
sensors

Review

Recent Advances in Collaborative Scheduling of Computing
Tasks in an Edge Computing Paradigm

Shichao Chen 1,2 , Qijie Li 3 , Mengchu Zhou 1,4,5,* and Abdullah Abusorrah 5

����������
�������

Citation: Chen, S.; Li, Q.; Zhou, M.;

Abusorrah, A. Recent Advances in

Collaborative Scheduling of

Computing Tasks in an Edge

Computing Paradigm. Sensors 2021,

21, 779. https://doi.org/10.3390/

s21030779

Received: 28 December 2020

Accepted: 12 January 2021

Published: 24 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Information Tecnology, Macau University of Science and Technology, Macau 999078, China;
shichao.chen@ia.ac.cn

2 The State Key Laboratory for Management and Control of Complex Systems, Institute of Automation,
Chinese Academy of Sciences, Beijing 100190, China

3 School of Mechanical and Electrical Engineering and Automation, Harbin Institute of Technology,
Shenzhen 518000, China; liqijie1998@163.com

4 Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark,
NJ 07102, USA

5 Department of Electrical and Computer Engineering, Faculty of Engineering, and Center of Research
Excellence in Renewable Energy and Power Systems, King Abdulaziz University,
Jeddah 21481, Saudi Arabia; aabusorrah@kau.edu.sa

* Correspondence: mengchu.zhou@njit.edu

Abstract: In edge computing, edge devices can offload their overloaded computing tasks to an
edge server. This can give full play to an edge server’s advantages in computing and storage, and
efficiently execute computing tasks. However, if they together offload all the overloaded computing
tasks to an edge server, it can be overloaded, thereby resulting in the high processing delay of many
computing tasks and unexpectedly high energy consumption. On the other hand, the resources in
idle edge devices may be wasted and resource-rich cloud centers may be underutilized. Therefore, it
is essential to explore a computing task collaborative scheduling mechanism with an edge server, a
cloud center and edge devices according to task characteristics, optimization objectives and system
status. It can help one realize efficient collaborative scheduling and precise execution of all computing
tasks. This work analyzes and summarizes the edge computing scenarios in an edge computing
paradigm. It then classifies the computing tasks in edge computing scenarios. Next, it formulates the
optimization problem of computation offloading for an edge computing system. According to the
problem formulation, the collaborative scheduling methods of computing tasks are then reviewed.
Finally, future research issues for advanced collaborative scheduling in the context of edge computing
are indicated.

Keywords: collaborative scheduling; edge computing; internet of things; limited resources; optimiza-
tion; task offloading

1. Introduction

With the increasing deployment and application of Internet of Things (IoT), more
and more intelligent devices, e.g., smart sensors and smart phones, can access a network,
resulting in a considerable amount of network data. Despite that their computing power is
very rapidly increasing, they are unable to achieve real-time and efficient execution due to
their limited computing resources and ever-demanding applications. When it faces highly
complex computing tasks and services, cloud computing [1,2] can process these tasks to
achieve device–cloud collaboration. In a cloud computing paradigm, users can rely on
extremely rich storage and computing resources of a cloud computing center to expand the
computing and storage power of devices, and achieve the rapid processing of computing-
intensive tasks. Yet there are some disadvantages in the device–cloud collaboration mode,
such as incurring high transmission delay and pushing network bandwidth requirement
to the limit.

Sensors 2021, 21, 779. https://doi.org/10.3390/s21030779 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7677-4211
https://orcid.org/0000-0002-7295-6373
https://orcid.org/0000-0002-5408-8752
https://doi.org/10.3390/s21030779
https://doi.org/10.3390/s21030779
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21030779
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/3/779?type=check_update&version=2

Sensors 2021, 21, 779 2 of 22

In order to solve the problems of cloud computing for data processing, edge com-
puting [3,4] is put forward to provide desired computing services [5] for users by using
computing, network, storage and other resources on edge, that is near a physical entity
or data source. Compared with cloud computing, some applications of users in edge
computing can be processed on an edge server near intelligent devices, thus significantly
reducing data transmission delay and network bandwidth load required in edge-cloud
collaboration. Eliminating long-distance data transmissions encountered in device–cloud
computing brings another advantage to edge computing, i.e., the latter can more effectively
guarantee user data security. As a result, it has become an important development trend to
use edge computing to accomplish various computing tasks for intelligent devices [6,7].
These devices are called edge devices in this paper.

The traditional scheduling strategies of edge computing tasks are to offload all
computing-intensive tasks of edge devices to an edge server for processing [8–10]. How-
ever, it may result in the waste of computing and storage sources in edge devices and cloud
computing centers. In addition, many devices may access an edge server at the same time
period. As a result, the server may face too many computing tasks, thus resulting in a long
queue of tasks. This increases the completion time of all queued tasks, even causing the
processing delay of tasks in the edge server to exceed that at the edge devices. On the other
hand, many edge devices may be idle, resulting in a waste of their computing resources;
and resource-rich cloud centers may be underutilized. To solve the above problems, we
can combine a cloud center, edge servers and edge devices together to efficiently handle
the computing tasks of edge devices via task offloading. According to the computing tasks’
characteristics, optimization objectives and system status, we should utilize the computing
and storage resources of a cloud center, edge servers and edge devices, and schedule
computing tasks to them for processing on demand. It can effectively reduce the load of
edge servers and improve the utilization of resources, and reduce the average completion
time of computing tasks in a system.

This paper focuses on the important problem of collaborative scheduling of com-
puting tasks in an edge computing paradigm under IoT. It is noted that edge computing
systems can be viewed as a special class of distributed computing systems. Traditional task
scheduling in distributed computing focuses on distributing and scheduling a large task
into multiple similarly powerful computing nodes and do not have task off-loading issues
in edging computing [9–12]. Edging computing arises to handle an IoT scenario where
edge devices are resource-constrained and relatively independent. In Section 2, we analyze
the edge computing scenarios, and clarify their composition, characteristics and application
fields. In Section 3, we analyze the computing tasks, and classify them together with factors
influencing their completion. We formulate the optimization problem of computation
offloading with multiple objective functions for an edge computing system in Section 4.
Based on the computing scenarios, computation tasks and formulated optimization model,
we survey and summarize the collaborative scheduling methods of computing tasks in
Section 5. This work is concluded in Section 6 by indicating the open issues for us to build
a desired collaborative scheduling system for edge computing.

2. Computing Scenarios

In IoT, computing resources on edge are mainly composed of edge devices and edge
servers. In order to take the advantages of cloud centers, we also consider them as part of
the whole system in task scheduling. In general, a cloud center contains a large number of
computing servers with high computing power. It is very important to reasonably use the
computing, storage, bandwidth and other system resources to process computing tasks
efficiently. In this section, different computing scenarios are analyzed and summarized
according to the composition of computing resources.

On the edge, we have an edge server, edge devices and an edge scheduler. The server
can provide computing, storage, bandwidth and other resources to support computing
services for the edge computing tasks. Edge devices can execute computing tasks and

Sensors 2021, 21, 779 3 of 22

may offload such tasks to the server and other available/idle edge devices. They have
computing, storage, network and other resources, and can provide limited computing
services for edge computing tasks. They have much fewer resources than edge servers do.
An edge scheduler receives the computing tasks offloaded by edge devices, and provides
scheduling services for the edge computing tasks according to the resources and status
of all edge servers and edge devices under its supervision. It is a controller to realize the
collaborative scheduling between edge servers and edge devices. But it does not have to
be in an edge computing system.

According to the difference among the computing resources involved in the offloading
and scheduling of computing tasks in edge computing, computing scenarios can be divided
into four categories, i.e., basic, scheduler-based, edge-cloud computing, and scheduler-
based edge-cloud one. Their characteristics and application are described next. An edge
computing architecture is shown in Figure 1.

Sensors 2021, 21, x FOR PEER REVIEW 3 of 22

On the edge, we have an edge server, edge devices and an edge scheduler. The server
can provide computing, storage, bandwidth and other resources to support computing
services for the edge computing tasks. Edge devices can execute computing tasks and may
offload such tasks to the server and other available/idle edge devices. They have compu-
ting, storage, network and other resources, and can provide limited computing services
for edge computing tasks. They have much fewer resources than edge servers do. An edge
scheduler receives the computing tasks offloaded by edge devices, and provides schedul-
ing services for the edge computing tasks according to the resources and status of all edge
servers and edge devices under its supervision. It is a controller to realize the collaborative
scheduling between edge servers and edge devices. But it does not have to be in an edge
computing system.

According to the difference among the computing resources involved in the offload-
ing and scheduling of computing tasks in edge computing, computing scenarios can be
divided into four categories, i.e., basic, scheduler-based, edge-cloud computing, and
scheduler-based edge-cloud one. Their characteristics and application are described next.
An edge computing architecture is shown in Figure 1.

Core Networks

Cloud Sever

Edge Sever Edge Sever Edge Sever

End Users
Figure 1. Edge computing architecture.

2.1. Basic Edge Computing
The first scenario is composed of edge devices and edge servers. There is no edge

scheduler on the edge. In this scenario, an edge device can execute a computing task lo-
cally, or offload it to its edge server. The edge server executes it, and then feeds back the
computing result to the corresponding edge device. This scenario is similar to the scene
that devices offload tasks to be performed in a cloud computing center. It is the simplest
scenario in edge computing. There is no edge scheduler on the edge. For the computing
tasks that can be offloaded to the edge servers, their offloading locations are fixed. More-
over, the processed types of computing tasks are fixed, and the specific types are deter-
mined by edge server resources. In addition, this scenario does not contain a cloud com-
puting center. Hence, it is more suitable for processing tasks with a small amount of com-
putation and strict delay requirements in a relatively closed environment. Its architecture
is shown in Figure 2, which has been used in [11].

According to the above analysis, the Quality of Service (QoS) levels are expected to
be achieved with the proposed scenario. Task completion time is used to measure QoS.
We assume that all edge servers are same and all edge devices are uniform. Note that most
of the presented content can be easily extended to heterogeneous devices and servers.

Let 𝜏 denote the completion time of a task offloaded to an edge server, which in-
cludes data transmission latency between an edge device and an edge server, and task
processing time in an edge server and waiting time before it is processed. Let denote

Figure 1. Edge computing architecture.

2.1. Basic Edge Computing

The first scenario is composed of edge devices and edge servers. There is no edge
scheduler on the edge. In this scenario, an edge device can execute a computing task
locally, or offload it to its edge server. The edge server executes it, and then feeds back
the computing result to the corresponding edge device. This scenario is similar to the
scene that devices offload tasks to be performed in a cloud computing center. It is the
simplest scenario in edge computing. There is no edge scheduler on the edge. For the
computing tasks that can be offloaded to the edge servers, their offloading locations are
fixed. Moreover, the processed types of computing tasks are fixed, and the specific types
are determined by edge server resources. In addition, this scenario does not contain a
cloud computing center. Hence, it is more suitable for processing tasks with a small
amount of computation and strict delay requirements in a relatively closed environment.
Its architecture is shown in Figure 2, which has been used in [11].

