the
flow into the arterial blood equals to the flow out of this
compartment.

Some alterations to Eq. 1 were required for the liver
vascular space, as detailed in Eq. 6.

Vvliver � dCv;liver

dt
¼ Qliver � Cabð Þ þ Qgut−Lgut

� �
� Cv;gut þ Qspleen−Lspleen

� �

� Cv;spleen þ Qpancreas−Lpancreas

� �
� Cv;pancreas

− Qgut−Lgut

� �
þ Qspleen−Lspleen

� �
þ Qpancreas−Lpancreas

� �
þ Qliver−Lliverð Þ

� �

� Cv;liver− Lliver � 1−σav;liver
� �� Cv;liver

− PSs;liver � Pes;liver
ePes;liver−1

þ PSl;liver � Pel;liver
ePel;liver−1

� �
� Cv;liver−Ci;liver
� � ð6Þ

where Vvliver, Cv,liver, Qliver, Qgut, Lgut, Cv,gut, Qspleen, Lspleen,
Cv,spleen, Qpancreas, Lpancreas, Cv,pancreas, Lliver, σav,liver, PSs,liver,
Pes,liver, PSl,liver, Pel,liver and Ci,liver, are the liver vascular
space volume, liver vascular space concentration, hepatic
artery blood flow, gut blood flow, gut lymph flow, gut vascular
space concentration, spleen blood flow, spleen lymph flow,

spleen vascular space concentration, pancreas blood flow,
pancreas lymph flow, pancreas vascular space concentration,
liver lymph flow, liver average vascular reflection coefficient,
liver PS through small pores, liver small pore peclet number,
liver PS through large pores, liver large pore peclet number
and liver interstitial fluid concentration, respectively. Qliver

represents 19% of cardiac output (19).
SC dose was described as a bolus input to the

interstitial compartment of the SC dosing site. The initial
concentration for the SC interstitial space is defined as
(dose×F)/Vint,SC site, where F is the bioavailability. For all
the other compartments in the PBPK model, the initial
concentration is 0.

System Parameters

System parameters were taken from a population
representative Sim-Healthy Volunteer simulation in the
Simcyp Simulator V14R1. Values for whole organ volume,
fraction of vascular space, fraction of extracellular water and
blood flow to each tissue are given in Table I; these
parameters are the same as those used for modelling of small
molecule drugs in Simcyp (20,21). The body weight and
cardiac output were 80.7 kg and 356 L/h, respectively. The
remaining blood flow, lymph flow and body volume were
assigned to a ‘bypass’ compartment to ensure mass balance.
The interstitial space, venous blood and arterial blood
volumes are calculated from Eqs. 7 to 9.

V i;org ¼ total organ volume � FEWð Þ – Vvorg ð7Þ

Fig. 1. Structure of the permeability limited tissue model incorporated into the whole-body PBPK model for therapeutic proteins. Solid red and
blue lines represent arterial and venous blood flow; dashed black lines represent lymph flow. LN, L, Q, PS and σ represent central lymph,
lymph flow, blood flow, permeability surface area product and reflection coefficient, respectively
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where FEW is the fraction of extracellular water in the tissue.

Vvb ¼ total blood volume−
X

tissues
Vvorg

� �
� 2

3
ð8Þ

Vab ¼ total blood volume −
X

tissues
Vvorg

� �
� 1

3
ð9Þ

Lymph flow to each tissue and total lymph flow data for
humans were collated from the literature where possible. Due
to reabsorption of fluid in the lymph nodes, the lymph flow
measured in the thoracic duct or other sites that are distal to
the lymph nodes may give a lower value of fluid flow than
that which drains from the interstitial spaces of the tissues (6).
In the PBPK model, it was assumed that lymph node fluid
reabsorption is negligible, and therefore, the estimate of total
lymph flow (0.00386 L/h/kg) reflects the summation of the
flow of fluid from the blood into the interstitial space of all of
the tissues combined. The percentage of total lymph flow
returning from each individual tissue is detailed in Table I.
Estimates were based on data collated from the literature for
humans or allometrically scaled from animals. Where a range
of values were found, a weighted mean value was chosen. The
spleen and bone do not have lymph vessels exiting the tissue,
and so lymph flow was set to 0 L/h (6,22–25).

The time course of protein in spleen and bonewasmodelled
using parameters that ensure rapid equilibration between the
vascular and interstitial spaces (PSs,org and PSl,org = 0.1, and
Pes,org/e

Pes,org−1 and Pel,org/e
Pel,org−1 = 1) and hence operate

similar to well stirred compartments.
Movement of TPs between the vascular and interstitial

spaces is described mechanistically by considering convection
and diffusion processes using a 2-pore model (6,10). This

model assumes that the endothelial membrane contains pores
allowing the flow of fluid and proteins between the vascular
and interstitial spaces. The pores in the endothelial mem-
brane are considered to be of two discrete sizes; large and
small pores. For each tissue, the pore sizes and the relative
frequency of the large and small pores were defined by
collation of data from the literature where available and
manual optimisation when the values were not available
(see the Model Validation section). Optimisation was per-
formed by fixing the tissue volumes and blood and lymph
flows and manually adjusting the pore sizes and relative
frequency of the large and small pores by trial and error until
the predicted concentration ratio of protein in plasma, and
the lymph was comparable to observed data. The pore radii
and the ratio of small pores to large pores in each tissue are
given in Table I.

Drug-Specific Parameters

The assumptions and derivation of the 2-pore model
have been detailed extensively in previous publications, and
interested readers are referred to the following references
(6,10). Briefly, this model describes the convection and
diffusion of proteins through the pores in the endothelial
membrane based on the radius of the pore relative to the
hydrodynamic radius (Rs) of the TP. If the TP is large
compared to the pore (Rs>radius of the pore), then there will
be no movement of the TP through that particular set of
pores. The methods used to calculate values of σav, PSs, PSl,
Pes and Pel in each of the tissues are detailed in references
(6,10). The Rs of each TP was calculated from molecular
weight using Simcyp V14 R1. The movement of TP from
interstitial space into lymph is not considered to be restrictive
and therefore σL is set to 0 for all tissues and TPs. Binding is
not considered within the lymphatics of the PBPK model.

Table I. System Parameters used in the Whole-Body PBPK Model for Describing the Pharmacokinetics of Therapeutic Proteins

Tissue
Whole organ
volume (L)

Fraction of
vascular space

Fraction of
extracellular
water

% cardiac
output

% total
lymph flow

Small pore
radius (nm)

Large pore
radius (nm)

Small pore/
large pore

Adipose 22.7 0.031 0.141 5.00 12.8 7.0b 20a 500a

Bone 3.95 0.05 0.098 5.00 0.00 9.0a 33b 46a

Brain 1.34 0.05 0.092 12.0 1.05 0.6b 18 20,000,000b

Gut 1.22 0.05 0.267 15.0 12.0 4.8 25b 500a

Heart 0.359 0.042 0.313 4.00 1.00 4.8 25 400b

Kidney 0.325 0.07 0.283 19.0 8.50 7.4 20 200b

Liver 1.61 0.05 0.165 25.5 33.0 9.0 33 46
Lung 0.547 0.185 0.348 100 3.00 9.0b 25b 45b

