mortality in a clinical cohort, thereby lending support to the utility of
the novel HB measure in both the clinical and population health
settings. These data underscore the importance of the role of
nocturnal hypoxia specifically linked to OSA in portending
cardiovascular risk. Future opportunities include clarifying
explanatory sleep apnea-specific hypoxic mechanistic pathways
contributing to cardiovascular risk. Given intermittent hypoxia in
OSA has been implicated in impaired function of orexin (alerting)
neurons (11), an enhanced understanding of the intersection of HB
and symptom-based phenotypes will be useful to inform OSA risk
stratification and potentially treatment responsiveness.
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What Is the Evidence that the Gut Microbiome Plays a
Role in Pulmonary and Cardiovascular Disease?

The gut microbiome is integral to host physiology, including
metabolism and immunity (1, 2). Interest in how the microbiome
impacts chronic diseases, including chronic obstructive pulmonary
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disease, asthma, heart failure, idiopathic pulmonary fibrosis (3-5),
and others, has been growing. Fecal microbiomes in patients with
chronic obstructive pulmonary disease differ in relative abundances
of several bacterial species and microbial metabolites compared with
healthy control subjects (6). Lower fecal microbiota diversity, assessed
by 16S rRNA gene sequencing within the first year of life, correlates
with asthma development by age 7 years (7), and infants deemed to
be at risk for asthma development have lower levels of the bacterial-
produced, antiinflammatory, short-chain fatty acid (SCFA) acetate in
their feces (8). Mice supplemented with SCFAs by including acetate
in their drinking water develop significantly reduced lung
inflammatory cellular infiltrates, whereas mice fed a low-fiber diet
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have reduced levels of SCFAs in their circulation and increased
airway hyperreactivity (9). Trimethylamine N-oxide (TMAO), a
bacterial-derived metabolite produced during red meat digestion, has
been linked to stroke and myocardial infarction, and in vitro studies
have shown that TMAO increases platelet activation and aggregation
(10). Mice given chow supplemented with TMAO have significantly
reduced cardiomyocyte transverse tubule power and left ventricular
ejection fraction compared with control mice fed normal chow (11).
These studies make a strong argument for the characterization of the
gut microbiome to influence the development of novel treatments.

Is There Evidence in Pulmonary Arterial Hypertension

for a Gut-Lung Axis?

Pulmonary arterial hypertension (PAH) is characterized by
perivascular lung inflammation and pulmonary vascular
remodeling, resulting in increased pulmonary vascular
resistance. An increase in right ventricular afterload leads to
right-sided heart failure and, ultimately, death. Despite the
development of pharmacologic therapies, PAH mortality has not
significantly improved (12-14). Although inflammation plays a
mechanistic role in PAH, the underlying factors causing it
remain unclear. Inflammation in PAH could be driven by an
imbalance of pro- and antiinflammatory intestinal microbial
metabolites, cytokines, and other mediators and/or direct effects
of circulating bacteria all stemming from dysbiosis, gut-barrier
dysfunction leading to increased permeability of metabolites and/
or bacteria, and, possibly, decreased hepatic filtration of
inflammatory gut microbial metabolites. There is evidence that
PAH development is, in part, linked to the gut microbiome. One
possible etiologic mechanism is the direct translocation of
bacteria or bacterial components from the gut into the
circulation (15). Supporting this is the finding that mice
heterozygous deficient for the BMPR2 (bone morphogenetic
protein receptor type II) allele develop PAH after acute exposure
to LPS, whereas wild-type mice do not (16). BMPR2 germline
mutations are found in 20% of idiopathic and 80% of heritable
PAH cases (17). Exposure to LPS was associated with increased
cytokine secretion (both in the murine model and in vitro with
cultured pulmonary artery smooth muscle cells from humans
and mice with PAH) (18). Therefore, TLR4 (Toll-like receptor 4),
the receptor for LPS, is thought to play a pivotal role in the
development of PAH. Supporting this proposal, it was found that
TLR4-deficient mice are resistant to developing PAH in a
hypoxia model (16). Supporting a role for gut permeability in
PAH, rats treated with monocrotaline that develop PAH have
increased levels of systemic intestinal fatty acid binding protein
(a marker of gut permeability) (19), small intestinal fibrosis (19),
and increased Firmicutes-to-Bacteroidetes ratio compared with
control rats (19). The sugen-hypoxia rat model of PAH also
replicates an increased Firmicutes-to-Bacteroidetes ratio (20, 21).
Further strengthening the association of how the gut microbiota
may augment the development of PAH, rats given antibiotics
before and after sugen injection and during hypoxia develop
significantly reduced right-ventricular systolic pressure and
reduced vascular remodeling of pulmonary arteries compared
with rats only treated with sugen and hypoxia (21). It is unknown
if these effects are causal in promoting the development of PAH
or are a bystander effect of gut hypoxia or hypoperfusion, and
further research is needed to answer this question. However,

these studies suggest that the microbiome does play a role in
either the development or advancement of PAH. Thus, we
hypothesized that PAH is characterized by gut dysbiosis, leading
to altered intestinal permeability and an altered burden of
circulating microbial metabolic products promoting perivascular
inflammation and PAH.