According to the above analysis, the Quality of Service (QoS) levels are expected to be
achieved with the proposed scenario. Task completion time is used to measure QoS. We
assume that all edge servers are same and all edge devices are uniform. Note that most of
the presented content can be easily extended to heterogeneous devices and servers.

Sensors 2021, 21, 779 4 of 22

Sensors 2021, 21, x FOR PEER REVIEW 4 of 22

the time to run a single instruction and be the waiting time before a task to be pro-
cessed in an edge server. 𝐺 is the number of instructions for this task processing. Then
the completion time of a task can be computed as: 𝜏 = 𝑛(1 + 𝑃ఛത)𝜏̅ + + 𝐺 (1)

where 𝑛 is the number of packets transmitted, which includes the process of bidirectional
data transmission between an edge device and an edge server, 𝑃ఛത is the packet loss rate
between an edge device and an edge server, occurring during 𝑛 packet transmissions. 𝜏̅
is the average latency per packet between an edge device and an edge server, which in-
cludes the sum of delays caused by processing, queuing, and transmission of 𝑛 packets.

Edge Server Edge Server Edge Server

MAN

WLAN WLAN WLAN

Figure 2. Basic edge computing (MAN: metropolitan area network and WLAN: wireless local area
network).

2.2. Scheduler-Based Edge Computing
The second one is composed of edge devices, edge servers and an edge scheduler.

Compared with the first one, it includes an edge scheduler, which can schedule tasks stra-
tegically. In this scenario, an edge device can process a computing task locally or offload
its task to an edge scheduler. The edge scheduler reasonably schedules the tasks to edge
servers and edge devices according to scheduling policies. The policies are formed based
on the current computing, storage, task execution status, network status, and other infor-
mation related to all edge servers and devices. Finally, the scheduler feeds the computing
results back to the source devices. The main feature of this scenario is that the computing
tasks can be reasonably scheduled to different servers and edge devices by the edge sched-
uler, so that the collaborative processing of computing tasks in different edge servers and
edge devices can be well-realized. The computing resources of edge devices can be fully
utilized. The types of computing resources on the edge are diverse; so are the types of
computing tasks that can be processed. The computing and storage resources on the edge
are limited in comparison with a cloud computing center. Clearly, this architecture is suit-
able for processing tasks with a small amount of computation and strict delay require-
ments, as shown in Figure 3. The study [12] has adopted it.

Edge Server Edge Server Edge Server

MAN

WLAN WLAN WLAN

Edge
Scheduler

Figure 3. Scheduler-based edge computing.

Figure 2. Basic edge computing (MAN: metropolitan area network and WLAN: wireless local
area network).

Let τ denote the completion time of a task offloaded to an edge server, which includes
data transmission latency between an edge device and an edge server, and task processing
time in an edge server and waiting time before it is processed. Let η denote the time to
run a single instruction and Ω be the waiting time before a task to be processed in an edge
server. G is the number of instructions for this task processing. Then the completion time
of a task can be computed as:

τ = n(1 + Pτ)τ + Ω + ηG (1)

where n is the number of packets transmitted, which includes the process of bidirectional
data transmission between an edge device and an edge server, Pτ is the packet loss rate
between an edge device and an edge server, occurring during n packet transmissions. τ is
the average latency per packet between an edge device and an edge server, which includes
the sum of delays caused by processing, queuing, and transmission of n packets.

2.2. Scheduler-Based Edge Computing

The second one is composed of edge devices, edge servers and an edge scheduler.
Compared with the first one, it includes an edge scheduler, which can schedule tasks
strategically. In this scenario, an edge device can process a computing task locally or offload
its task to an edge scheduler. The edge scheduler reasonably schedules the tasks to edge
servers and edge devices according to scheduling policies. The policies are formed based on
the current computing, storage, task execution status, network status, and other information
related to all edge servers and devices. Finally, the scheduler feeds the computing results
back to the source devices. The main feature of this scenario is that the computing tasks
can be reasonably scheduled to different servers and edge devices by the edge scheduler,
so that the collaborative processing of computing tasks in different edge servers and edge
devices can be well-realized. The computing resources of edge devices can be fully utilized.
The types of computing resources on the edge are diverse; so are the types of computing
tasks that can be processed. The computing and storage resources on the edge are limited
in comparison with a cloud computing center. Clearly, this architecture is suitable for
processing tasks with a small amount of computation and strict delay requirements, as
shown in Figure 3. The study [12] has adopted it.

Sensors 2021, 21, 779 5 of 22

Sensors 2021, 21, x FOR PEER REVIEW 4 of 22

the time to run a single instruction and be the waiting time before a task to be pro-
cessed in an edge server. 𝐺 is the number of instructions for this task processing. Then
the completion time of a task can be computed as: 𝜏 = 𝑛(1 + 𝑃ఛത)𝜏̅ + + 𝐺 (1)

where 𝑛 is the number of packets transmitted, which includes the process of bidirectional
data transmission between an edge device and an edge server, 𝑃ఛത is the packet loss rate
between an edge device and an edge server, occurring during 𝑛 packet transmissions. 𝜏̅
is the average latency per packet between an edge device and an edge server, which in-
cludes the sum of delays caused by processing, queuing, and transmission of 𝑛 packets.

Edge Server Edge Server Edge Server

MAN

WLAN WLAN WLAN

Figure 2. Basic edge computing (MAN: metropolitan area network and WLAN: wireless local area
network).

2.2. Scheduler-Based Edge Computing
The second one is composed of edge devices, edge servers and an edge scheduler.

Compared with the first one, it includes an edge scheduler, which can schedule tasks stra-
tegically. In this scenario, an edge device can process a computing task locally or offload
its task to an edge scheduler. The edge scheduler reasonably schedules the tasks to edge
servers and edge devices according to scheduling policies. The policies are formed based
on the current computing, storage, task execution status, network status, and other infor-
mation related to all edge servers and devices. Finally, the scheduler feeds the computing
results back to the source devices. The main feature of this scenario is that the computing
tasks can be reasonably scheduled to different servers and edge devices by the edge sched-
uler, so that the collaborative processing of computing tasks in different edge servers and
edge devices can be well-realized. The computing resources of edge devices can be fully
utilized. The types of computing resources on the edge are diverse; so are the types of
computing tasks that can be processed. The computing and storage resources on the edge
are limited in comparison with a cloud computing center. Clearly, this architecture is suit-
able for processing tasks with a small amount of computation and strict delay require-
ments, as shown in Figure 3. The study [12] has adopted it.

Edge Server Edge Server Edge Server

MAN

WLAN WLAN WLAN

Edge
Scheduler

Figure 3. Scheduler-based edge computing. Figure 3. Scheduler-based edge computing.

According to this scenario, the task can be scheduled to an edge server for handling by
an edge scheduler. Similar to the first scenario, the completion time of the task scheduled
to a target edge server can be computed as:

ρ = n
(
1 + Pρ

)
ρA + n

(
1 + Pρ

′)ρB + Ω + ηG (2)

where Pρ is the packet loss rate between an edge device and an edge scheduler, and Pρ
′ is

the packet loss rate between an edge scheduler and a target edge server, occurring during
n packets’ transmission. ρA is the average latency per packet between an edge device and
an edge scheduler, and ρB is the average latency per packet between an edge scheduler
and a target edge server, which includes the sum of delays caused by processing, queuing
and transmission of n packets. If the task of an edge device is directly scheduled to its edge
server, Pρ = Pτ , τ = ρA, ρB = 0 and ρ = τ.

Let η′ denote the time to run a single instruction and G′ be the number of instructions
for this task processing in an edge device. The completion time of the task scheduled to a
target device can be computed as:

ρ = n
(
1 + Pρ

)
ρA + n

(
1 + Pρ

′′
)
ρC + Ω′ + η′G′ (3)

where Pρ
′′ is the packet loss rate between an edge scheduler and a target edge device,

occurring during n packet transmissions. ρC is the average latency per packet between
an edge scheduler and a target edge device, which includes the sum of delays caused by
processing, queuing and transmission of n packets. Ω′ is the waiting time before a task is
processed at an edge device.

Compared to the first scenario, the significant difference is that an edge scheduler can
schedule the tasks to an idle edge server according to the network’s real-time status and
edge servers. If the task processing time accounts for a large proportion of the total time,
then it offers more advantages over the first one.

2.3. Edge-Cloud Computing

This scenario is composed of edge devices, edge servers and a cloud computing
center, and has no edge scheduler on the edge. An edge device can execute a computing
task locally, or offload it to its edge sever or cloud center. Its difference from the first
scenario is that its edge devices can offload their tasks to their cloud computing center.
The specific offloading to an edge server or cloud computing center is determined by edge
devices according to the attributes of their computing tasks and the QoS requirements
from users. Its main feature is the same as the first scenario, i.e., the offloading location of
an edge computing task and types are fixed. All the tasks that require a large amount of
computation and are insensitive to delay on the edge can be offloaded to a cloud computing
center. Therefore, the processing of computing tasks in this architecture is not affected by
computing amount i.e., but only by the types of edge environment resources, as is shown
in Figure 4. Such architectures are adopted in [13].

Sensors 2021, 21, 779 6 of 22
Sensors 2021, 21, x FOR PEER REVIEW 6 of 22

 Cloud Center

Edge Server Edge Server Edge Server

WAN

MAN

WLAN WLANWLAN

Figure 4. Edge-cloud computing.

In this scenario, a task can be handled in an edge server or a cloud server. We formu-
lize this scenario with the completion time, according to the location where the task is
handled. The completion time of the task offloaded to an edge server is same as Equation
(1).

Let 𝜁 denote the completion time of a task offloaded to a cloud center, which in-
cludes data transmission latency between an edge device and a cloud center and task pro-
cessing time in a cloud center. We assume that a cloud center is resource-intensive and
the task computation does not need to wait. The completion time of a task can then be
computed as follows: 𝜁 = 𝑛൫1 + 𝑃ത ൯𝜁̅ + 𝛾𝐺 (4)

where 𝑛 is the number of packets transmitted, which includes the process of bidirectional
data transmission between an edge device and a cloud center, 𝑃ത is the packet loss rate
between an edge device and a cloud center, occurring during 𝑛 packets transmission, 𝜁 ̅
is the average latency per packet between an edge device and a cloud center, which in-
cludes the sum of delays caused by processing, queuing and transmission of 𝑛 packets,
and 𝛾 represents the time to run a single command in a cloud center.

2.4. Scheduler-Based Edge-Cloud Computing
The fourth scenario is composed of edge devices, edge servers, a cloud computing

center and an edge scheduler. In this scenario, an edge device can execute its computing
tasks locally or offload the tasks to the edge scheduler. Compared with the third architec-
ture, the difference is that the edge scheduler receives all the computing tasks offloaded
by edge devices, and schedules the computing tasks to proper computing entities (edge
servers, idle edge devices, and/or a cloud computing center) for performing the services
according to the computing resources, storage resources, network bandwidth and charac-
teristics of tasks. It can give full play to the synergetic advantages among edge devices,
edge servers and a cloud computing center. Its main feature is the same as the second one,
i.e., the offloading position of edge computing tasks is uncertain, and the types are di-
verse. The processing of computing tasks is not affected by computing amount, but only
by the types of edge environment resources. Its architecture is shown in Figure 5. It is used
in [14].