Muscle 31.3 0.027 0.091 17.0 16.0 4.5 22 2000b

Pancreas 0.123 0.05 0.12 0.0100 0.30 6.0a 20a 3610a

Skin 3.15 0.05 0.623 5.00 7.30 6.0a 20a 500a

Spleen 0.150 0.05 0.208 0.0200 0.00 9.0a 33a 46a

SC site 0.005 0.05 0.623 0.0160 0.0392 5.0a 20a 500a

Arterial blood 1.16
Venous blood 2.33
Central lymph 0.312

System parameters based on the Population Representative Sim-Healthy Volunteer in the Simcyp Simulator V14R1. Whole organ volume,
fraction of vascular space, fraction of extracellular water and blood flow to each tissue (20,21); full references for lymph flow, pore sizes and
large pore/small pore values (prior to optimisation) can be found in the Supplemental Material
aNo observed data available, values optimised to recover observed lymph/plasma concentration data
bObserved values optimised to recover observed lymph/plasma concentration data
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Model Validation

Full PBPK Model

Plasma (Cp) and tissue Ci concentrations at steady state
were simulated for theoretical TPs covering a range of Rs
(1–11 nm). CLp was set to zero to ensure steady-state
concentrations were achieved in all compartments of the
PBPK model during the simulations. The simulated Ci/Cp
ratios were compared with literature values of lymph/plasma
concentration ratios from a variety of proteins for tissues in
humans and experimental animals, with the assumption that
lymph concentrations exiting tissues are a measurable
surrogate of Ci at steady state (26) (references for the
collated literature values are given in the Supplemental
Material).

Development of the SC Site Model

Physiological parameters for a 5 mL volume were used to
model the SC dosing site. The interstitial volume for the dosing
site in the model was 3 mL, estimated using data for the
diameter of the SC depot of radiolabelled IgGor albumin in skin
with the assumption that the dose is confined to the interstitial
fluid immediately following injection (Table II) (27–30).

Observed data for the rate of radiolabelled IgG (28–30)
loss from the SC dosing site were used to determine the
lymph flow needed for the SC site. The lymph flow exiting the
SC site was calculated under the assumption that IgG is too
large to diffuse through endothelial pores; hence, all loss from
the SC site is via lymph drainage, and there is no restriction to
IgG entering the lymphatic system. Transcytosis of IgG via
binding to the neonatal Fc receptor (FcRn) in the endothelial
cells was not considered as it provides a minimal route of
absorption (14,31), see Discussion section for more details.
Lymph flow was calculated for each individual study using
Eq. 10 (28–30) and the reported rate (K) and SC depot
volume data calculated previously (Table II). The average
fractional rate of loss for IgG was 0.0009725 min−1, providing
an average SC site lymph flow of 0.00225 mL/min.

K for IgG loss from SC site ¼ SC site lymph flow
Volume of SC depot

ð10Þ

Cp and Ci concentrations at steady state were simulated
for theoretical TPs with Rs of 1–11 nm and compared with

literature values of lymph/plasma ratios for the SC site in
humans and experimental animals to ensure that use of the
pore radii and ratio of small/large pores for the skin were also
suitable for the SC site. CLp was set to 0 for the theoretical
TPs. The model was optimised using percentage of dose
absorbed in the lymph data reported for sheep (13).
Unfortunately, such data from humans are lacking in the
literature. Data from sheep were considered to give a more
representative description of the percentage of dose absorbed
in the lymph than data reported for scruff species such as rats
and mice. This is because the structure of the SC tissue is
markedly different in scruff species compared to higher
mammals (5). Final model parameters are shown in Table I.

Model Application

The model was then used to predict tmax and plasma
concentration profiles for 12 TPs (MW 8–150 kDa) following
SC dosing. The input parameters for each simulation are
given in Table I of the Supplemental Material. Observed
bioavailability and intravenous clearance values for each TP
were collated from the literature. Where intravenous clear-
ance data were unavailable, the values were determined using
the parameter estimation facility in the Simcyp Simulator.
The simulation results were compared with observed data
from the literature. The observed concentration data were
digitised using GetData graph digitiser version 2.22 (GetData
Graph Digitizer, 2012, http://getdata-graph-digitizer.com/).
Prediction accuracy for tmax was assessed using a measure of
fold error. In addition, simulated Cmax values were compared
to observed values using the same method. Correlations
between prediction accuracy of Cmax or tmax and TP size were
assessed. In addition, the relationship between prediction
accuracy of Cmax or tmax and TP isoelectric point (pI) was
investigated.

Sensitivity Analysis

Manual sensitivity analysis was performed to assess the
impact of lymph flow on the tmax in the interstitial space and
the steady-state Ci/Cp ratios. Hypothetical proteins with Rs
of 1–7 nm were simulated with CLp set to 0 L/h and with the
dose administered as a bolus into the venous blood compart-
ment. The total lymph flow was varied between 0.1- and 10-
fold of the standard value.

Table II. Calculation of Lymph Flow and Interstitial Volume at the SC Site from Observed Radiolabelled IgG and Albumin Data Following
SC Dosing

Protein
Number of
subjects

Diameter
(cm)

Radius
(cm)

Volume
(mL)a

K
(%/min)

Lymph flow
(mL/min)

Dosing
site Reference

Albumin 15 2.2 1.1 5.58b NR NR Arm (27)
IgG 8 1.41 0.71 1.47 0.157 0.00230 Hand (28)
IgG 14 1.70 0.85 2.57 0.093 0.00239 Forearm (29)
IgG 10 1.60 0.80 2.14 0.095 0.00204 Hand (29)

Weighted mean values 3.25 0.110 0.00226

NR not reported, K drainage rate constant of IgG injected into SC tissue
aVolume calculated assuming IgG dose distributes into a spherical volume
bCalculated from a diffusion area of 3.8 cm2 , assuming the area was for a circle
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RESULTS

Model Validation

Predicted and observed Ci/Cp ratios for each tissue are
shown in Fig. 2; the bone, pancreas and spleen are not
presented due to a lack of observed data in the literature. No
obvious or systematic differences in observed Ci/Cp ratios
were noted when data in experimental animals and humans
(where available) were compared, so the entire experimental
data set is presented. The predicted Ci/Cp ratios were similar
to the observed data, showing that the model predicted
protein distribution into the interstitial space well. For
example, for a TP with radius of 3.55 nm (equivalent to
albumin), the predicted Ci/Cp ratio was 0.87 for the liver,
compared to Ci/Cp ratios of 0.78–1.00 reported in vivo (26).

Development of the SC Site Model

Observed data for the percentage of radiolabelled IgG
dose remaining at the SC injection site over time (28–30)
were plotted against the simulated data for a TP with
hydrodynamic radius of 5 nm (Fig. 3a). The predicted Ci/Cp
ratios for the SC site were comparable to the observed values
collated from the literature (26,32–34), as shown in Fig. 3b.

Therefore, the pore radii and ratio of small/large pores for the
skin were suitable for the SC site. The predicted percentage
of dose absorbed through the lymph for proteins with a range
of sizes compared to values from sheep (13) are shown in
Fig. 3c.

Model Application

The dataset of observed concentration profiles following
SC dosing contained 54 studies/dose levels, with up to 14 sets
of observed data per TP. Simulated plasma concentration
profiles following SC dosing for the included TPs were
generally similar to observed data (Fig. 4, linear plots are
shown in Supplemental Material Fig. 1). The prediction
accuracy of Cmax and tmax for the complete dataset and
summary statistics are presented in Table III. Simulated Cmax

was within 3.1-fold of observed values, with approximately
half (46%) of the simulated Cmax values falling within 0.8–
1.25-fold of the observed values. A third (31%) of tmax

predictions were within 0.8–1.25-fold of observed values, with
all predictions falling within 3.3-fold. There was no systematic
bias for over or underprediction of Cmax, although a general
trend for underprediction of tmax was apparent (Fig. 5). The
extent of the tmax underprediction did not correlate with the
molecular size of the TP (Fig. 5b). For TPs with molecular

Fig. 2. Predicted and observed Ci/Cp ratios for proteins with a range of hydrodynamic radii. a Adipose, b brain, c gut, d heart, e kidney, f liver,
g lung, h muscle and i skin. Blue diamonds indicate observed data [References in Supplemental Material]; Red line denotes predicted data
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sizes <150 kDa, tmax was generally predicted within 0.30- and
2.9-fold of observed values, similarly for mAbs (molecular
weight ~150 kDa), the tmax was predicted within 0.44- and 1.2-
fold of observed values (Fig. 5b). In addition, no clear trend
between prediction accuracy of Cmax or tmax and TP pI was
apparent (Fig. 5c, d).