How Is the Human Gut Microbiome in PAH Different

from that of Healthy Control Subjects?

An analysis of fecal microbiome compositions of patients with PAH
versus a reference cohort using shotgun metagenomics sequencing
has shown distinct differences when ecological metrics are measured,
including decreases in both richness and diversity as measured by the
Shannon and Simpson indices, decreases in evenness (less equal
distribution in relative abundances of all species), and distinction in
relative abundances of the specific species present (22). Providing
further evidence that the microbiome influences disease in PAH, this
study found that the PAH cohort had increases in species that are
positively correlated with TMAO production and decreases in species
that are positively correlated with SCFA secretion compared with the
reference cohort (22).

How Can This Knowledge Be Applied to Treat PAH?

We plan to determine if microbiota transplant therapy (MTT),
also known as fecal microbiota transplant, can treat PAH. This
therapy uses purified bacteria from fecal samples from rigorously
screened healthy donors that are stringently tested for infection-
causing pathogens and then lyophilized and placed in capsule
form to be taken by mouth. MTT is a safe treatment for
Clostridioides difficile colitis (23) and is safe in
immunocompromised patients (24). The oral route of
administration will allow for repeated dosing, which we
anticipate will be important in the absence of antibiotic
conditioning that creates an ecological space for engraftment.

To test MTT, we aim to determine its safety and
feasibility in PAH. Our group has a phase I safety and
feasibility trial for MTT in PAH approved by the U.S. Food
and Drug Administration. In this open-label trial, 12 patients
diagnosed with PAH will receive once-daily MTT capsules for
7 days. Our primary endpoints will be safety and feasibility.
To address these endpoints, we will be monitoring patients for
success in taking capsules and occurrence of adverse events.
Patients will be monitored daily for 2 weeks and then monthly
for 6 months. A timeline of this study is shown in Figure 1.
Although we will not be selecting patients for the study based
on baseline microbiome characteristics or on specific PAH
treatments, if safe and feasible, future randomized placebo-
controlled trials can help determine how MTT impacts disease
based on baseline microbiome characteristics and how various
pharmacologic therapies may be impacted or may impact the
efficacy of MTT (as bacterial metabolism can affect
metabolism of pharmacologic therapies [25]). Future,
randomized placebo-controlled trials can also determine how
MTT can impact concurrent pharmacologic therapeutic effects
on secondary hemodynamic endpoints.

What Would Success Look Like?
We aim to show that MTT is both safe and feasible in PAH. If
achieved, future clinical studies can test the efficacy of MTT in PAH,
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Figure 1. Timeline of open-label phase | clinical trial of microbiota transplant therapy in pulmonary arterial hypertension.
ECHO = echocardiogram; MTT = microbiota transplant therapy; QOL = quality of life.

using a randomized, placebo-controlled, double-blind trial. Our
initial safety and feasibility trial will allow for power calculations for
our randomization through the collection of exploratory secondary
endpoints. These include changes in PAH disease markers, such as
right-ventricular function and pulmonary artery systolic pressure
measured by echocardiography, exercise tolerance measured by a 6-
minute-walk test, and a quality-of-life survey (validated emPHasis-
10) (26) before and 6 months after MTT.

Stool samples from patients with PAH undergoing MTT in our
phase I safety and feasibility trial will be collected before MTT and at
Months 1 and 6 after MTT to study engraftment of donor microbiota.
Engraftment measures how much of the donor bacteria remain in the
microbiomes of patients with PAH to inform pharmacokinetics and
dosing for our efficacy trial.

Conclusions

Though strides have been made in understanding the pathogenesis of
PAH, and pharmacologic therapies have been developed that
improve morbidity and mortality, PAH remains incurable. Therefore,
novel approaches to characterize and treat this disease are needed.
Our study is the first step to investigating MTT as a treatment for
PAH. Additionally, future studies may also allow for the identification
of a specific microbiome signature that can be used as a predictive
biomarker or outcome biomarker for PAH. In future studies, if MTT
succeeds or improves the efficacy of established pharmacologic
therapies, MTT may become a cornerstone for an easy, nontoxic
therapy to improve outcomes in PAH.

The BEAR Cage Innovation Award

Currently in its seventh year, the BEAR Cage (Building Education
to Advance Research) Competition, sponsored by the American
Thoracic Society Drug Device Discovery and Development
Committee, provides early career investigators with the
opportunity to pitch a new technology as an innovative solution to
a pressing human health need. Finalists receive feedback from
members of academia and industry, opening doors for further
project development and collaborations. The winner of the BEAR
Cage Innovation Award benefits from dedicated mentorship with
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the goal of accelerating clinical translation and, ultimately,
impacting patient care. M
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