Figure 4. Edge-cloud computing.

In this scenario, a task can be handled in an edge server or a cloud server. We formulize
this scenario with the completion time, according to the location where the task is handled.
The completion time of the task offloaded to an edge server is same as Equation (1).

Let ζ denote the completion time of a task offloaded to a cloud center, which includes
data transmission latency between an edge device and a cloud center and task processing
time in a cloud center. We assume that a cloud center is resource-intensive and the task
computation does not need to wait. The completion time of a task can then be computed
as follows:

ζ = n(1 + Pζ)ζ + γG (4)

where n is the number of packets transmitted, which includes the process of bidirectional
data transmission between an edge device and a cloud center, Pζ is the packet loss rate
between an edge device and a cloud center, occurring during n packets transmission, ζ is
the average latency per packet between an edge device and a cloud center, which includes
the sum of delays caused by processing, queuing and transmission of n packets, and γ
represents the time to run a single command in a cloud center.

2.4. Scheduler-Based Edge-Cloud Computing

The fourth scenario is composed of edge devices, edge servers, a cloud computing cen-
ter and an edge scheduler. In this scenario, an edge device can execute its computing tasks
locally or offload the tasks to the edge scheduler. Compared with the third architecture, the
difference is that the edge scheduler receives all the computing tasks offloaded by edge
devices, and schedules the computing tasks to proper computing entities (edge servers,
idle edge devices, and/or a cloud computing center) for performing the services according
to the computing resources, storage resources, network bandwidth and characteristics of
tasks. It can give full play to the synergetic advantages among edge devices, edge servers
and a cloud computing center. Its main feature is the same as the second one, i.e., the
offloading position of edge computing tasks is uncertain, and the types are diverse. The
processing of computing tasks is not affected by computing amount, but only by the types
of edge environment resources. Its architecture is shown in Figure 5. It is used in [14].

Sensors 2021, 21, 779 7 of 22
Sensors 2021, 21, x FOR PEER REVIEW 7 of 22

 Cloud Center

Edge Server Edge Server Edge Server

WAN

MAN

WLAN WLAN WLAN

Edge
Scheduler

Figure 5. Scheduler-based edge-cloud computing.

In this scenario, the tasks can be handled in an idle edge server, a cloud server or an
edge device. They can be scheduled to appropriate locations by an edge scheduler. Similar
to the second scenario, the completion time of a task scheduled to a target edge server is
the same as Equation (2). The completion time of a task scheduled to a target edge device
is the same as Equation (3).

The completion time of a task scheduled to a cloud center can be computed as: 𝜖 = 𝑛(1 + 𝑃ఢത)𝜖̅ + 𝑛(1 + 𝑃ఢത ᇱ)𝜖̅ + 𝛾𝐺 (5)

where 𝑃ఢത is the packet loss rate between an edge device and an edge scheduler, and 𝑃ఢത ᇱ
is the packet loss rate between an edge scheduler and a cloud center, occurring during 𝑛
packets transmission. 𝜖̅ is the average latency per packet between an edge device and
an edge scheduler and 𝜖̅ is the average latency per packet between an edge scheduler
and a cloud center, which includes the sum of delays caused by processing, queuing and
transmission of 𝑛 packets.

Compared to other scenarios, the offloaded tasks can be scheduled to a suitable loca-
tion by an edge scheduler according to the attributes of tasks and the real-time status of
network, edge servers and cloud servers, which can give full play to the computing power
of the whole network system to achieve the best QoS.

3. Computing Task Analysis
Next, the computing tasks are analyzed to ensure that they can be accurately sched-

uled to an appropriate node, and achieve the expected objectives, e.g., the minimal task
completion time and least energy consumption. According to task attributes, we judge
whether they can be split or not and whether there is interdependence among subtasks
[15]. A specific judgment criterion is that if computing tasks are simple or highly inte-
grated, they cannot be split, and they can only be executed locally as a whole at the edge
devices or completely offloaded to edge servers. If they can be segmented based on their
code and/or data [16,17], they can be divided into several parts, which can be offloaded.
In summary, we have three modes, i.e., local execution, partial offloading and full offload-
ing given computing tasks. The specific offloading location of computing tasks should be
well considered according to the computing power of devices, current network status,
and resource status of edge devices, edge servers and a cloud computing center.

3.1. Local Execution
Whether edge computing tasks are executed locally or not should be determined ac-

cording to the resources of an edge device, edge servers’ network and resource status. If
the available network bandwidth is not enough to support the successful uploading of a

Figure 5. Scheduler-based edge-cloud computing.

In this scenario, the tasks can be handled in an idle edge server, a cloud server or an
edge device. They can be scheduled to appropriate locations by an edge scheduler. Similar
to the second scenario, the completion time of a task scheduled to a target edge server is
the same as Equation (2). The completion time of a task scheduled to a target edge device
is the same as Equation (3).

The completion time of a task scheduled to a cloud center can be computed as:

ε = n(1 + Pε)εA + n
(
1 + Pε

′)εB + γG (5)

where Pε is the packet loss rate between an edge device and an edge scheduler, and Pε
′

is the packet loss rate between an edge scheduler and a cloud center, occurring during n
packets transmission. εA is the average latency per packet between an edge device and
an edge scheduler and εB is the average latency per packet between an edge scheduler
and a cloud center, which includes the sum of delays caused by processing, queuing and
transmission of n packets.

Compared to other scenarios, the offloaded tasks can be scheduled to a suitable
location by an edge scheduler according to the attributes of tasks and the real-time status of
network, edge servers and cloud servers, which can give full play to the computing power
of the whole network system to achieve the best QoS.

3. Computing Task Analysis

Next, the computing tasks are analyzed to ensure that they can be accurately sched-
uled to an appropriate node, and achieve the expected objectives, e.g., the minimal task
completion time and least energy consumption. According to task attributes, we judge
whether they can be split or not and whether there is interdependence among subtasks [15].
A specific judgment criterion is that if computing tasks are simple or highly integrated,
they cannot be split, and they can only be executed locally as a whole at the edge devices
or completely offloaded to edge servers. If they can be segmented based on their code
and/or data [16,17], they can be divided into several parts, which can be offloaded. In
summary, we have three modes, i.e., local execution, partial offloading and full offloading
given computing tasks. The specific offloading location of computing tasks should be well
considered according to the computing power of devices, current network status, and
resource status of edge devices, edge servers and a cloud computing center.

3.1. Local Execution

Whether edge computing tasks are executed locally or not should be determined
according to the resources of an edge device, edge servers’ network and resource status.
If the available network bandwidth is not enough to support the successful uploading of

Sensors 2021, 21, 779 8 of 22

a task, i.e., the remaining bandwidth of the current network is less than the bandwidth
required for the uploading of the task, the computing task can only be performed locally. In
addition, if the computing resources of edge servers are not available, resulting in that the
computing tasks cannot be processed in time, the tasks have to be executed locally. If the
computing power of an edge device itself can meet the service requirements, it performs
its tasks locally, thus effectively reducing the workload of an edge server and the need for
network bandwidth.

3.2. Full Offloading

Answering whether edge computing tasks are completely offloaded to an edge server
or scheduler or not needs one to consider the resources of edge devices, current network,
availability of edge servers’ resources and system optimization effect. If (1) the currently
available network bandwidth supports the successful offloading of edge computing tasks,
and (2) the edge servers or other edge devices are idle and the computing tasks that are
successfully offloaded can be processed immediately, then, according to a scheduling goal,
the results of local execution and full offloading to the edge servers are compared, and
local execution or offloading of the computing tasks is decided. For example, if the goal is
to minimize the completion time required for processing a task, it is necessary to compare
the completion time required for local execution with the one required for offloading to
an edge server/cloud computing center. If the local execution takes less time, the tasks
should be processed locally. Otherwise, they should be offloaded to the edge servers or
cloud computing center for processing.

3.3. Partial Offloading

An indivisible computing task at an edge device can only be executed locally or
completely offloaded to the edge scheduler, which then assigns it to an appropriate edge
server or idle edge device. Divisible computing tasks can enjoy partial offloading. Their
split sub-tasks should be taken as a scheduling unit, and the resources of edge devices,
network and the resources of edge servers should be considered comprehensively when
they are scheduled. Considering the final processing effect of the overall tasks, each
sub-task should be assigned to an appropriate computing node for processing. For the
split computing task, if there are no interdependence among the sub-tasks, they can be
assigned to different nodes to be processed at the same time so as to achieve the purpose
of minimizing energy consumption and reducing task completion time. If there are some
interdependence among the sub-tasks, the interdependent subtasks should be assigned to
the same computing node for execution.

There are many methods for splitting tasks. Yang et al. [18] study the application
repartition problem of periodically updating partition during application execution, and
propose a framework for the repartition of an application in a dynamic mobile cloud
environment. Based on their framework, they design an online solution for the dynamic
network connection of cloud, which can significantly shorten the completion time of
applications. Yang et al. [19] consider the computing partition of multi-users and the
scheduling of offloading computing tasks on cloud resources. According to the number
of resources allocated on the cloud, an offline heuristic algorithm called SearchAdjust is
designed to solve the problem, thus minimizing the average completion time of a user’s
applications. Liu et al. [20] make an in-depth study on the energy consumption, execution
delay and cost of an offloading process in a mobile edge server system by using queuing
theory, and put forward an effective solution to solve their formulated multi-objective
optimization problems. The analysis result of computing tasks is summarized in Figure 6.

Sensors 2021, 21, 779 9 of 22
Sensors 2021, 21, x FOR PEER REVIEW 9 of 22

Computing task

Inseparable

Divisible

Local execution

Full offloading

Local
execution

Full
Offloading

Partial
Offloading

 The resources of devices cannot meet the service requirements of users
 The network is enough and task data can be offloaded successfully
 Edge server resources are available

 The resources of devices can meet the service requirements of users
 The network is crowded and task data cannot be offloaded successfully
 Edge server resources are not available

All parts of the computing task cannot be offloaded

All parts of the computing task can be offloaded, and quality of services
for the user task is higher after offloading

Each sub-task is independent of each other

Each sub-task depends on each other

Each sub-task can be assigned to different edge
nodes/serversand processed at the same time

Dependent sub-tasks can only be assigned
to the same edge node/sever

Figure 6. Computing task analysis and execution.

4. System Model and Problem Formulation
We can optimize multiple objective functions for computation offloading in an edge

computing model. They include average or total delay time and energy consumption.

4.1. System Model
A typical model is shown in Figure 7. We assume that the system consists of 𝑁 edge

devices, an edge cloud and a cloud center. It is assumed that an edge cloud [21] consists
of n edge servers powered on. We consider the queue model at an edge device as a M/M/1
queue, an edge cloud as M/M/n queue, and the cloud center as an M/M/∞ queue. Each
edge device can offload a part or whole of its tasks to an edge cloud through a wireless
channel. If the number of offloaded tasks exceeds the maximum one that an edge cloud
can process, the edge cloud may further offload such overloaded tasks to the cloud center
for processing.