DISCUSSION

In the current study, a whole-body PBPK model has been
developed to describe the tissue distribution and SC absorption
rate of TPs. Movement of TPs within the model is based on the
2-pore hypothesis (10), with hydrodynamic radius being the only
drug-specific parameter used to predict the rate of absorption
and the extent of tissue distribution. Use of the 2-pore model
will have minimal impact for the prediction of mAb distribution
compared to previously published models where distribution is
described by convection alone. For smaller TPs, where diffusion
through endothelial pores may have a larger contribution to

distribution, this model potentially offers an advantage over
PBPK models considering only convective movement. In
addition to the usual physiological data required for PBPK
models (organ weights, blood flows etc.), lymph flow and pore
sizes in each tissue were needed to describe the disposition of
TPs. Obtaining accurate estimates of lymph flow from different
organs in humans is challenging as the clinical measurement of
lymph flow is an invasive procedure and as such is not usually
conducted in healthy individuals. Obtaining reliable estimates of
lymphatic flow is also difficult because lymph cannulation may
lead to changes in flow, making it difficult to get an estimate of
the unperturbed lymph flow (62). In the model developed here,
we used physiological estimates of lymph flow for the different
tissues. Unsurprisingly, when used in the context of the PBPK
model, these lymph flow values in addition to the optimised pore
sizes were suitable to accurately capture the steady-state tissue
lymph/plasma concentration ratios of TPs with a large size range
(Fig. 2). Sensitivity analysis showed that the steady-state lymph/
plasma concentration ratios were not sensitive to individual
tissue lymph flows, whereas interstitial fluid tmax was
(Supplemental Material Figures 2–3). Although most of the
observed lymph/plasma concentration ratio data are taken from
animals for those proteins where human data are also available,
large interspecies differences are not evident, indicating that the
animal data may be suitable to use for model development and
validation where human data are lacking.

The SC site part of the model was also developed using
experimental data to determine suitable physiological values
for the lymph flow, interstitial volume and endothelial pore
radii. The resulting model could reasonably predict the
systemic tmax for a wide range of TPs, with one third of the
predicted values falling within 0.8–1.25-fold of observed
values. Half the simulated Cmax values were within 0.8–1.25-
fold of observed values. The reasonable prediction of Cmax is
unsurprising as it is not only dependent on the absorption
rate but also on bioavailability, which was used as an input
parameter to the model. A previous dermal clearance model,
also based on the 2-pore hypothesis, used similar values for
the radii of small and large pores; 5 and 25 nm, respectively
(11), compared to the values used here (5 and 20 nm). The
lymph rate values used in the two models were also similar
(8 and 18×10−6/s). Previously published models describing SC
absorption of proteins incorporating both lymph and blood
absorption rates have generally not accounted for the
redistribution of TP from the systemic circulation (35,36)
but instead have modelled the SC compartment as an
absorption site only. However, extra-vascular distribution of
TPs is known to be important; for instance; absorbed
trastuzumab molecules have been estimated to circulate
through the lymphatic system four to five times on average
prior to elimination (63). A recent model accounting for
redistribution of TP into the SC site interstitial fluid did not
incorporate direct blood absorption (16). An advantage of the
current model is that it accounts for potential subsequent
redistribution of TP into the interstitial fluid at the SC site
following absorption and circulation in the blood, which is a
closer representation of the processes that occur in vivo. In
addition, the model developed here considers direct blood
absorption at the SC site, which may be important for smaller
TPs (13), and hence should give a more realistic description
of SC absorption rate.

Fig. 3. a Predicted and observed percentage of radiolabelled IgG
dose remaining at the dosing site following bolus SC dosing; Red line
denotes predicted data; Blue diamonds indicate observed data
(28–30). b Predicted and observed Ci/Cp ratios for the SC site; Red
line denotes predicted data; Blue diamonds indicate observed data
(26,32–34). c Predicted and observed percentage of dose absorbed
through the lymph for proteins of varying sizes;Red line denotes predicted
data; Blue diamonds indicate observed data from sheep (13,35,36)
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The diffusion rate through the interstitial space is dictated by
molecular size and physical and electrostatic interaction with the
various components of the interstitium (e.g. collagen and glycos-
aminoglycans) (7,12,64). Decreased distribution at the SC injection
site and increased electrostatic interactions are expected for TPs
with a positive charge at neutral pH (5,35,65). Several studies have
shown delayed SC absorption of positively charged compounds
compared to negatively charged molecules of the same molecular
size (65,66) and reduced SC bioavailability of mAbs with higher pI
values (67). Prediction accuracy of TPCmax and tmax was compared
with pI for the current dataset; however, no correlation was

apparent between the accuracy of predictions and the pI of the TPs
(Fig. 5). Unfortunately, the majority of TPs used covered a limited
range of pI (5.2 to 8.8), with the exception of IL-11 (pI=11.2).
Therefore, it cannot be confirmed from this analysis if charge has
an important influence onTP distribution and absorption rate from
the SC site; however, it does not appear to be the main/only cause
of the poor prediction of tmax for certain TPs. Similarly, Mach et al.
(68) suggested that electrostatic interactions are unlikely to have a
major influence on mAb absorption rate and bioavailability unless
they have a significantly positive charge and are administered at
low concentrations. In addition, ex vivo studies have shown that

Fig. 4. Predicted and observed plasma concentrations for TPs following SC dosing.
a IGF-1; b, c IL-2; d Anakinra; e, f IL-10; g IL-11; h, i hGH; j, k EPO; l Albumin;
m Tralokinumab; n Etanercept; o Omalizumab. Symbols represent observed data; lines
represent predicted data. a: blue, open diamond, green, purple and red symbols/lines=40,
40, 50, 80 and 100 μg/kg doses (37–39); b: black and purple symbols/lines=0.03 and
0.06 mg/m2 doses (40); c: blue, green and red symbols/lines=3, 3.75 and 4.5 mg doses (41);
d: blue symbols/line=100 mg dose (42); e: olive green, purple, grey, blue and green
symbols/lines=1, 2.5, 5, 8 and 10 μg/kg doses (43,45); f: red, green and black symbols/
lines=1.75 mg, 25 and 50 μg/kg doses (44,45); g: green, blue, red and purple symbols/
lines=3, 10, 25 and 50 μg/kg doses (46); h: blue, green and red symbols/lines=600, 1200
and 1800 mIU doses (47); i: red and blue symbols/lines=1.3 mg/m2 and 0.033 mg/kg doses
(48,49); j: purple, black, red, grey, blue, green and open diamond symbols/lines=0.188,
0.313, 0.375, 0.625, 0.938, 1.88 and 1.88 μg/kg doses (50–53); k: green, red, grey, blue,
purple, orange and black symbols/lines=2.81, 3.75, 5.63, 7.50, 8.44, 11.3 and 15 μg/kg
doses (50); l: blue symbols/line=100% of dose (27); m: green and red symbols/lines=150
and 300 mg doses (54); n: red, green and blue symbols/lines=10, 25 and 50 mg doses (55–
58); o: green and blue symbols/lines=150 and 300 mg doses (59)
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interactions with other charged formulation excipients can prevent
marked electrostatic interaction between the TP and the SC tissue
(68). For in-depth discussion of the impact of TP chemistry and
formulation impacts on SC absorption, please see Kinunnen et al.
(65).

