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ABSTRACT

Primers4clades is an easy-to-use web server
that implements a fully automatic PCR primer
design pipeline for cross-species amplification
of novel sequences from metagenomic DNA, or
from uncharacterized organisms, belonging to
user-specified phylogenetic clades or taxa. The
server takes a set of non-aligned protein coding
genes, with or without introns, aligns them and
computes a neighbor-joining tree, which is dis-
played on screen for easy selection of species or
sequence clusters to design lineage-specific PCR
primers. Primers4clades implements an extended
CODEHOP primer design strategy based on both
DNA and protein multiple sequence alignments. It
evaluates several thermodynamic properties of the
oligonucleotide pairs, and computes the phyloge-
netic information content of the predicted amplicon
sets from Shimodaira–Hasegawa-like branch sup-
port values of maximum likelihood phylogenies.
A non-redundant set of primer formulations is
returned, ranked according to their thermodynamic
properties. An amplicon distribution map provides a
convenient overview of the coverage of the target
locus. Altogether these features greatly help the
user in making an informed choice between alterna-
tive primer pair formulations. Primers4clades is
available at two mirror sites: http://maya.ccg.
unam.mx/primers4clades/ and http://floresta.eead.
csic.es/primers4clades/. Three demo data sets and
a comprehensive documentation/tutorial page are
provided for easy testing of the server’s capabilities
and interface.

INTRODUCTION

Polymerase chain reaction (PCR) remains the most widely
used technology to gain molecular markers for molecular
ecology and systematics studies. With the ongoing accu-
mulation of fully sequenced genomes in public sequence
databases, these research areas, including metagenomics,
are increasingly focusing on the analysis of protein coding
genes and sequences (CDSs) to understand ecological,
metabolic and evolutionary processes in nature (1–3).
This trend is reflected in the huge interest of studying
the diversity and expression patterns of ‘functional
genes’ in the environment, such as antibiotic resistance
and virulence genes (4,5), photosynthesis (6) or nitrogen
fixation genes (7), to mention a few. Furthermore, multi-
locus sequence analysis (MLSA) and typing (MLST) of
protein-coding genes are the new standards in molecular
systematics (8–10) and molecular epidemiology (11,12).
However, it still remains a major challenge to design

optimal PCR primers to specifically amplify CDSs from
target lineages directly from environmental DNA samples
or from novel organisms. Here we introduce primers
4clades, a publicly available and easy-to-use web server
that uses phylogenetic trees for the targeted design of
PCR primers for the above mentioned purposes. Our
empirical validation studies have proven its utility to
study diversity of protein-coding genes in complex meta-
genomic DNA samples, as well as from previously unchar-
acterized microorganisms.

COMPARISON WITH RELATED WEB TOOLS

Primers4clades implements an extended and fully
automated CODEHOP (Consensus Degenerate Hybrid
Oligonucleotide Primer) design strategy (9,10), based
on both DNA and protein multiple sequence alignments
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of protein-coding sequences. The original CODEHOP
(http://blocks.fhcrc.org/codehop.html) and the very
recent iCODEHOP (https://icodehop.cphi.washington.
edu/i-codehop-context/Welcome Analysis) servers both
rely only on protein sequences and use a single codon
usage table (CUT) out of a limited choice of CUTs
to derive the primer formulations. Primers4clades auto-
matically uses the CUTs for all species identified in the
input data set for which a CUT is available at the Codon
Usage Database (13), as well as an alignment-specific
CUT computed on the fly. Furthermore, none of these
servers allows the user to specify a desired amplicon size
range, which is a convenient filter implemented in
primers4clades.
The PrimaClade (14), Greene SCPrimer (15), PriFi(16)

and GeneFisher-P (17) servers take any DNA multiple
sequence alignment as input and implement different stra-
tegies to identify PCR primer-binding sites and degenerate
primer formulations. The QPRIMER web server (18)
generates ‘universal’ primers for conserved regions of ver-
tebrate genomes, whereas the Muplex server (19) provides
a service for the design of primers for multiplex PCR.
How does primers4clades fit in this context? To our