In this computing system, let D = {𝑑ଵ, 𝑑ଶ, … , 𝑑ே}, where D is the set of edge devices
and 𝑑 is the 𝑖th edge device. let S = {𝑆ଵ, 𝑆ଶ, … , 𝑆}, where 𝑆 is the 𝑘th edge server. We
assume that the tasks generated by edge device 𝑑 obey a Poisson process with an aver-
age arrival rate 𝜆 and contains data of size 𝛽. Let 𝑢 denote as an average service rate
of edge device 𝑑. We denote 𝜗 as the probability of the edge device 𝑑 choosing to of-
fload the task to an edge server. Then the tasks are offloaded to cloud follow a Poisson
process with an average arrival rate 𝜗𝜆, and the tasks that are locally processed also fol-
low a Poisson process with an arrival rate (1 − 𝜗)𝜆. Let 𝑄 = {𝑄ଵ, 𝑄ଶ, … , 𝑄ே} where 𝑄
denotes the maximum task queue buffer of edge device 𝑑. We assume that an edge cloud
has a single queue buffer and let 𝑄 denote its maximum task queue buffer.

Figure 6. Computing task analysis and execution.

4. System Model and Problem Formulation

We can optimize multiple objective functions for computation offloading in an edge
computing model. They include average or total delay time and energy consumption.

4.1. System Model

A typical model is shown in Figure 7. We assume that the system consists of N edge
devices, an edge cloud and a cloud center. It is assumed that an edge cloud [21] consists of
n edge servers powered on. We consider the queue model at an edge device as a M/M/1
queue, an edge cloud as M/M/n queue, and the cloud center as an M/M/∞ queue. Each
edge device can offload a part or whole of its tasks to an edge cloud through a wireless
channel. If the number of offloaded tasks exceeds the maximum one that an edge cloud
can process, the edge cloud may further offload such overloaded tasks to the cloud center
for processing.

In this computing system, let D = {d1, d2, . . . , dN}, where D is the set of edge devices
and di is the ith edge device. let S = {S1, S2, . . . , Sn}, where Sk is the kth edge server. We
assume that the tasks generated by edge device di obey a Poisson process with an average
arrival rate λi and contains data of size βi. Let ui denote as an average service rate of edge
device di. We denote ϑi as the probability of the edge device di choosing to offload the
task to an edge server. Then the tasks are offloaded to cloud follow a Poisson process with
an average arrival rate ϑiλi, and the tasks that are locally processed also follow a Poisson
process with an arrival rate (1− ϑi)λi. Let Q = {Q̂1, Q̂2, . . . , Q̂N} where Q̂i denotes the
maximum task queue buffer of edge device di. We assume that an edge cloud has a single
queue buffer and let Q̂C denote its maximum task queue buffer.

Sensors 2021, 21, 779 10 of 22
Sensors 2021, 21, x FOR PEER REVIEW 10 of 22

d1 d2 di dN
Task

Queue
Task

Queue Task
Queue

Task
Queue

... ...

Edge
Cloud

Cloud
Center

Figure 7. Edge computing model.

4.2. Communications Model
Let ℎ denote the channel power gain between edge device 𝑑 and an edge cloud.

Denote 𝑝 as the transmission power of edge device 𝑑, 0＜𝑝 ＜𝑝పෝ , where 𝑝పෝ is its maxi-
mum transmission power. The uplink data rate for computation offloading of edge device 𝑑 can be obtained as follows [22]: 𝑅 = 𝜅𝐵𝑙𝑜𝑔ଶ(1 + 𝑝ℎ𝜎𝐵) (6)

where 𝐵 is the channel bandwidth, and 𝜎denotes the noise power spectral density at the
receiver, and 𝜅 is the portion of bandwidth of an edge cloud’s channels allocated to edge
device 𝑑, where 0 ≤ 𝜅 ≤ 1.

4.3. Task Offloading Model
(1) Local execution model
Let 𝑤 denote the normalized workload on the edge device 𝑑. It represents the per-

centage of central processing unit (CPU) that has been used. According a queue model
M/M/1, we obtain the response time is 𝑇 = ଵ ௨ൗଵିఘ , where 𝜌 = ఒ௨ is the utilization, 𝜆 is the
task arrival rate of edge device 𝑑 [23]. We can compute the average response time of
locally processing the tasks at edge device 𝑑 as follows: 𝑇, = 1𝑢(1 − 𝑤) − (1 − 𝜗)𝜆 + 1𝑢 (7)where 0 ≤ 𝑤 < 1 and 0 ≤ (1 − 𝜗)𝜆𝛽 ≤ 𝑄.

The energy consumption of locally processing the tasks at edge device 𝑑 can be
given as follows: 𝐸, = 𝑃𝑇, (8) (8)

where 𝑃 denotes as computing power of edge device 𝑑 when the tasks are locally pro-
cessed.

(2) Edge cloud execution model
According to above analysis, we can obtain the transmission time of offloading the

tasks from edge device 𝑑 to an edge cloud as follows: 𝑇෨ = 𝜗𝜆𝛽𝑅 (9)

In (9), 0 ≤ 𝜗𝜆𝛽 ≤ 𝑄 .

Figure 7. Edge computing model.

4.2. Communications Model

Let hi denote the channel power gain between edge device di and an edge cloud.
Denote pi as the transmission power of edge device di, 0 < pi <p̂i, where p̂i is its maximum
transmission power. The uplink data rate for computation offloading of edge device di can
be obtained as follows [22]:

Ri = κiBlog2(1 +
pihi
σB

) (6)

where B is the channel bandwidth, and σ denotes the noise power spectral density at the
receiver, and κi is the portion of bandwidth of an edge cloud’s channels allocated to edge
device di, where 0 ≤ κi ≤ 1.

4.3. Task Offloading Model

(1) Local execution model
Let wi denote the normalized workload on the edge device di. It represents the

percentage of central processing unit (CPU) that has been used. According a queue model

M/M/1, we obtain the response time is T =
1
u

1−ρ , where ρ = λ
u is the utilization, λ is the

task arrival rate of edge device di [23]. We can compute the average response time of locally
processing the tasks at edge device di as follows:

Ti,o =
1

ui(1− wi)− (1− ϑi)λi
+

1
ui

(7)

where 0 ≤ wi < 1 and 0 ≤ (1− ϑi)λiβi ≤ Q̂C.
The energy consumption of locally processing the tasks at edge device di can be given

as follows:
Ei,o = PiTi, o (8)

where Pi denotes as computing power of edge device di when the tasks are locally processed.
(2) Edge cloud execution model
According to above analysis, we can obtain the transmission time of offloading the

tasks from edge device di to an edge cloud as follows:

T̃i =
ϑiλiβi

Ri
(9)

In (9), 0 ≤ ϑiλiβi ≤ Q̂C .

Sensors 2021, 21, 779 11 of 22

Let Ẽi denote the energy consumption of transmitting the tasks from edge device di to
an edge cloud, and it is as follows:

Ẽi = pi T̃i (10)

According to the queue model M/M/n, let χ = {χ1, χ2, . . . , χn}, where χk is the service
rate of the kth edge server. We use fk to denote the CPU cycle frequency and ω̂k to denote
the maximum workload capacity of the kth edge server. Let λ̂ denote the maximum task
accepted rate of the edge cloud.

The total task arrival rate from N edge devices to an edge cloud can be computed as:

λall =
N

∑
i=1

ϑiλi (11)

Then the fraction of tasks ϕ that the edge cloud can compute is be given:

ϕ =

{
1 λ̂ ≥ λall

λ̂
λall

λ̂<λall
(12)

Hence, the actual execution rate at the edge cloud can be denoted as:

λ̃ = ϕλall (13)

We can get the average waiting time of each task at an edge cloud.

Ti, W =
S

∑n
k=1 χk − λ̃

(14)

where S denotes the utilization of an edge cloud.
The average computing time of each task is:

Ti,C =
n

∑n
k=1 χk

(15)

According to [24], the workload of each edge server cannot exceed its maximum
workload, and we can obtain the constraints:

0 <
fk
χk
≤ ω̂k (16)

Let ur denote the transmission service rate of an edge cloud, we can get the expected
waiting time for the computation results:

Ti =
1

ur − λ̃
(17)

Similar to many studies [25,26], because the amount of data for the computation
results is generally small, we ignore the transmission delay and energy consumption for an
edge cloud to send the results back to an edge device.

We can get the energy consumption of edge device di when the offloaded tasks of
edge device di are processed:

Ei, W = p′i(Ti,W + Ti,C + Ti
)

(18)

where p′i is the computation power of edge device di after offloading tasks.

Sensors 2021, 21, 779 12 of 22

Let
=
Ti denote the total time of an offloading process from the task transmission of

edge device di to the computation results returned of an edge cloud. We have:

=
Ti = T̃i + Ti, W + Ti,C + Ti (19)

The energy consumption of offloading process at edge device di can be obtained as:

=
Ei= Ẽi+Ei, W (20)

(3) Cloud execution model
When λall>λ̂ is realizable, the overloaded tasks are transmitted to the cloud center by
wire network. Let TN denote a fixed communication time between an edge server and a
data center. Due to the enough computing power of the cloud center, we assume no task
waiting time at the cloud center. According to the queue model M/M/∞, let uCC denote
the service rate of a cloud center. The execution time of an overloaded task is:

Ti,CC = TN +
1

uCC
(21)

The expected time for the results of overloaded tasks from a cloud center back to the
corresponding edge device:

T′i,CC =
1

ur − λ̃
+ TN (22)

Let
=
Ti,CC denote the total time of an offloading process from the task transmission of

edge device di to the computation results returned from a cloud center. We have:

=
Ti,CC = Ti,CC + T′i,CC (23)

The corresponding energy consumption is:

=
Ei,CC = p′i (Ti,cc + T′i,CC) (24)

4.4. Problem Formulation

From (7), (8), (14), (15), (17), (21) and (22), we can obtain the execution delay time for
edge device di, i.e.,

Ti = Ti, o + T̃i + ϕ
(
Ti,W + Ti,C + Ti

)
+ (1− ϕ)(Ti,CC + T′i,CC) (25)

So, the average delay time of all edge devices in the computing system is:

T =
1
N

N

∑
i=1

Ti (26)

To minimize the total execution time of these tasks in edge computing system, we
formulate the optimization problem as:

Min
{

T
}

(27)

subject to:
(1− ϑi)λi<ui(1− wi) (28)

0 ≤ (1− ϑi)λiβi ≤ Q̂i (29)

0 ≤ ϑiλiβi ≤ Q̂C (30)

Sensors 2021, 21, 779 13 of 22

λ̃ <
n

∑
k=1

χk (31)

0 < pi > p̂i (32)

0 ≤ ϑi ≤ 1 (33)

0 ≤ wi < 1 (34)

0 ≤ θi ≤ 1 (35)

and (16).
From (8), (10), (18) and (24), we can get the energy consumption for edge device di,

which is given as follows:

Ei = Ei, o + Ẽi + ϕEi, W + (1− ϕ)
=
Ei,CC (36)

So, the average energy consumption of all edge devices in the computing system are
denoted as follows:

E =
1
N

N

∑
i=1

Ei (37)

To minimize the energy consumption of these tasks in an edge computing system, we
formulate the optimization problem as:

Min
{

E
}

(38)

subject to: (16) and (28)–(35).
Min{T} and Min

{
E
}

together with the related constraints lead to a biobjective opti-
mization problems. It can be solved with different methods [27–29].