The site and depth of SC injection can also influence
the local distribution and hence absorption of TPs (12,69–
72). The extent of absorption is generally similar between
dosing sites, but the rate of absorption may vary (5). For
example, following SC administration of 1 mg/kg rituxi-
mab to the foot or back of rats, tmax was 12 h and
4.6 days, respectively, whereas bioavailability was ~70%
for both administration sites (72). In contrast, no marked
differences in the exposure and bioavailability of
golimumab were apparent following SC administration in
the upper thigh, arm or abdomen of healthy adults (73).
Regional differences in blood and/or lymph flow are
thought to contribute to this site-specific variation in
absorption rate (12,71). In addition, exercise, heating and
rubbing increase local lymph flow rate (5,74,75) and hence
may affect distribution rate, tmax and bioavailability. Other
factors can also influence SC absorption and bioavailabil-
ity of TPs, including those related to the formulation
(pH, viscosity, osmolality, aggregation, excipients), admin-
istration (dose level, volume) and patient (disease)
(5,12,50,65,68,72,73). Unfortunately, information relating
to formulations, dose site and volumes and patient
temperature/movement were generally unavailable for the
studies used to supply the observed data herein.

Therefore the impact of these factors on prediction of
SC absorption rate using the PBPK model could not be
investigated.

In this study, a PBPK model was developed to
incorporate physiological data and aid mechanistic under-
standing and prediction of the rate of SC absorption.
However, a general trend for underprediction of tmax was
observed when using the PBPK model. Lag times of up to
3 h have been included in other models of TP SC
absorption to describe the time delay between dose and
recovery in central lymph (14,36,45,76–78). Similarly, the
radiolabelled IgG data used for model development
showed a lag of ~0.5 h between dosing and loss of IgG
from the dose site (28–30). In contrast, the required lag
time for pegylated EPO was found to be negligible for all
species apart from rat in a population PK model (79).
Unlike previous models (14,36,45,69,72,80–82), a lag time/
delay compartment is not included in the PBPK model. It
is currently unknown whether the lymphatic transport or
movement through the interstitial fluid at the SC site is the
rate-limiting step in SC absorption (5). Multiple factors can
contribute to the observed delay, as described above, and a
mechanistic description incorporating all these processes is
not available. However, as the observed, tmax for most TPs
is >4 h, and for proteins larger than albumin, tmax is >50 h,
incorporating an empirical lag time of ~1 h to account for
the transfer of TP from injection site to interstitial space/
lymphatics would have minimal impact on the prediction
accuracy of tmax.

Fig. 5. Prediction accuracy of Cmax (a, c) and tmax (b, d) compared to hydrodynamic radius (a, b) or isoelectric point (c, d). Blue diamonds
denote prediction accuracy for individual studies/dose levels; Red line represents mean prediction accuracy for each TP; Black line indicates line
of unity; . . . 0.8 to 1.25-fold prediction accuracy; - - - 2-fold prediction accuracy
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Transcytosis of mAbs across endothelial cells via binding to
FcRn may allow direct access to blood at the SC site. However,
evidence for the importance of this process to the rate of SC
absorption is contradictory. SC dosing of mAbs in FcRn
knockout mice showed SC bioavailability was 3-fold lower than
in that wild-type mice (31). Correspondingly, increasing FcRn
affinity at pH 6 improved bioavailability in mice (83). In
contrast, data from cynomolgus monkeys showed no improve-
ment in mAb bioavailability and a decrease in absorption rate
when FcRn binding at pH 6 was increased while maintaining no
direct binding to FcRn at pH 7.4 (84). Similarly, modelling
efforts to describe SC absorption of mAbs incorporating the
FcRn contribution have given conflicting results. Predicted
absorption via FcRn-mediated trancytosis when using such
models suggests this route provides <91% (85), 32% (63) or
~0% (14) of the overall systemic absorption in rats, mice and
humans, respectively. In addition, lymph flow rate was shown to
be the only influential factor for predicted tmax (14). Although
FcRn may have a role in the protection of mAbs from
catabolism at the SC site, and hence bioavailability, it is
uncertain whether FcRn-mediated transcytosis is an important
route of mAb absorption (31,83). Using the PBPK model
herein, no clear correlation was observed between TP type
and the accuracy of tmax predictions. This indicates that the
model is suitable for both smaller TPs and mAbs and suggests it
is not necessary to include the FcRn recycling mechanism in the
current model, although this would need to be considered if
efforts were made to mechanistically predict bioavailability of
mAbs.

One limitation of the current model is the inability to
mechanistically predict bioavailability and hence the require-
ment for a measured value. Bioavailability is highly variable
between subjects and species, with no correlation to molec-
ular size (5,86). For mAbs, which all have a similar molecular
size, bioavailability usually ranges from 50 to 100% (31).
Incomplete absorption is due to degradation and/or catabo-
lism at the SC site and potentially within the lymphatic system
prior to the TP entering the systemic circulation. No
difference in the fraction of EPO dose recovered in
peripheral and central lymph was reported in cannulated
sheep, suggesting no loss of EPO during lymph transit from
the dosing site to the central blood stream (36) However, the
opposite was found for human growth hormone (87). In
addition to pre-systemic nonspecific clearance, target-
mediated drug disposition (TMDD) may contribute to
incomplete bioavailability (88) of TPs when the molecular
target of the protein are located within the lymphatic system
or at the SC site, leading to dose-dependent bioavailability.
For example, dose-dependent bioavailability has been ob-
served for hGH and EPO (47,50). In addition, consideration
of TMDD in the model may improve the predictions for TPs
where systemic clearance changes with dose due to target
receptor saturation. One advantage of the model structure
used here is the ability to predict interstitial concentration,
which represents the driving concentration of TMDD for
membrane-bound target receptors located on the cell
surface. Use of the total tissue concentration to model
TMDD in such cases would underestimate the concentration
at the receptor site as the TPs often do not distribute into the
tissue cells themselves and hence total tissue concentration
will be lower than Ci.

The current PBPK model could be expanded to incorpo-
rate the FcRn recycling mechanism for mAbs and also TMDD
models. However, further work is required to understand pre-
systemic catabolism/degradation before these processes can be
predicted with a true bottom-up approach. In vitro incubation of
TPs with SC tissue homogenate, lymph and blood (89,90) may
help to inform such models in the future. With increased
understanding of these processes and their importance for SC
bioavailability, the current PBPK model can be expanded to
mechanistically describe bioavailability and absorption rate. In
addition, the impact of factors such as TP charge, formulation
and patient characteristics on SC absorption rate may be
incorporated. The current model is however a suitable starting
point for bottom-up prediction of the rate of SC absorption.
Another important consideration when predicting drug kinetics
is obtaining an accurate representation of the variability within a
given population (91). Although the current study focuses on
predictions for an average person, future work is intended to
explore the prediction of population variability in absorption
following SC dosing.