knowledge, it is the only freely available web-based tool
that uses phylogenetic trees to interactively target the
search for oligonucleotide formulations to particular
sequence clusters (Figure 1). A very useful feature of pri-
mers4clades is that it returns a non-redundant set of
primer pair formulations, ranked according to their ther-
modynamic properties. Many of the related web servers
return highly redundant oligonucleotide formulations for

long and conserved sequence alignments. Primers4clades
checks that the resulting amplicon sets for the primer pairs
do not overlap more than 80%, ensuring a high coverage
of the target locus, but filtering excessive redundancy, as
shown on the amplicon distribution maps (Figure 2).
Furthermore, the phylogenetic information content of
the aligned amplicon sets each primer pair would theoret-
ically amplify, given the input sequences, is also
computed, which is a unique and valuable feature of
primers4clades. Together, these features are very useful
to make an informed choice among alternative, non-
redundant primer pair formulations, considering both
the thermodynamic properties of the primers and the
phylogenetic information content of the expected ampli-
con sets.

INPUT DATA AND THEIR PROCESSING BY THE
PRIMERS4CLADES PIPELINE

Implementation, input data processing and run modes

Primers4clades was mainly written in Perl and uses several
Bioperl modules (20) along with the open source software
cited below to perform different computations.

The input for the server is a set of homologous protein-
coding genes in FASTA format, which may be aligned
or not, with or without introns. The server excises introns
if their coordinates are indicated in the FASTA header
(see the server’s documentation and the fungal alpha-
tubulins demo data set), collapses redundant sequences
to haplotypes, translates the CDSs with user-selected

Figure 1. First output generated by primers4clades run in the interactive ‘cluster sequences’ mode using the provided alpha-proteobacterial atpD
demo data set. (A) Provides a summary of the user-specified run parameters and alignment statistics for the input data set. (B) Shows the labeled
NJ tree computed from the alignment of the input dataset. (C) Shows the cluster selection panel based on the labels shown on the NJ tree. Hitting
the re-cluster button parses the alignment to use only the selected sequences. Hitting the get primers button starts the primer design and evaluation
steps.
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translation tables and aligns them using Muscle (21). The
alignment step is skipped if the server detects that the
uploaded DNA sequences are previously aligned. The pro-
tein alignment is projected on the underlying DNA
sequences to compute the corresponding codon alignment,
along with maximum likelihood (ML) distance matrices
from the protein (WAG+G) or the codon (HKY85+G)
alignments, using Tree-Puzzle (22). The latter are used to
compute and display a neighbor-joining (NJ) tree with
‘neighbor’ from the PHYLIP package (23). If the server
is run in the ‘advanced’ and interactive ‘cluster sequences’
mode, the user can select a clade from the displayed NJ
tree to target the primer design towards its sequence mem-
bers (Figure 1). In the default, non-interactive ‘get primers’
run mode, all the uploaded sequences will be considered to
compute the primer formulations.

THE EXTENDED CODEHOP ALGORITHM
IMPLEMENTED IN PRIMERS4CLADES

Primers4clades implements an extended CODEHOP
primer design strategy based on both DNA and protein
multiple sequence alignments of the CDSs. The
CODEHOP algorithm (24,25) is based on the identifica-
tion of highly conserved regions within protein BLOCKS
(26) and the use of a particular CUT and position specific
scoring matrix to derive the CODEHOP formulation.
The extensions included in primers4clades comprise:

(i) the automatic evaluation of a non-redundant set of
codon usage tables (nrCUTs) for all organisms recognised
in the input file FASTA header, as well as the computa-
tion of an alignment-specific CUT (Figure 2A, server’s
documentation/tutorial page). (ii) In addition to the
CODEHOP formulations derived from the nrCUTs, the
server computes what we call a corrected CODEHOP in
which the degeneracy level is corrected considering the
target codon alignment. (iii) The server also computes a
so-called relaxed corrected CODEHOP which has an
extended degenerate region as compared to the corrected
CODEHOP in case that the latter has a degeneracy level
<24. (iv) A fourth, fully degenerated oligonucleotide for-
mulation is also computed based on the codon alignment.
(v) A comprehensive set of thermodynamic parameters
is calculated for each oligonucleotide pair. (vi) The
coordinates of each CODEHOP in a primer pair are
used to extract the reference in-silico amplicon set out
of the original protein and codon alignments for the eval-
uation of their phylogenetic information content and to
display them on the amplicon distribution map, as shown in
Figure 2 and explained below.

Return of sorted, non-redundant primer formulations and
their interactive refinement

The first useful result displayed by the server is an
amplicon distribution map, showing the positions of
each theoretical amplicon set with respect to the first

Figure 2. Output summary of the primer design and evaluation steps. (A) Shows the positions of the different amplicon sets mapped on the first
sequence of the input alignment at the protein level. The nonredundant codon usage tables used for primer design are shown. All primer pair
formulations and their thermodynamic properties can be downloaded using the TAB link. (B) The CODEHOP (bold) and the three codon-based
primer formulations returned by the system (only the forward formulation is shown), aligned with the underlying codons. An ‘!’ sign denotes
positions corrected by the system based on the codon alignment. (C) Output summary for the (forward) primer thermodynamic and phylogenetic
quality evaluations.
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protein sequence translated from the original input data
set (Figure 2A). As mentioned above, the primers4clades
pipeline returns four alternative primer formulations,
which are displayed on screen, aligned with the corre-
sponding codon multiple sequence alignment, along with
their degeneracy level and expected amplicon size for easy
visual inspection of the results (Figure 2B and C; see the
online documentation for detailed recommendations
about which type of primer to choose in different scenar-
ios). Additionally, the phylogenetic information content
parameter computed for each of the predicted aligned
amplicons is also displayed on screen (Figure 2C; more
details in the server’s documentation page).
The thermodynamic parameters of oligonucleotides and

primer pairs (max. and min. Tm of the pool of degenerate
primers found, their max and min hairpin loop formation-,
cross-hybridization- and self-priming potential) are com-
puted using functions from Amplicon (27). Relatively
relaxed cut-off values are defined for these parameters
(see Table 2 of the online documentation). If any of
them is worse than the specified cut-off values, then a
quality warning is signaled and displayed on screen. An
arbitrary quality scale is defined based on these cut-off
values, which decreases from 100% (no warnings) down-
wards (Figure 2A and C). A tab-formatted file containing
all the computed thermodynamic properties for each
primer pair can be downloaded from the server
(Figure 2A).
The evaluation of the phylogenetic information content

relies on computing the mean and median Shimodaira–
Hasegawa-like branch support values of ML phylogenies
estimated by PhyML (28,29), as described previously (10),
either at the DNA or protein levels, under user-specified
substitution models or matrices. This parameter essen-
tially describes the level of resolution achieved by the
tree computed from the current amplicon set alignment,
ranging from 1 (best resolution) to 0. These ML trees can
be visualized online and downloaded, along with the align-
ments of each amplicon set (Figure 2C).
In the ‘advanced’ interactive ‘cluster sequences’ mode,

after a first set of oligonucleotides has been found, the
user can further refine primer formulations by selecting
particular sequences to be excluded by clicking on
check boxes displayed along the reference NJ tree (see
the online documentation).
In summary, a non-redundant set of primer pairs is

returned to the user, sorted according to the ‘thermody-
namic quality’ score, excluding pairs inferred from the
same CUT that overlap more than 20% of the amplicon
sequence, and filtered by the user-specified length range of
the amplicons (Figure 2).