Problem (27) represents a constrained mixed integer non-linear program to make
the optimal offloading decisions. Its exact optimal solution complexity is NP-hard, and
cannot be solved with polynomial-time methods. We can obtain an optimal solution in
some specific scenarios with polynomial-time ones, but not in general cases as shown
in [22,24,30].

5. Computing Task Scheduling Scheme

After thoroughly analyzing computing tasks in edge computing, the tasks offloaded
to an edge scheduler need to be synergistically scheduled. Due to the limited computing
and storage resources on the edge devices, and the resource competition among multiple
tasks, it is essential in scheduling the tasks optimally in terms of task completion time and
energy consumption [31].

Many scheduling algorithms have been proposed. Traditional task scheduling algo-
rithms mainly include Min-Min, Max-Min, and Sufferage algorithm [32], first come first
served, and minimum completion time [33]. Most of them take delay as an optimization
goal, but it is easy to result in the problem of load imbalance among computing nodes. In-
telligent heuristic task scheduling algorithms mainly include Genetic Algorithm (GA), Ant
Colony Optimization, Particle Swarm Optimization (PSO), Simulated Annealing (SA), Bat
algorithm, artificial immune algorithm, and Tabu Search (TS) [34,35]. These algorithms are
based on heuristic rules to quickly get the solution of a problem, but they cannot guarantee
the optimality of their solutions [36]. In the scheduling processes of edge computing tasks,
we face many goals. We summarize the methods of task scheduling with aims to achieve
the lowest delay and/or lowest energy consumption.

5.1. Minimal Delay Time

The completion time of computing tasks offloaded to edge servers is mainly composed
of three parts, the transmission time required to transmit the tasks to the edge servers
or edge devices, the processing time required to execute the tasks in the edge server or

Sensors 2021, 21, 779 14 of 22

edge devices and the time required to return the result after the completion of the task
processing. Therefore, reducing the above three parts of task completion time can effectively
improve QoS.

Yuchong et al. [24] propose a greedy algorithm to assign tasks to servers with the
shortest response time to minimize the total response time of all tasks. Its experimental
results show that the average response time of tasks is reduced in comparison with a
random assignment algorithm. In intelligent manufacturing, a four-layer computing
system supporting the operation of artificial intelligence tasks from the perspective of
a network is proposed in [37]. On this basis, a two-stage algorithm based on a greedy
strategy and threshold strategy is proposed to schedule computing tasks on the edge, so
as to meet the real-time requirements of intelligent manufacturing. Compared with the
traditional algorithm, the experimental results show that it has good real-time performance
and acceptable energy consumption. A Markov decision process (MDP) method is used
to schedule computing tasks according to the queuing state of task buffers, the execution
state of a local processing unit and the state of the transmission unit. Its goal is to minimize
delay while enforcing a power constraint. Its simulation results show that compared with
other benchmark strategies, the proposed optimal random task scheduling strategy has
shorter average execution delay [22]. Zhang et al. [38] study a task scheduling problem
based on delay minimization, and establish an accurate delay model. A delay Lyapunov
function is defined, and a new task scheduling algorithm is proposed. Compared with
the traditional algorithm depending on Little’s law, it can reduce the maximum delay
by 55%. Zhang et al. [39] model the delay of communication and computing queue as a
virtual delay queue. A new delay-based Lyapunov function is defined, and joint subcarrier
allocation, base station selection, power control and virtual machine scheduling algorithms
are proposed to minimize the delay. Zhang et al. [40] propose an optimization model of
maximum allowable delay considering both average delay and delay jitter. An effective
conservative heterogeneous earliest completion time algorithm is designed to solve it. Yuan
et al. [41] jointly consider CPU, memory, and bandwidth resources, load balance of all
heterogeneous nodes in the edge layer, the maximum amount of energy, the maximum
number of servers, and task queue stability in the cloud data centers layer. It designs a
profit-maximized collaborative computation offloading and resource allocation algorithm
to maximize the profit of the system while ensuring that response time limits of tasks are
strictly met. Its simulation results show better performance than other algorithms, i.e.,
firefly algorithm and genetic learning particle swarm optimization.

In the present research, treating the minimum delay as a scheduling goal, most
researchers have improved some traditional task scheduling algorithms by using intelligent
optimization algorithms. The reason why these algorithms are not chosen in practical use
is that they need multiple iterations to derive a relatively high-quality solution. However,
facing many tasks or online application scenarios of random tasks, their execution may
introduce delay.

5.2. Minimal Energy Consumption

The energy consumption of computing tasks is mainly composed of two parts, includ-
ing energy for their processing, transmission from edge devices to an edge server, and
returning results to the source node [36]. Therefore, on the premise of meeting the delay
requirements of tasks, energy consumption should be minimized.

Xu et al. [30] propose a particle swarm optimization algorithm for the scheduling
of tasks that can be offloaded to edge servers. It considers different kinds of computing
resources in a Mobile Edge Computing (MEC) environment and aims to reduce mobile
devices’ energy consumption under response time constraints. Their experimental results
show that it has stable convergence and optimal adaptability, and can effectively achieve
the optimization goal. A heuristic algorithm based on MEC for efficient energy scheduling
is proposed in [42]. The task scheduling among MEC servers and the downlink energy
consumption of roadside units are comprehensively considered. The energy consumption

Sensors 2021, 21, 779 15 of 22

of MEC servers is minimized while enforcing task delay constraints. The algorithm can
effectively reduce the energy consumption, task processing delay and solve the problem
of task blocking. Li et al. [43] study the energy efficiency of an IoT system under an
edge computing paradigm, and describes a dynamic process with a generalized queuing
network model. It applies the ordered optimization technology to a Markov decision-
making process to develop resource management and task scheduling schemes, to meet the
challenge of the explosion in Markov decision process search space. Its simulation results
show that this method can effectively reduce the energy consumption in an IoT system. A
dynamic voltage frequency scale (DVFS) technology is proposed in [44], which can adjust
the offloading rate of a device and the working frequency of CPU to minimize the energy
consumption under the constraint of time delay. Zhang et al. [45] propose a dual depth Q-
learning model. A learning algorithm based on experience playback is used to train model
parameters. It can improve training efficiency and reduces system energy consumption.
An improved probability scheme is adopted to control the congestion of different priority
packets transmitted to MEC in [46]. Based on this, an improved krill herd meta-heuristic
optimization algorithm is proposed to minimize the energy consumption and queuing
congestion of MEC. Bi et al. [47] propose a partial computation offloading method to
minimize the total energy consumed by smart mobile devices (SMDs) and edge servers by
jointly optimizing offloading ratio of tasks, CPU speeds of SMDs, allocated bandwidth of
available channels and transmission power of each SMD in each time slot. They formulate
a nonlinear constrained optimization problem and presents a novel hybrid meta-heuristic
algorithm named genetic simulated-annealing-based particle swarm optimization (GSP)
to find a close-to-optimal solution for the problem. Its experimental results prove that
it achieves lower energy consumption in less convergence time than other optimization
algorithms including SA-based PSO, GA and SA.

Based on the current research, treating the lowest energy consumption as the schedul-
ing goal, researchers have proposed many improved heuristic task scheduling algorithms.
For cases where a delay constraint is not strong, most of the heuristic scheduling algo-
rithms are able to generate a complete feasible schedule by gradually expanding a local
schedule. The more iterations, the greater chance to get the best solution, and the lower
energy consumption.

5.3. Minimal Delay Time and Energy Consumption

In such application scenarios as virtual reality, augmented reality, and driverless
vehicles, the requirements of delay time and energy consumption are very strict. How to
make an optimal task schedule to minimize both time delay and the energy consumption
is very important. Two objectives are, unfortunately, in conflict with each other.

The energy consumption and processing/transmission time of computing tasks are
regarded as costs. With the support of a cloud computing center, a distributed algorithm
for cost minimization is proposed by optimizing the offloading decision and resource
allocation of a mobile edge computing system [48]. Its experimental results show that
compared with other existing algorithms, i.e., Greedy algorithm, and those in [49,50], the
cost can be reduced by about 30%. Zhang et al. [51] study the trade-off between system
energy consumption and delay time. Based on the Lyapunov optimization method, the
optimal scheduling of CPU cycle frequency and data transmission power of mobile devices
is performed, and an online dynamic task allocation scheduling method is proposed to
modify the data backlog of a queue. A large number of simulation experiments show
that the scheme can realize good trade-off between energy consumption and delay. A
task scheduling problem of a computing system considering both time delay and energy
consumption is proposed in [52]. A task allocation method based on reinforcement learning
is proposed to solve the problem, which can ensure the timely execution of tasks and a
good deal of efficient energy saving. The simulation results show that compared with
other existing methods, i.e., SpanEdge [53] and suspension-and energy-aware offloading
algorithm [54], it can reduce 13–22% of task processing time and 1–10% of task processing

Sensors 2021, 21, 779 16 of 22

energy consumption. Note that Sen at al [52] fail to consider the transmission energy in
such a system.

In the existing research, a distributed algorithm, Lyapunov optimization method,
reinforcement learning and other task scheduling algorithms can be used to improve the
overall performance of the system with a target to lower both delay time and energy
consumption. It can be seen that to balance both well, engineers can select traditional and
heuristic task scheduling algorithms. The latter are more popular since they can handle
dual objective functions well.

All the discussed scheduling schemes and other methods [55–61] are summarized in
Tables 1 and 2.

Table 1. Summary of task scheduling schemes.

Objectives Studies Features

Minimize delay time [22,24,37–41]

• Markov decision process method
• Greedy Algorithm
• Two-stage algorithm based on greedy strategy and threshold strategy
• Establishing the delay model of cellular edge computing system and

defining the delay Lyapunov function
• Defining D Lyapunov function and proposing the algorithm of joint

subcarrier allocation, base station selection, power control and virtual
machine scheduling

• Conservative heterogeneous earliest completion time algorithm
• A profit-maximized collaborative computation offloading and resource

allocation algorithm to guarantee the response time limits of tasks.