CONCLUSION

A mechanistic whole-body PBPK model has been
developed to predict absorption rate of TPs following SC
dosing via both direct diffusion through capillaries into blood
and through lymphatic absorption. The model provided
reasonable prediction of SC absorption using a bottom-up
approach based on TP molecular size as the model input. One
third to half the Cmax and tmax predictions fell within 0.8–1.25-
fold of the observed values. Although a general trend for
underprediction of tmax was observed, no correlation with
molecular size or pI was apparent. Further enhancement in
the future to include mechanistic prediction of distribution at
the injection site and through the interstitial space as well as
pre-systemic elimination will allow a true bottom-up ap-
proach for prediction of TP SC absorption.

ACKNOWLEDGMENTS

The authors thank Eleanor Savill and Jessica Waite for
their assistance in the preparation of this manuscript. The
Simcyp Simulator is freely available, following completion of
the relevant workshop, to approved members of academic
institutions and other non-for-profit organisations for re-
search and teaching purposes.

Conflict of Interest Katherine Gill, Iain Gardner, Linzhong Li
and Masoud Jamei are employees of Simcyp (a Certara Company).
Simcyp’s research is funded by a consortium of pharmaceutical
companies.

Open Access This article is distributed under the terms of
the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate
credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if
changes were made.

167PBPK Modelling of Protein Subcutaneous Absorption

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


REFERENCES

1. Walsh G. Biopharmaceutical benchmarks 2010. Nat Biotechnol.
2010;28:917–24.

2. Dostalek M, Gardner I, Gurbaxani BM, Rose RH, Chetty M.
Pharmacokinetics, pharmacodynamics and physiologically-
based pharmacokinetic modelling of monoclonal antibodies.
Clin Pharmacokinet. 2013;52:83–124. doi:10.1007/s40262-012-
0027-4.

3. Keizer R, Huitema AR, Schellens JM, Beijnen J. Clinical
pharmacokinetics of therapeutic monoclonal antibodies. Clin
Pharmacokinet. 2010;49:493–507. doi:10.2165/11531280-
000000000-00000.

4. Lobo ED, Hansen RJ, Balthasar JP. Antibody pharmacokinetics
and pharmacodynamics. J Pharm Sci. 2004;93:2645–68.
doi:10.1002/jps.20178.

5. Richter WF, Bhansali SG, Morris ME. Mechanistic determinants
of biotherapeutics absorption following SC administration.
AAPS J. 2012;14:559–70. doi:10.1208/s12248-012-9367-0.

6. Aukland K, Reed RK. Interstitial-lymphatic mechanisms in the
control of extracellular fluid volume. Physiol Rev. 1993;73:1–78.

7. Swartz MA. The physiology of the lymphatic system. Adv Drug
Deliv Rev. 2001;50:3–20. doi:10.1016/S0169-409X(01)00150-8.

8. Frost GI. Recombinant human hyaluronidase (rHuPH20): an
enabling platform for subcutaneous drug and fluid administra-
tion. Expert Opin Drug Deliv. 2007;4:427–40. doi:10.1517/
17425247.4.4.427.

9. Swartz MA, Fleury ME. Interstitial flow and its effects in soft
tissues. Annu Rev Biomed Eng. 2007;9:229–56. doi:10.1146/
annurev.bioeng.9.060906.151850.

10. Rippe B, Haraldsson B. Fluid and protein fluxes across small and
large pores in the microvasculature. Application of two-pore
equations. Acta Physiol Scand. 1987;131:411–28. doi:10.1111/
j.1748-1716.1987.tb08257.x.

11. Ibrahim R, Nitsche JM, Kasting GB. Dermal clearance model for
epidermal bioavailabil ity calculations. J Pharm Sci.
2012;101:2094–108. doi:10.1002/jps.23106.

12. Porter CJH, Charman SA. Lymphatic transport of proteins after
subcutaneous administration. J Pharm Sci. 2000;89:297–310.
doi:10.1002/(sici)1520-6017(200003)89:3<297::aid-jps2>3.0.co;2-p.

13. Supersaxo A, Hein WR, Steffen H. Effect of molecular weight
on the lymphatic absorption of water-soluble compounds follow-
ing subcutaneous administration. Pharm Res. 1990;7:167–9.

14. Zhao L, Ji P, Li Z, Roy P, Sahajwalla CG. The antibody drug
absorption following subcutaneous or intramuscular administra-
tion and its mathematical description by coupling physiologically
based absorption process with the conventional compartment
pharmacokinetic model. J Clin Pharmacol. 2013;53:314–25.
doi:10.1002/jcph.4.

15. Kagan L. Pharmacokinetic modeling of the subcutaneous
absorption of therapeutic proteins. Drug Metab Dispos.
2014;42:1890–905. doi:10.1124/dmd.114.059121.

16. Offman E, Edginton A. A PBPK workflow for first-in-human
dose selection of a subcutaneously administered pegylated
peptide. J Pharmacokinet Pharmacodyn. 2015;1–16. doi:10.1007/
s10928-015-9406-4.

17. Baxter LT, Zhu H, Mackensen DG, Butler WF, Jain RK.
Biodistribution of monoclonal antibodies: scale-up from mouse
to human using a physiologically based pharmacokinetic model.
Cancer Res. 1995;55:4611–22.

18. Baxter LT, Zhu H, Mackensen DG, Jain RK. Physiologically
based pharmacokinetic model for specific and nonspecific
monoclonal antibodies and fragments in normal tissues and
human tumor xenografts in nude mice. Cancer Res.
1994;54:1517–28.

19. ICRP. Basic anatomical and physiological data for use in
radiological protection: reference values. ICRP publication 89.
Ann ICRP. 2002;32:5–265.

20. Jamei M, Marciniak S, Feng K, Barnett A, Tucker G, Rostami-
Hodjegan A. The Simcyp® population-based ADME simulator.
Expert Opin Drug Metab Toxicol. 2009;5:211–23. doi:10.1517/
17425250802691074.

21. Jamei M, Bajot F, Neuhoff S, Barter Z, Yang J, Rostami-
Hodjegan A, et al. A mechanistic framework for in vitro–in vivo

extrapolation of liver membrane transporters: prediction of
drug–drug interaction between rosuvastatin and cyclosporine.
Clin Pharmacokinet. 2014;53:73–87. doi:10.1007/s40262-013-
0097-y.

22. Guyton AC. Circulatory physiology: cardiac output and its
regulation. 2nd ed. London: WB Saunders; 1973.

23. Levy MN, Pappano AJ. Cardiovascular physiology. 9th ed.
Edinburgh: Elsevier Mosby; 2007.

24. Pappano A. Properties of the vasculature. In: Koeppen B,
Stanton B, editors. Berne and levy physiology. 6th ed. Philadel-
phia: Mosby Elsevier; 2008. p. 330–69.

25. Koeppen B, Stanton B. Berne and levy physiology. 6th ed.
Philadelphia: Mosby; 2008.

26. Taylor A, Granger D. Exchange of macromolecules across the
microcirculation. In: Renkin E, Michel C, editors. Handbook of
physiology: the cardiovascular system microcirculation. Bethes-
da: Am Physiol Soc; 1984. p. 467–520.

27. Hollander W, Reilly P, Burrows BA. Lymphatic flow in human
subjects as indicated by the disappearance of 1-131-labeled
albumin from the subcutaneous tissue. J Clin Invest.
1961;40:222–33. doi:10.1172/JCI104248.

28. Stanton AWB, Modi S, Mellor RH, Peters AM, Svensson WE,
Levick JR, et al. A quantitative lymphoscintigraphic evaluation
of lymphatic function in the swollen hands of women with
lymphoedema following breast cancer treatment. Clin Sci.
2006;110:553–61. doi:10.1042/cs20050277.

29. Stanton AW, Svensson WE, Mellor RH, Peters AM, Levick JR,
Mortimer PS. Differences in lymph drainage between swollen
and non-swollen regions in arms with breast-cancer-related
lymphoedema. Clin Sci. 2001;101:131–40.