GENOME-SCALE BENCHMARK ANALYSIS OF
PRIMERS4CLADES PERFORMANCE

It is important to acknowledge key observations and
parameters that affect the value of results generated
by primers4clades. In order to identify those param-
eters and their critical cut-off values, we performed a
genome-wide benchmark analysis using 983 orthologous

gene families shared by 19 fully sequenced rhizobial gen-
omes listed on the tree shown in Figure 8 of the server’s
documentation page, and identified as detailed therein.
For this analysis we specifically tested the influence of
the following parameters on the numbers of predicted
primer pairs per locus: (i) protein-alignment length. (ii)
Percentage of gaps in the alignment. (iii) Maximum
WAG+G ML distance between pairs of sequences in a
gene family multiple sequence alignment (at the protein
level). (iv) Among site rate variation in the protein align-
ment, measured as a function of the alpha (shape) param-
eter of the gamma distribution, estimated under ML using
the WAG+G model with 8 discrete rate categories. (v)
Number of codon tables used per alignment.

The results of these analyses are summarized in
Figure 3A–E, which demonstrate that the number of pre-
dicted primer pairs per locus increases linearly with the
alignment length (Figure 3A) and with the number of
codon usage tables (Figure 3E) analyzed, whereas a
linear decrease in predicted primer pairs per locus is
observed with an increasing percentage of gapped sites
(Figure 3B). Interestingly, it was found that for alignments
containing sequences with a WAG+G ML distance >2.5
(Figure 3C) the primers4clades pipeline will have a very
low chance of finding suitable primer-binding sites. It
is also noteworthy that an among-site rate variation
level accommodated by an alpha value in the range of
0.3–0.6 is optimal (Figure 3D).

EXPERIMENTAL VALIDATION EXAMPLES

As experimental validation examples we show the effi-
ciency of our system to selectively amplify rpoB sequence
fragments from environmental mycobacteria using as tem-
plate metagenomic DNA extracted from three contrasting
tropical and temperate soils, described in the online doc-
umentation page along with the primer formulations and
details of the library construction procedure. Ten clones
from each library were randomly chosen for sequencing.
All sequences belonged to Actinobacteria, and over 90%
of them clustered within the Mycobacterium clade as
judged from a ML gene tree inferred from the sample
and reference sequences downloaded from the Integrated
Microbial Genomes site, and shown in Figure 11 of the
server’s documentation page. Furthermore, the environ-
mental Mycobacterium rpoB sequences clustered within
both the fast- and slow-growing clades of mycobacteria,
demonstrating the utility of the primers4clades primer
design pipeline to develop clade-specific oligonucleotides
for metagenomic and microbial ecology studies. Large
scale sequencing and analysis of the libraries will be
reported elsewhere. We also show the amplification results
of dnaE, fusA, lon, pheS and rpoB fragments from a
diverse world-wide collection of 28 Bradyrhizobium strains
(10) for which these loci had not previously been studied
in a molecular phylogenetic context. Figure 12 and
Table 3 of the documentation/tutorial page show the
amplification results and the primer formulations with
associated thermodynamic parameters, respectively.
Figure 13 shows a Bayesian phylogeny estimated from
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the five new molecular markers using partition-specific
best-fitting substitution models. The high overall tree res-
olution (most bipartitions have a posterior probabil-
ity=1) reflects the high phylogenetic information
content of the markers, even though they are relatively
short amplicons, as shown in Table 3 of the online
documentation.

CONCLUSIONS AND FUTURE DEVELOPMENT

Primers4clades is currently the only publicly available
server that integrates alternative primer-design strategies
with phylogenetic trees to interactively target the search
for oligonucleotide formulations to specific sequence clus-
ters, and to evaluate the phylogenetic information content
of the new molecular markers. These attributes make of
primers4clades a novel and useful tool for the targeted
design and informed selection of PCR primers for meta-
genomic and diversity studies, as demonstrated by our
experimental validation studies. The development of the

tool is now coupled to its recent implementation in a phy-
logenomics analysis pipeline to construct an interactive
primer database for phylogenetic clades at different taxo-
nomic and phylogenetic depths. The graphical interface,
analysis options and parameter evaluation procedures will
be improved, extended and refined.
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alignment.
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