Minimize energy
consumption [30,42–47]

• Particle swarm optimization-based task scheduling algorithm for
multi-resource computing offloading

• Heuristic algorithm of task scheduling among Mobile Edge Computing
(MEC) servers by considering the downlink energy consumption of Road
Side Units

• Applying ordered optimization technology to a Markov decision process
• Based on Dynamic Voltage Frequency Scale (DVFS) Technology
• Double Deep Q-learning model
• Improved krill herd meta heuristic optimization algorithm
• A novel genetic simulated-annealing-based particle swarm optimization

(GSP) algorithm to produce a close-to-optimal solution

Minimize both delay
time and energy

consumption
[48,51,52]

• Dynamic task allocation and scheduling algorithm based on a Lyapunov
optimization method

• Distributed algorithm
• Reinforcement learning

Sensors 2021, 21, 779 17 of 22

Table 2. Summary of algorithms for different optimization objectives (ES = edge server, CC = cloud center, Unc = uncertain
and N-O = near-optimal).

Objective Scheme Optimal Complexity Where Pros and Cons

Delay Time

One-dimensional search
algorithm [22] Yes low ES Achieving the minimum average delay in various

specific scenarios, but not general ones

Greedy algorithm [24] Yes Medium ES
Saving time by 20–30%, in comparison to the proposed

random algorithm but only for a simple M/M/1
queuing system in a specific scenario.

Customized TS algorithm [24] Yes Medium ES
Efficient and suitable for scenarios with large number

of tasks, but only for a simple M/M/1 queuing system
in a specific scenario.

Lyapunov function-based task
scheduling algorithm [38] NP Medium ES

Being more accurate than the other delay models; and
smaller delay than that of a traditional

scheduling algorithm.

Efficient conservative
heterogeneous

earliest-finish-time algorithm [40]
Unc Medium ES Reducing the delays of task offloading, and

considering the task execution order.

SA-based migrating birds
optimization procedure [41] N-O Medium ES/CC

Providing a high-accuracy and fine-grained energy
model by jointly considering central processing unit
(CPU), memory, and bandwidth resource limits, load

balance requirements of all nodes, but only for a
simple M/M/1 system.

Sub-gradient algorithm [55] Yes Medium ES

Providing a closed-form solution suitable for a specific
scenario about the partial compression offloading but

not for general scenarios; reducing the
end-to-end latency.

Energy cosumption

Energy efficient Multi-resource
computation Offloading strategy

task scheduling algorithm [30]
Yes Medium ES/CC

Comprehensively considering the workload
conditions among mobile devices, edge servers and

cloud centers;
Having stable convergence speed and reducing the

power consumption effectively in a specific scenario.

Ordinal Optimization-based
Markov Decision Process [43] Unc High ES/CC

Being effective and efficient;
Making good tradeoff between delay time and

energy consumption.

Ben’s genetic algorithm [56] N-O Medium ES

Effectively solving the problem of choosing which
edge server to offload, and minimizing the total

energy consumption, but working only for a simple
M/M/1 queue model

Algorithms for partial and binary
offloading with energy

consumption optimization [57]
Yes High ES

Joint computation and communication cooperation by
considering both partial and binary offloading cases

Reducing the power consumption effectively;
obtaining the optimal solution in a partial

offloading case

Artificial fish swarm
algorithm [58] Yes Medium ES

Guaranteeing the global optimization, strong
robustness and fast convergence for a specific problem

and reducing the power consumption

Delay/energy
consumption

Multidimensional numerical
method [17] Yes High ES

Establishing the conditions under which total or no
offloading is optimal; Reducing the execution delay of

applications and minimizing the total consumed
energy but failing to consider latency constraints

Software defined task
offloading/Task Placement

Algorithm [59]
Yes Medium ES

Solving the computing resource allocation and task
placement problems;

Reducing task duration and energy cost compared to
random and uniform computation offloading schemes
by considering computation amount and data size of a

task in a software defined ultra network.

Energy-aware mobility
management algorithm [60] N-O High ES

Making good tradeoff between delay time and
energy consumption

Dealing with various practical deployment scenarios
including BSs dynamically switching on and off, but

failing to consider the capability of a cloud server.

Lyapunov Optimization on Time
and Energy Cost [61] Yes High ES/CC

Taking full advantages of green energy without
significantly increasing the response time and having

better optimization ability

6. Issues and Future Directions

An edge server has more computing power and storage capacity than devices, and
edge computing has lower task transmission delay than cloud computing. In addition,
due to the limitation of edge resources, the task scheduling problem of edge computing
is NP-hard. Its high-performance solution methods are highly valuable, while its exact

Sensors 2021, 21, 779 18 of 22

global optimal solution cannot be obtained in general for sizable problems. Although
there have been many studies on collaborative scheduling of computing tasks in edge
computing [47,62,63], the following issues should be addressed:

(1) Consider the occurrence of emergencies. In an edge computing paradigm, a
system involves the coordination of devices, edge server and network link, each of which
plays an important role. Therefore, if any devices and edge servers are shut down or the
network fails in the process of task processing, scheduled task execution can be significantly
impacted. Therefore, the question of how to add the consideration of emergencies in the
process of task scheduling to ensure that tasks can also be successfully executed is a widely
open problem.

In other words, researchers have to take their failure probability into tasks scheduling
consideration so that the risk of failing some important tasks should be minimized.

(2) Consider multiple optimization objectives. Now, most of research is based on the
optimization goals of delay time and/or energy consumption to develop task schedules.
Other QoS indicators of user tasks are rarely considered. Therefore, they should be added
to optimize a schedule, and a task scheduling scheme with comprehensive optimization
goals should be formulated to achieve high-quality user service experience as well.

(3) Consider data security issues. Data security [64–69] is one of the most concerned
issues. Security protocols and encryption algorithms are mostly used to achieve the
security and privacy of data, but there are few considerations in terms of their induced
delay and energy consumption issues. Therefore, it is worthy to develop light to heavy-
weight security protocols and encryption algorithms such that some best trade-off solutions
between performance and data security levels can be made.

(4) Find any-time task scheduling algorithms. The research on task scheduling al-
gorithms mostly uses the improved traditional and heuristic task ones. They need long
iteration time to achieve a near-optimal or optimal schedule. In practice, we must offer a
feasible schedule in short time. We can then improve it if we are given enough computing
time before a schedule needs to be developed. Hence, inventing some fast algorithms to
produce a first feasible schedule and then some intelligent optimizations that can improve
the solutions are highly desired.

(5) Add some important factors to optimization goals. Generally, network bandwidth
and CPU of task offloading locations could be taken into consideration in the process of
offloading tasks at the edge, but many other factors, such as offloading ratio of tasks, are
not yet taken into consideration in order to obtain the best offloading strategy.

(6) Balance partial computing offloading of Deep Learning (DL) models. To improve
the intelligence of the applications, DL is increasingly adopted in various areas, namely
face recognition, natural language processing, interactive gaming, and augmented reality.

Due to the limited resources of edge hardware, lightweight DL models are suitable for
edge devices. However, in order to accelerate the inference speed of models and minimize
the energy consumed by devices, they need to be developed and partially offloaded. It
is challenging to answer how to determine partial offloading for DL model training and
balance the resource consumption between edge devices and edge servers.

7. Conclusions

This paper analyzes and summarizes the computing scenarios, computing tasks,
optimization objectives’ formulation and computing task scheduling methods for the
scheduling process of an edge computing system. According to the resources in edge
computing, the computing scenarios of scheduling tasks are divided into four categories,
and their composition and characteristics are analyzed in detail. According to where their
execution takes place, computing tasks can be accomplished via local execution, partial
offloading and full offloading. Then we formulate the optimization problem to minimize
delay time and energy consumption for computation offloading of an edge computing
system with different queuing models, and indicate its solution complexity. With regard
to computing task scheduling methods in edge computing, most existing studies set their

Sensors 2021, 21, 779 19 of 22

optimization goal to minimize delay, energy consumption or both of them. Improved
traditional task scheduling algorithms and some intelligent optimization algorithms can be
used to solve such optimization problem. For the reviewed optimization problems, most re-
searchers tend to use the improved heuristic algorithm/intelligent optimization algorithms
instead of mathematical programing ones due to their computational complexity. This
paper also discusses the issues and future directions in the area of collaborative scheduling
of computing tasks in an edge computing paradigm. This paper should stimulate further
research on collaborative scheduling and its applications in the context of edge-computing,
e.g., [70–72].

Author Contributions: S.C. conceived the idea and structure of this manuscript, and wrote this
paper by making a survey and summary of other papers and partially acquired funding support. Q.L.
contributed to the early versions of the manuscript. M.Z. guided the writing of this manuscript, in-
cluding its structure and content, offered some key ideas, and supervised the project. A.A. suggested
some ideas and partially acquired funding support. All authors contributed to writing, reviewing,
and editing the paper. All authors have read and agreed to the published version of the manuscript.

Funding: This work was in part supported by the National Key Research and Development Program
of China (No. 2018YFB1700202) and in part by Deanship of Scientific Research (DSR) at King
Abdulaziz University, Jeddah, Saudi Arabia, under grant no. (RG-21-135-39).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Patidar, S.; Rane, D.; Jain, P. A Survey Paper on Cloud Computing. In Proceedings of the 2012 Second International Conference on

Advanced Computing & Communication Technologies, Institute of Electrical and Electronics Engineers (IEEE), Rohtak, Haryana,
India, 7–8 January 2012; pp. 394–398.

2. Moghaddam, F.F.; Ahmadi, M.; Sarvari, S.; Eslami, M.; Golkar, A. Cloud computing challenges and opportunities: A survey. In
Proceedings of the 2015 1st International Conference on Telematics and Future Generation Networks (TAFGEN), Institute of
Electrical and Electronics Engineers (IEEE), Kuala Lumpur, Malaysia, 26–27 May 2015; pp. 34–38.

3. Varghese, B.; Wang, N.; Barbhuiya, S.; Kilpatrick, P.; Nikolopoulos, D.S. Challenges and Opportunities in Edge Computing. In
Proceedings of the 2016 IEEE International Conference on Smart Cloud (SmartCloud), Institute of Electrical and Electronics
Engineers (IEEE), New York, NY, USA, 18–20 November 2016; pp. 20–26.

4. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge Computing: Vision and Challenges. IEEE Internet Things J. 2016, 3,
637–646. [CrossRef]

5. Rincon, J.A.; Guerra-Ojeda, S.; Carrascosa, C.; Julian, V. An IoT and Fog Computing-Based Monitoring System for Cardiovascular
Patients with Automatic ECG Classification Using Deep Neural Networks. Sensors 2020, 20, 7353. [CrossRef]

6. Liu, B. Research on collaborative scheduling technology Based on edge computing. Master’s Thesis, South China University of
Technology, Guangzhou, China, 2019.

7. Jiao, J. Cooperative Task Scheduling in Mobile Edge Computing System. Master’s Thesis, University of Electronic Science and
Technology, Chengdu, China, 2018.

8. Zhao, J.; Li, Q.; Gong, Y.; Zhang, K. Computation Offloading and Resource Allocation for Cloud Assisted Mobile Edge Computing
in Vehicular Networks. IEEE Trans. Veh. Technol. 2019, 68, 7944–7956. [CrossRef]

9. Lyu, X.; Ni, W.; Tian, H.; Liu, R.P.; Wang, X.; Giannakis, G.B.; Paulraj, A. Optimal Schedule of Mobile Edge Computing for Internet
of Things Using Partial Information. IEEE J. Sel. Areas Commun. 2017, 35, 2606–2615. [CrossRef]

10. Mao, Y.; Zhang, J.; Letaief, K.B. Joint Task Offloading Scheduling and Transmit Power Allocation for Mobile-Edge Computing
Systems. In Proceedings of the 2017 IEEE Wireless Communications and Networking Conference (WCNC), Institute of Electrical
and Electronics Engineers (IEEE), San Francisco, CA, USA, 19–22 March 2017; pp. 1–6.