30. Pain SJ, Barber RW, Solanki CK, Ballinger JR, Britton TB,
Mortimer PS, et al. Short-term effects of axillary lymph node
clearance surgery on lymphatic physiology of the arm in breast
cancer. J Appl Physiol. 2005;99:2345–51. doi:10.1152/
japplphysiol.00372.2005.

31. Wang W, Wang EQ, Balthasar JP. Monoclonal antibody phar-
macokinetics and pharmacodynamics. Clin Pharmacol Ther.
2008;84:548–58.

32. Levitt DG. The pharmacokinetics of the interstitial space in
humans. BMC Clin Pharmacol. 2003;3:3. doi:10.1186/1472-6904-
3-3.

33. Poulsen HL. Subcutaneous interstitial fluid albumin concentra-
tion in long-term diabetes mellitus. Scand J Clin Lab Invest.
1973;32:167–73.

34. Poulsen HL. Interstitial fluid concentrations of albumin and
immunoglobulin G in normal men. Scand J Clin Lab Invest.
1974;34:119–22.

35. McLennan D, Porter CH, Edwards G, Heatherington A, Martin
S, Charman S. The absorption of darbepoetin alfa occurs
predominantly via the lymphatics following subcutaneous ad-
ministration to sheep. Pharm Res. 2006;23:2060–6. doi:10.1007/
s11095-006-9064-8.

36. McLennan DN, Porter CJH, Edwards GA, Martin SW,
Heatherington AC, Charman SA. Lymphatic absorption is
the primary contributor to the systemic availability of epoetin
alfa following subcutaneous administration to sheep. J
Pharmacol Exp Ther. 2005;313:345–51. doi:10.1124/jpet.104.
078790.

37. Grahnen A, Kastrup K, Heinrich U, Gourmelen M, Preece MA,
Vaccarello MA, et al. Pharmacokinetics of recombinant human
insulin-like growth factor I given subcutaneously to healthy
volunteers and to patients with growth hormone receptor
deficiency. Acta Paediatr Suppl. 1993;82 Suppl 391:9–13.

38. Fouque D, Peng SC, Kopple JD. Pharmacokinetics of recombi-
nant human insulin-like growth factor-1 in dialysis patients.
Kidney Int. 1995;47:869–75.

39. Wilton P, Sietnieks A, Gunnarsson R, Berger L, Grahnen A.
Pharmacokinetic profile of recombinant human insulin-like
growth factor I given subcutaneously in normal subjects. Acta
Paediatr Scand Suppl. 1991;377:111–4.

40. Kirchner GI, Franzke A, Buer J, Beil W, Probst-Kepper M,
Wittke F, et al. Pharmacokinetics of recombinant human
interleukin-2 in advanced renal cell carcinoma patients following
subcutaneous application. Br J Clin Pharmacol. 1998;46:5–10.
doi:10.1046/j.1365-2125.1998.00036.x.

168 Gill et al.

http://dx.doi.org/10.1007/s40262-012-0027-4
http://dx.doi.org/10.1007/s40262-012-0027-4
http://dx.doi.org/10.2165/11531280-000000000-00000
http://dx.doi.org/10.2165/11531280-000000000-00000
http://dx.doi.org/10.1002/jps.20178
http://dx.doi.org/10.1208/s12248-012-9367-0
http://dx.doi.org/10.1016/S0169-409X(01)00150-8
http://dx.doi.org/10.1517/17425247.4.4.427
http://dx.doi.org/10.1517/17425247.4.4.427
http://dx.doi.org/10.1146/annurev.bioeng.9.060906.151850
http://dx.doi.org/10.1146/annurev.bioeng.9.060906.151850
http://dx.doi.org/10.1111/j.1748-1716.1987.tb08257.x
http://dx.doi.org/10.1111/j.1748-1716.1987.tb08257.x
http://dx.doi.org/10.1002/jps.23106
http://dx.doi.org/10.1002/(sici)1520-6017(200003)89:3%3C297::aid-jps2%3E3.0.co;2-p
http://dx.doi.org/10.1002/jcph.4
http://dx.doi.org/10.1124/dmd.114.059121
http://dx.doi.org/10.1007/s10928-015-9406-4
http://dx.doi.org/10.1007/s10928-015-9406-4
http://dx.doi.org/10.1517/17425250802691074
http://dx.doi.org/10.1517/17425250802691074
http://dx.doi.org/10.1007/s40262-013-0097-y
http://dx.doi.org/10.1007/s40262-013-0097-y
http://dx.doi.org/10.1172/JCI104248
http://dx.doi.org/10.1042/cs20050277
http://dx.doi.org/10.1152/japplphysiol.00372.2005
http://dx.doi.org/10.1152/japplphysiol.00372.2005
http://dx.doi.org/10.1186/1472-6904-3-3
http://dx.doi.org/10.1186/1472-6904-3-3
http://dx.doi.org/10.1007/s11095-006-9064-8
http://dx.doi.org/10.1007/s11095-006-9064-8
http://dx.doi.org/10.1124/jpet.104.078790
http://dx.doi.org/10.1124/jpet.104.078790
http://dx.doi.org/10.1046/j.1365-2125.1998.00036.x


41. Piscitelli SC, Wells MJ, Metcalf JA, Baseler M, Stevens R, Davey
RT. Pharmacokinetics and pharmacodynamics of subcutaneous
interleukin-2 in HIV-infected patients. Pharmacotherapy.
1996;16:754–9. doi:10.1002/j.1875-9114.1996.tb02993.x.

42. Yang B-B, Baughman S, Sullivan JT. Pharmacokinetics of
anakinra in subjects with different levels of renal function. Clin
Pharmacol Ther. 2003;74:85–94.

43. Chakraborty A, Blum RA, Mis SM, Cutler DL, Jusko WJ.
Pharmacokinetic and adrenal interactions of IL-10 and predni-
sone in healthy volunteers. J Clin Pharmacol. 1999;39:624–35.
doi:10.1177/00912709922008137.

44. Radwanski E, Chakraborty A, Van Wart S, Huhn RD, Cutler
DL, Affrime MB, et al. Pharmacokinetics and leukocyte
responses of recombinant human interleukin-10. Pharm Res.
1998;15:1895–901.

45. Huhn RD, Radwanski E, Gallo J, Affrime MB, Sabo R, Gonyo
G, et al. Pharmacodynamics of subcutaneous recombinant human
interleukin-10 in healthy volunteers. Clin Pharmacol Ther.
1997;62:171–80.

46. Aoyama K, Uchida T, Takanuki F, Usui T, Watanabe T, Higuchi
S, et al. Pharmacokinetics of recombinant human interleukin-11
(rhIL-11) in healthy male subjects. Br J Clin Pharmacol.
1997;43:571–8. doi:10.1046/j.1365-2125.1997.00605.x.

47. Janssen YJH, Frölich M, Roelfsema F. The absorption profile
and availability of a physiological subcutaneously administered
dose of recombinant human growth hormone (GH) in adults
with GH deficiency. Br J Clin Pharmacol. 1999;47:273–8.
doi:10.1046/j.1365-2125.1999.00892.x.

48. Laursen T, Grandjean B, Jorgensen JO, Christiansen JS.
Bioavailability and bioactivity of three different doses of nasal
growth hormone (GH) administered to GH-deficient patients:
comparison with intravenous and subcutaneous administration.
Eur J Endocrinol. 1996;135:309–15.

49. Zeisel HJ, von Petrykowski W, Wais U. Pharmacokinetics and
short-term metabolic effects of mammalian cell-derived biosyn-
thetic human growth hormone in man. Horm Res. 1992;37 Suppl
2:5–13.

50. Ramakrishnan R, Cheung WK, Wacholtz MC, Minton N, Jusko
WJ. Pharmacokinetic and pharmacodynamic modeling of recom-
binant human erythropoietin after single and multiple doses in
healthy volunteers. J Clin Pharmacol. 2004;44:991–1002.
doi:10.1177/0091270004268411.

51. Salmonson T, Danielson BG, Wikström B. The pharmacokinetics
of recombinant human erythropoietin after intravenous and
subcutaneous administration to healthy subjects. Br J Clin
Pharmacol. 1990;29:709–13.

52. McMahon F, Vargas R, Ryan M, Jain A, Abels R, Perry B, et al.
Pharmacokinetics and effects of recombinant human erythropoi-
etin after intravenous and subcutaneous injections in healthy
volunteers. Blood. 1990;76:1718–22.

53. Sans T, Joven J, Vilella E, Masdeu G, Farrè M. Pharmacokinetics
of several subcutaneous doses of erythropoietin: potential
implications for blood transfusion. Clin Exp Pharmacol Physiol.
2000;27:179–84. doi:10.1111/j.1440-1681.2000.tb03078.x.

54. Oh CK, Faggioni R, Jin F, Roskos LK, Wang B, Birrell C, et al.
An open-label, single-dose bioavailability study of the pharma-
cokinetics of CAT-354 after subcutaneous and intravenous
administration in healthy males. Br J Clin Pharmacol.
2010;69:645–55. doi:10.1111/j.1365-2125.2010.03647.x.

55. Korth-Bradley JM, Rubin AS, Hanna RK, Simcoe DK, Lebsack
ME. The pharmacokinetics of etanercept in healthy volunteers.
Ann Pharmacother. 2000;34:161–4.

56. Sullivan JT, Ni L, Sheelo C, Salfi M, Peloso PM. Bioequivalence
of liquid and reconstituted lyophilized etanercept subcutaneous
injections. J Clin Pharmacol. 2006;46:654–61. doi:10.1177/
0091270006287705.

57. Yi S, Kim S, Park M-K, Yoon S, Cho J-Y, Lim K, et al. Comparative
pharmacokinetics of HD203, a biosimilar of etanercept, with
marketed etanercept (Enbrel ®): a double-blind, single-dose,
crossover study in healthy volunteers. BioDrugs. 2012;26:177–84.
doi:10.2165/11631860-000000000-00000.

58. Zhou H. Clinical pharmacokinetics of etanercept: a fully
humanized soluble recombinant tumor necrosis factor receptor
fusion protein. J Clin Pharmacol. 2005;45:490–7. doi:10.1177/
0091270004273321.

59. Rivière G, Yeh C, Reynolds C, Brookman L, Kaiser G.
Bioequivalence of a novel omalizumab solution for injection
compared with the standard lyophilized powder formulation. J
Bioequiv Availab. 2011;3:144–50. doi:10.4172/jbb.1000075.

60. Ho KY, Weissberger AJ, Stuart MC, Day RO, Lazarus L. The
pharmacokinetics, safety and endocrine effects of authentic
biosynthetic human growth hormone in normal subjects. Clin
Endocrinol (Oxf). 1989;30:335–45.

61. Konrad MW, Hemstreet G, Hersh EM, Mansell PWA,
Mertelsmann R, Kolitz JE, et al. Pharmacokinetics of recombi-
nant interleukin 2 in humans. Cancer Res. 1990;50:2009–17.

62. Porter CJH, Charman WN. Intestinal lymphatic drug transport:
an update. Adv Drug Deliv Rev. 2001;50:61–80. doi:10.1016/
S0169-409X(01)00151-X.

63. Dahlberg AM, Kaminskas LM, Smith A, Nicolazzo JA, Porter
CJH, Bulitta JB, et al. The lymphatic system plays a major role in
the intravenous and subcutaneous pharmacokinetics of
trastuzumab in rats. Mol Pharm. 2013;11:496–504. doi:10.1021/
mp400464s.

64. Shi S. Biologics: an update and challenge of their pharmacoki-
netics. Curr Drug Metab. 2014;15:271–90.

65. Kinnunen HM, Mrsny RJ. Improving the outcomes of biophar-
maceutical delivery via the subcutaneous route by understanding
the chemical, physical and physiological properties of the
subcutaneous injection site. J Control Release. 2014;182:22–32.
doi:10.1016/j.jconrel.2014.03.011.

66. Reddy ST, Berk DA, Jain RK, Swartz MA. A sensitive in vivo
model for quantifying interstitial convective transport of injected
macromolecules and nanoparticles. J Appl Physiol.
2006;101:1162–9. doi:10.1152/japplphysiol.00389.2006.

67. Zheng Y, Tesar DB, Benincosa L, Birnböck H, Boswell CA,
Bumbaca D, et al. Minipig as a potential translatable model for
monoclonal antibody pharmacokinetics after intravenous and
subcutaneous administration. MAbs. 2012;4:243–55. doi:10.4161/
mabs.4.2.19387.

68. Mach H, Gregory SM, Mackiewicz A, Mittal S, Lalloo A,
Kirchmeier M, et al. Electrostatic interactions of monoclonal
antibodies with subcutaneous tissue. Ther Deliv. 2011;2:727–36.

69. Kagan L, Mager DE. Mechanisms of subcutaneous absorption of
rituximab in rats. Drug Metab Dispos. 2013;41:248–55.
doi:10.1124/dmd.112.048496.

70. Beshyah SA, Anyaoku V, Niththyananthan R, Sharp P, Johnston
DG. The effect of subcutaneous injection site on absorption of
human growth hormone: abdomen versus thigh. Clin Endocrinol
(Oxf). 1991;35:409–12.

71. Jensen JD, Jensen LW, Madsen JK. The pharmacokinetics of
recombinant human erythropoietin after subcutaneous injection
at different sites. Eur J Clin Pharmacol. 1994;46:333–7.

72. Kagan L, Turner M, Balu-Iyer S, Mager D. Subcutaneous
absorption of monoclonal antibodies: role of dose, site of
injection, and injection volume on rituximab pharmacokinetics
in rats. Pharmac Res. 2012;29:490–9. doi:10.1007/s11095-011-
0578-3.

73. Xu Z, Wang Q, Zhuang Y, Frederick B, Yan H, Bouman-Thio E,
et al. Subcutaneous bioavailability of golimumab at 3 different
injection sites in healthy subjects. J Clin Pharmacol. 2010;50:276–
84. doi:10.1177/0091270009340782.

74. Olszewski W, Engeset A, Icger PM, Sokolowski J,
Theodorsen L. Flow and composition of leg lymph in normal
Men during venous stasis, muscular activity and local
hyperthermia. Acta Physiol Scand. 1977;99:149–55.
doi:10.1111/j.1748-1716.1977.tb10365.x.

75. Havas E, Parviainen T, Vuorela J, Toivanen J, Nikula T, Vihko
V. Lymph flow dynamics in exercising human skeletal muscle as
detected by scintography. J Physiol. 1997;504:233–9.

76. Gopalakrishnan M, Suarez S, Hickey A, Gobburu J. Population
pharmacokinetic–pharmacodynamic modeling of subcutaneous
and pulmonary insulin in rats. J Pharmacokinet Pharmacodyn.
2005;32:485–500. doi:10.1007/s10928-005-0008-4.