11. Tao, X.; Ota, K.; Dong, M.; Qi, H.; Li, K. Performance Guaranteed Computation Offloading for Mobile-Edge Cloud Computing.
IEEE Wirel. Commun. Lett. 2017, 6, 774–777. [CrossRef]

12. Kim, Y.; Song, C.; Han, H.; Jung, H.; Kang, S. Collaborative Task Scheduling for IoT-Assisted Edge Computing. IEEE Access 2020,
8, 216593–216606. [CrossRef]

13. Wang, S.; Zafer, M.; Leung, K.K. Online placement of multi-component applications in edge computing environments. IEEE
Access 2017, 5, 2514–2533. [CrossRef]

14. Zhao, T.; Zhou, S.; Guo, X.; Zhao, Y.; Niu, Z. A Cooperative Scheduling Scheme of Local Cloud and Internet Cloud for Delay-
Aware Mobile Cloud Computing. In Proceedings of the 2015 IEEE Globecom Workshops (GC Wkshps), Institute of Electrical and
Electronics Engineers (IEEE), San Diego, CA, USA, 6–10 December 2015; pp. 1–6.

http://doi.org/10.1109/JIOT.2016.2579198
http://doi.org/10.3390/s20247353
http://doi.org/10.1109/TVT.2019.2917890
http://doi.org/10.1109/JSAC.2017.2760186
http://doi.org/10.1109/LWC.2017.2740927
http://doi.org/10.1109/ACCESS.2020.3041872
http://doi.org/10.1109/ACCESS.2017.2665971

Sensors 2021, 21, 779 20 of 22

15. Kao, Y.-H.; Krishnamachari, B.; Ra, M.-R.; Bai, F. Hermes: Latency optimal task assignment for resource-constrained mobile
computing. In Proceedings of the 2015 IEEE Conference on Computer Communications (INFOCOM), Institute of Electrical and
Electronics Engineers (IEEE), Kowloon, Hong Kong, 26 April–1 May 2015; pp. 1894–1902.

16. Cuervo, E.; Balasubramanian, A.; Cho, D.; Wolman, A.; Saroiu, S.; Chandra, R.; Bahl, P. Maui: Making smartphones last longer
with code offload. In Proceedings of the MobiSys, ACM, San Francisco, CA, USA, 15–18 June 2010; pp. 49–62.

17. Munoz, O.; Pascual-Iserte, A.; Vidal, J. Optimization of Radio and Computational Resources for Energy Efficiency in Latency-
Constrained Application Offloading. IEEE Trans. Veh. Technol. 2015, 64, 4738–4755. [CrossRef]

18. Yang, L.; Cao, J.; Tang, S.; Han, D.; Suri, N. Run Time Application Repartitioning in Dynamic Mobile Cloud Environments. IEEE
Trans. Cloud Comput. 2014, 4, 336–348. [CrossRef]

19. Yang, L.; Cao, J.; Cheng, H.; Ji, Y. Multi-User Computation Partitioning for Latency Sensitive Mobile Cloud Applications. IEEE
Trans. Comput. 2015, 64, 2253–2266. [CrossRef]

20. Liu, L.; Chang, Z.; Guo, X.; Ristaniemi, T. Multi-objective optimization for computation offloading in mobile-edge computing.
In Proceedings of the 2017 IEEE Symposium on Computers and Communications (ISCC), Heraklion, Greece, 3–6 July 2017;
pp. 832–837.

21. Carson, K.; Thomason, J.; Wolski, R.; Krintz, C.; Mock, M. Mandrake: Implementing Durability for Edge Clouds. In Proceedings
of the 2019 IEEE International Conference on Edge Computing (EDGE), Institute of Electrical and Electronics Engineers (IEEE),
Milan, Italy, 8–13 July 2019; pp. 95–101.

22. Liu, J.; Mao, Y.; Zhang, J.; Letaief, K.B. Delay-optimal computation task scheduling for mobile-edge computing systems. In
Proceedings of the 2016 IEEE International Symposium on Information Theory (ISIT), Institute of Electrical and Electronics
Engineers (IEEE), Barcelona, Spain, 10–15 July 2016; pp. 1451–1455.

23. Lazar, A. The throughput time delay function of anM/M/1queue (Corresp.). IEEE Trans. Inf. Theory 1983, 29, 914–918. [CrossRef]
24. Zhang, G.; Zhang, W.; Cao, Y.; Li, D.; Wang, L. Energy-Delay Tradeoff for Dynamic Offloading in Mobile-Edge Com-puting

System with Energy Harvesting Devices. IEEE Trans. Industr. Inform. 2018, 14, 4642–4655. [CrossRef]
25. Chen, X. Decentralized Computation Offloading Game for Mobile Cloud Computing. IEEE Trans. Parallel Distrib. Syst. 2015, 26,

974–983. [CrossRef]
26. Chen, X.; Jiao, L.; Li, W.; Fu, X. Efficient Multi-User Computation Offloading for Mobile-Edge Cloud Computing. IEEE/ACM

Trans. Netw. 2016, 24, 2795–2808. [CrossRef]
27. Yuan, H.; Bi, J.; Zhou, M.; Liu, Q.; Ammari, A.C. Biobjective Task Scheduling for Distributed Green Data Centers.

IEEE Trans. Autom. Sci. Eng. 2020. Available online: https://ieeexplore.ieee.org/document/8951255 (accessed on
29 December 2020). [CrossRef]

28. Guo, X.; Liu, S.; Zhou, M.; Tian, G. Dual-Objective Program and Scatter Search for the Optimization of Disassembly Sequences
Subject to Multiresource Constraints. IEEE Trans. Autom. Sci. Eng. 2018, 15, 1091–1103. [CrossRef]

29. Fu, Y.; Zhou, M.; Guo, X.; Qi, L. Scheduling Dual-Objective Stochastic Hybrid Flow Shop with Deteriorating Jobs via Bi-Population
Evolutionary Algorithm. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 5037–5048. [CrossRef]

30. Sheng, Z.; Pfersich, S.; Eldridge, A.; Zhou, J.; Tian, D.; Leung, V.C.M. Wireless acoustic sensor networks and edge computing for
rapid acoustic monitoring. IEEE/CAA J. Autom. Sin. 2019, 6, 64–74. [CrossRef]

31. Yang, G.; Zhao, X.; Huang, J. Overview of task scheduling algorithms in cloud computing. Appl. Electron. Tech. J. 2019, 45, 13–17.
32. Zhang, P.; Zhou, M.; Wang, X. An Intelligent Optimization Method for Optimal Virtual Machine Allocation in Cloud Data Centers.

IEEE Trans. Autom. Sci. Eng. 2020, 17, 1725–1735. [CrossRef]
33. Yuan, H.; Bi, J.; Zhou, M. Spatial Task Scheduling for Cost Minimization in Distributed Green Cloud Data Centers. IEEE Trans.

Autom. Sci. Eng. 2018, 16, 729–740. [CrossRef]
34. Yuan, H.; Zhou, M.; Liu, Q.; Abusorrah, A. Fine-Grained Resource Provisioning and Task Scheduling for Heterogeneous

Applications in Distributed Green Clouds. IEEE/CAA J. Autom. Sin. 2020, 7, 1380–1393.
35. Alfakih, T.; Hassan, M.M.; Gumaei, A.; Savaglio, C.; Fortino, G. Task Offloading and Resource Allocation for Mobile Edge

Computing by Deep Reinforcement Learning Based on SARSA. IEEE Access 2020, 8, 54074–54084. [CrossRef]
36. Yuchong, L.; Jigang, W.; Yalan, W.; Long, C. Task Scheduling in Mobile Edge Computing with Stochastic Requests and M/M/1

Servers. In Proceedings of the 2019 IEEE 21st International Conference on High Performance Computing and Communica-
tions, IEEE 17th International Conference on Smart City, IEEE 5th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), Institute of Electrical and Electronics Engineers (IEEE), Zhangjiajie, China, 10–12 August 2019;
pp. 2379–2382.

37. Li, X.; Wan, J.; Dai, H.-N.; Imran, M.; Xia, M.; Celesti, A. A Hybrid Computing Solution and Resource Scheduling Strategy for
Edge Computing in Smart Manufacturing. IEEE Trans. Ind. Inform. 2019, 15, 4225–4234. [CrossRef]

38. Zhang, Y.; Xie, M. A More Accurate Delay Model based Task Scheduling in Cellular Edge Computing Systems. In Proceedings of
the 2019 IEEE 5th International Conference on Computer and Communications (ICCC), Institute of Electrical and Electronics
Engineers (IEEE), Chengdu, China, 6–9 December 2019; pp. 72–76.

39. Zhang, Y.; Du, P. Delay-Driven Computation Task Scheduling in Multi-Cell Cellular Edge Computing Systems. IEEE Access 2019,
7, 149156–149167. [CrossRef]

40. Zhang, W.; Zhang, Z.; Zeadally, S.; Chao, H.-C. Efficient Task Scheduling with Stochastic Delay Cost in Mobile Edge Computing.
IEEE Commun. Lett. 2019, 23, 4–7. [CrossRef]

http://doi.org/10.1109/TVT.2014.2372852
http://doi.org/10.1109/TCC.2014.2358239
http://doi.org/10.1109/TC.2014.2366735
http://doi.org/10.1109/TIT.1983.1056748
http://doi.org/10.1109/TII.2018.2843365
http://doi.org/10.1109/TPDS.2014.2316834
http://doi.org/10.1109/TNET.2015.2487344
https://ieeexplore.ieee.org/document/8951255
http://doi.org/10.1109/TASE.2019.2958979
http://doi.org/10.1109/TASE.2017.2731981
http://doi.org/10.1109/TSMC.2019.2907575
http://doi.org/10.1109/JAS.2019.1911324
http://doi.org/10.1109/TASE.2020.2975225
http://doi.org/10.1109/TASE.2018.2857206
http://doi.org/10.1109/ACCESS.2020.2981434
http://doi.org/10.1109/TII.2019.2899679
http://doi.org/10.1109/ACCESS.2019.2946843
http://doi.org/10.1109/LCOMM.2018.2879317

Sensors 2021, 21, 779 21 of 22

41. Yuan, H.; Zhou, M. Profit-Maximized Collaborative Computation Offloading and Resource Allocation in Distributed Cloud and
Edge Computing Systems. IEEE Trans. Autom. Sci. Eng. 2020. Available online: https://ieeexplore.ieee.org/document/9140317
(accessed on 29 December 2020). [CrossRef]

42. Xu, J.; Li, X.; Ding, R.; Liu, X. Energy efficient multi-resource computation offloading strategy in mobile edge computing. CIMS
2019, 25, 954–961.