77. Olsson-Gisleskog P, Jacqmin P, Perez-Ruixo J. Population
pharmacokinetics meta-analysis of recombinant human erythro-
poietin in healthy subjects. Clin Pharmacokinet. 2007;46:159–73.
doi:10.2165/00003088-200746020-00004.

78. Fang Y, Li L-j, Wang R, Huang F, Song H-f, Tang Z-m, et al.
Population pharmacokinetics of rhTNFR-Fc in healthy Chinese

169PBPK Modelling of Protein Subcutaneous Absorption

http://dx.doi.org/10.1002/j.1875-9114.1996.tb02993.x
http://dx.doi.org/10.1177/00912709922008137
http://dx.doi.org/10.1046/j.1365-2125.1997.00605.x
http://dx.doi.org/10.1046/j.1365-2125.1999.00892.x
http://dx.doi.org/10.1177/0091270004268411
http://dx.doi.org/10.1111/j.1440-1681.2000.tb03078.x
http://dx.doi.org/10.1111/j.1365-2125.2010.03647.x
http://dx.doi.org/10.1177/0091270006287705
http://dx.doi.org/10.1177/0091270006287705
http://dx.doi.org/10.2165/11631860-000000000-00000
http://dx.doi.org/10.1177/0091270004273321
http://dx.doi.org/10.1177/0091270004273321
http://dx.doi.org/10.4172/jbb.1000075
http://dx.doi.org/10.1016/S0169-409X(01)00151-X
http://dx.doi.org/10.1016/S0169-409X(01)00151-X
http://dx.doi.org/10.1021/mp400464s
http://dx.doi.org/10.1021/mp400464s
http://dx.doi.org/10.1016/j.jconrel.2014.03.011
http://dx.doi.org/10.1152/japplphysiol.00389.2006
http://dx.doi.org/10.4161/mabs.4.2.19387
http://dx.doi.org/10.4161/mabs.4.2.19387
http://dx.doi.org/10.1124/dmd.112.048496
http://dx.doi.org/10.1007/s11095-011-0578-3
http://dx.doi.org/10.1007/s11095-011-0578-3
http://dx.doi.org/10.1177/0091270009340782
http://dx.doi.org/10.1111/j.1748-1716.1977.tb10365.x
http://dx.doi.org/10.1007/s10928-005-0008-4
http://dx.doi.org/10.2165/00003088-200746020-00004


volunteers and in Chinese patients with ankylosing spondylitis.
Acta Pharmacol Sin. 2010;31:1500–7. doi:10.1038/aps.2010.113.

79. Jolling K, Perez Ruixo JJ, Hemeryck A, Vermeulen A, Greway
T. Mixed-effects modelling of the interspecies pharmacokinetic
scaling of pegylated human erythropoietin. Eur J Pharm Sci.
2005;24:465–75. doi:10.1016/j.ejps.2005.01.002.

80. Mager D, Jusko W. Receptor-mediated pharmacokinetic/
pharmacodynamic model of interferon-β 1a in humans. Pharm
Res. 2002;19:1537–43. doi:10.1023/a:1020468902694.

81. Mager DE, Neuteboom B, Efthymiopoulos C, Munafo A, Jusko
WJ. Receptor-mediated pharmacokinetics and pharmacodynam-
ics of interferon-β1a in monkeys. J Pharmacol Exp Ther.
2003;306:262–70. doi:10.1124/jpet.103.049502.

82. Segrave AM, Mager DE, Charman SA, Edwards GA, Porter
CJH. Pharmacokinetics of recombinant human leukemia inhib-
itory factor in sheep. J Pharmacol Exp Ther. 2004;309:1085–92.
doi:10.1124/jpet.103.063289.

83. Deng R, Meng YG, Hoyte K, Lutman J, Lu Y, Iyer S, et al.
Subcutaneous bioavailability of therapeutic antibodies as a
function of FcRn binding affinity in mice. MAbs. 2012;4:101–9.
doi:10.4161/mabs.4.1.18543.

84. Datta-Mannan A, Witcher DR, Lu J, Wroblewski VJ. Influence
of improved FcRn binding on the subcutaneous bioavailability of
monoclonal antibodies in cynomolgus monkeys. MAbs.
2012;4:267–73. doi:10.4161/mabs.4.2.19364.

85. Kagan L, Zhao J, Mager D. Interspecies pharmacokinetic
modeling of subcutaneous absorption of rituximab in mice and

rats. Pharm Res. 2014;31:3265–73. doi:10.1007/s11095-014-1416-
1.

86. McDonald TA, Zepeda ML, Tomlinson MJ, Bee WH, Ivens IA.
Subcutaneous administration of biotherapeutics: current experi-
ence in animal models. Curr Opin Mol Ther. 2010;12:461–70.

87. Charman SA, Segrave AM, Edwards GA, Porter CJH.
Systemic availability and lymphatic transport of human
growth hormone administered by subcutaneous injection. J
Pharm Sci . 2000;89:168–77. doi :10.1002/(s ic i)1520-
6017(200002)89:2<168::aid-jps4>3.0.co;2-q.

88. Mager DE, Jusko WJ. General pharmacokinetic model for drugs
exhibiting target-mediated drug disposition. J Pharmacokinet
Pharmacodyn. 2001;28:507–32.

89. Wang W, Chen N, Shen X, Cunningham P, Fauty S, Michel K,
et al. Lymphatic transport and catabolism of therapeutic proteins
after subcutaneous administration to rats and dogs. Drug Metab
Dispos. 2012;40:952–62. doi:10.1124/dmd.111.043604.

90. Zou Y, Bateman TJ, Adreani C, Shen X, Cunningham PK, Wang
B, et al. Lymphatic absorption, metabolism, and excretion of a
therapeutic peptide in dogs and rats. Drug Metab Dispos.
2013;41:2206–14. doi:10.1124/dmd.113.051524.

91. Jamei M, Dickinson GL, Rostami-Hodjegan A. A framework for
assessing inter-individual variability in pharmacokinetics using
virtual human populations and integrating general knowledge of
physical chemistry, biology, anatomy, physiology and genetics: a
tale of ‘bottom-up’ vs ‘top-down’ recognition of covariates. Drug
Metab Pharmacokinet. 2009;24:53–75. doi:10.2133/dmpk.24.53.

170 Gill et al.

http://dx.doi.org/10.1038/aps.2010.113
http://dx.doi.org/10.1016/j.ejps.2005.01.002
http://dx.doi.org/10.1023/a:1020468902694
http://dx.doi.org/10.1124/jpet.103.049502
http://dx.doi.org/10.1124/jpet.103.063289
http://dx.doi.org/10.4161/mabs.4.1.18543
http://dx.doi.org/10.4161/mabs.4.2.19364
http://dx.doi.org/10.1007/s11095-014-1416-1
http://dx.doi.org/10.1007/s11095-014-1416-1
http://dx.doi.org/10.1002/(sici)1520-6017(200002)89:2%3C168::aid-jps4%3E3.0.co;2-q
http://dx.doi.org/10.1002/(sici)1520-6017(200002)89:2%3C168::aid-jps4%3E3.0.co;2-q
http://dx.doi.org/10.1124/dmd.111.043604
http://dx.doi.org/10.1124/dmd.113.051524
http://dx.doi.org/10.2133/dmpk.24.53

	A...
	Abstract
	INTRODUCTION
	MATERIALS AND METHODS
	Structure of the PBPK Model
	System Parameters
	Drug-Specific Parameters
	Model Validation
	Full PBPK Model
	Development of the SC Site Model

	Model Application
	Sensitivity Analysis

	RESULTS
	Model Validation
	Development of the SC Site Model
	Model Application

	DISCUSSION
	CONCLUSION
	REFERENCES