43. Ning, Z.; Huang, J.; Wang, X.; Rodrigues, J.J.P.C.; Guo, L. Mobile Edge Computing-Enabled Internet of Vehicles: Toward
Energy-Efficient Scheduling. IEEE Netw. 2019, 33, 198–205. [CrossRef]

44. Li, S.; Huang, J. Energy Efficient Resource Management and Task Scheduling for IoT Services in Edge Computing Paradigm. In
Proceedings of the 2017 IEEE International Symposium on Parallel and Distributed Processing with Applications and 2017 IEEE
International Conference on Ubiquitous Computing and Communications (ISPA/IUCC), Institute of Electrical and Electronics
Engineers (IEEE), Guangzhou, China, 12–15 December 2017; pp. 846–851.

45. Yoo, W.; Yang, W.; Chung, J. Energy Consumption Minimization of Smart Devices for Delay-Constrained Task Processing with
Edge Computing. In Proceedings of the 2020 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV,
USA, 4–6 January 2020; pp. 1–3.

46. Zhang, Q.; Lin, M.; Yang, L.T.; Chen, Z.; Khan, S.U.; Li, P. A Double Deep Q-Learning Model for Energy-Efficient Edge Scheduling.
IEEE Trans. Serv. Comput. 2018, 12, 739–749. [CrossRef]

47. Yang, Y.; Ma, Y.; Xiang, W.; Gu, X.; Zhao, H. Joint Optimization of Energy Consumption and Packet Scheduling for Mobile Edge
Computing in Cyber-Physical Networks. IEEE Access 2018, 6, 15576–15586. [CrossRef]

48. Bi, J.; Yuan, H.; Duanmu, S.; Zhou, M.C.; Abusorrah, A. Energy-optimized Partial Computation Offloading in Mobile Edge
Computing with Genetic Simulated-annealing-based Particle Swarm Optimization. IEEE Internet Things J. 2020. Available online:
https://ieeexplore.ieee.org/document/9197634 (accessed on 29 December 2020). [CrossRef]

49. Yu, H.; Wang, Q.; Guo, S. Energy-Efficient Task Offloading and Resource Scheduling for Mobile Edge Computing. In Proceedings
of the 2018 IEEE International Conference on Networking, Architecture and Storage (NAS), Institute of Electrical and Electronics
Engineers (IEEE), Chongqing, China, 11–14 October 2018; pp. 1–4.

50. Mao, Y.; Zhang, J.; Song, S.H.; Letaief, K.B. Stochastic joint radio and computational resource management for multi-user
mobile-edge computing systems. IEEE Trans. Wirel. Commun. 2017, 16, 5994–6009. [CrossRef]

51. Dinh, T.Q.; Tang, J.; La, Q.D.; Quek, T.Q.S. Offloading in Mobile Edge Computing: Task Allocation and Computational Frequency
Scaling. IEEE Trans. Commun. 2017, 65, 1.

52. Sen, T.; Shen, H. Machine Learning based Timeliness-Guaranteed and Energy-Efficient Task Assignment in Edge Computing
Systems. In Proceedings of the 2019 IEEE 3rd International Conference on Fog and Edge Computing (ICFEC); Institute of
Electrical and Electronics Engineers (IEEE), Larnaca, Cyprus, 14–17 May 2019; pp. 1–10.

53. Sajjad, H.P.; Danniswara, K.; Al-Shishtawy, A.; Vlassov, V. SpanEdge: Towards Unifying Stream Processing over Central and
Near-the-Edge Data Centers. In Proceedings of the 2016 IEEE/ACM Symposium on Edge Computing (SEC); Institute of Electrical
and Electronics Engineers (IEEE), Washington, DC, USA, 27–28 October 2016; pp. 168–178.

54. Dong, Z.; Liu, Y.; Zhou, H.; Xiao, X.; Gu, Y.; Zhang, L.; Liu, C. An energy-efficient offloading framework with predictable
temporal correctness. In Proceedings of the SEC ’17: IEEE/ACM Symposium on Edge Computing Roc, San Jose, CA, USA,
12–14 October 2017; pp. 1–12.

55. Ren, J.; Yu, G.; Cai, Y.; He, Y. Latency Optimization for Resource Allocation in Mobile-Edge Computation Offloading. IEEE Trans.
Wirel. Commun. 2018, 17, 5506–5519. [CrossRef]

56. Wang, J.; Yue, Y.; Wang, R.; Yu, M.; Yu, J.; Liu, H.; Ying, X.; Yu, R. Energy-Efficient Admission of Delay-Sensitive Tasks for
Multi-Mobile Edge Computing Servers. In Proceedings of the 2019 IEEE 25th International Conference on Parallel and Distributed
Systems (ICPADS), Institute of Electrical and Electronics Engineers (IEEE), Tianjin, China, 4–6 December 2019; pp. 747–753.

57. Cao, X.; Wang, F.; Xu, J.; Zhang, R.; Cui, S. Joint Computation and Communication Cooperation for Energy-Efficient Mobile Edge
Computing. IEEE Internet Things J. 2019, 6, 4188–4200. [CrossRef]

58. Zhang, H.; Guo, J.; Yang, L.; Li, X.; Ji, H. Computation offloading considering fronthaul and backhaul in small-cell networks
integrated with MEC. In Proceedings of the 2017 IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS); Institute of Electrical and Electronics Engineers (IEEE), Atlanta, GA, USA, 1–4 May 2017; pp. 115–120.

59. Chen, M.; Hao, Y. Task Offloading for Mobile Edge Computing in Software Defined Ultra-Dense Network. IEEE J. Sel. Areas
Commun. 2018, 36, 587–597. [CrossRef]

60. Sun, Y.; Zhou, S.; Xu, J. EMM: Energy-Aware Mobility Management for Mobile Edge Computing in Ultra Dense Networks. IEEE
J. Sel. Areas Commun. 2017, 35, 2637–2646. [CrossRef]

61. Nan, Y.; Li, W.; Bao, W.; Delicato, F.C.; Pires, P.F.; Dou, Y.; Zomaya, A.Y. Adaptive Energy-Aware Computation Offloading for
Cloud of Things Systems. IEEE Access 2017, 5, 23947–23957. [CrossRef]

62. Sahni, Y.; Cao, J.; Yang, L.; Ji, Y. Multi-Hop Offloading of Multiple DAG Tasks in Collaborative Edge Computing. IEEE Internet
Things J. 2020. Available online: https://ieeexplore.ieee.org/document/9223724 (accessed on 29 December 2020). [CrossRef]

63. Sahni, Y.; Cao, J.; Yang, L.; Ji, Y. Multi-Hop Multi-Task Partial Computation Offloading in Collaborative Edge Computing. IEEE
Trans. Parallel Distrib. Syst. 2020, 32, 1.

64. Zhang, P.; Zhou, M.; Fortino, G. Security and trust issues in Fog computing: A survey. Futur. Gener. Comput. Syst. 2018, 88,
16–27. [CrossRef]

https://ieeexplore.ieee.org/document/9140317
http://doi.org/10.1109/TASE.2020.3000946
http://doi.org/10.1109/MNET.2019.1800309
http://doi.org/10.1109/TSC.2018.2867482
http://doi.org/10.1109/ACCESS.2018.2810115
https://ieeexplore.ieee.org/document/9197634
http://doi.org/10.1109/JIOT.2020.3024223
http://doi.org/10.1109/TWC.2017.2717986
http://doi.org/10.1109/TWC.2018.2845360
http://doi.org/10.1109/JIOT.2018.2875246
http://doi.org/10.1109/JSAC.2018.2815360
http://doi.org/10.1109/JSAC.2017.2760160
http://doi.org/10.1109/ACCESS.2017.2766165
https://ieeexplore.ieee.org/document/9223724
http://doi.org/10.1109/JIOT.2020.3030926
http://doi.org/10.1016/j.future.2018.05.008

Sensors 2021, 21, 779 22 of 22

65. Wang, X.; Ning, Z.; Zhou, M.; Hu, X.; Wang, L.; Zhang, Y.; Yu, F.R.; Hu, B. Privacy-Preserving Content Dissemination for Vehicular
Social Networks: Challenges and Solutions. IEEE Commun. Surv. Tutorials 2018, 21, 1314–1345. [CrossRef]

66. Huang, X.; Ye, D.; Yu, R.; Shu, L. Securing parked vehicle assisted fog computing with blockchain and optimal smart contract
design. IEEE/CAA J. Autom. Sin. 2020, 7, 426–441. [CrossRef]

67. Zhang, Y.; Du, L.; Lewis, F.L. Stochastic DoS attack allocation against collaborative estimation in sensor networks. IEEE/CAA J.
Autom. Sin. 2020, 7, 1–10. [CrossRef]

68. Zhang, P.; Zhou, M. Security and Trust in Blockchains: Architecture, Key Technologies, and Open Issues. IEEE Trans. Comput. Soc.
Syst. 2020, 7, 790–801. [CrossRef]

69. Oevermann, J.; Weber, P.; Tretbar, S.H. Encapsulation of Capacitive Micromachined Ultrasonic Transducers (CMUTs) for the
Acoustic Communication between Medical Implants. Sensors 2021, 21, 421. [CrossRef]

70. Deng, S.; Zhao, H.; Fang, W.; Yin, J.; Dustdar, S.; Zomaya, A.Y. Edge Intelligence: The Confluence of Edge Computing and
Artificial Intelligence. IEEE Internet Things J. 2020, 7, 7457–7469. [CrossRef]

71. Fortino, G.; Messina, F.; Rosaci, D.; Sarne, G.M.L. ResIoT: An IoT social framework resilient to malicious activities. IEEE/CAA J.
Autom. Sin. 2020, 7, 1263–1278. [CrossRef]

72. Wang, F.-Y. Parallel Intelligence: Belief and Prescription for Edge Emergence and Cloud Convergence in CPSS. IEEE Trans.
Comput. Soc. Syst. 2020, 7, 1105–1110. [CrossRef]

http://doi.org/10.1109/COMST.2018.2882064
http://doi.org/10.1109/JAS.2020.1003039
http://doi.org/10.1109/JAS.2020.1003285
http://doi.org/10.1109/TCSS.2020.2990103
http://doi.org/10.3390/s21020421
http://doi.org/10.1109/JIOT.2020.2984887
http://doi.org/10.1109/JAS.2020.1003330
http://doi.org/10.1109/TCSS.2020.3029855

	Introduction
	Computing Scenarios
	Basic Edge Computing
	Scheduler-Based Edge Computing
	Edge-Cloud Computing
	Scheduler-Based Edge-Cloud Computing

	Computing Task Analysis
	Local Execution
	Full Offloading
	Partial Offloading

	System Model and Problem Formulation
	System Model
	Communications Model
	Task Offloading Model
	Problem Formulation

	Computing Task Scheduling Scheme
	Minimal Delay Time
	Minimal Energy Consumption
	Minimal Delay Time and Energy Consumption

	Issues and Future Directions
	Conclusions
	References

