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Biometric recognition (also known as biometrics) refers to the automated recognition of individuals based on their biological or
behavioral traits. Examples of biometric traits include fingerprint, palmprint, iris, and face. The brain is the most important and
complex organ in the human body. Can it be used as a biometric trait? In this study, we analyze the uniqueness of the brain and
try to use the brain for identity authentication. The proposed brain-based verification system operates in two stages: gray matter
extraction and gray matter matching. A modified brain segmentation algorithm is implemented for extracting gray matter from
an input brain image.Then, an alignment-based matching algorithm is developed for brain matching. Experimental results on two
data sets show that the proposed brain recognition systemmeets the high accuracy requirement of identity authentication.Though
currently the acquisition of the brain is still time consuming and expensive, brain images are highly unique and have the potential
possibility for authentication in view of pattern recognition.

1. Introduction

Identity authentication is an important task for different
applications including access control, ATM card verification,
and forensic affairs. Compared with conventional methods
(e.g., key, ID card, and password), biometric recognition
is more resistant to social engineering attacks (e.g., theft).
Biometric recognition is also intrinsically superior thatmakes
it unforgettable. During the past few decades, biometric tech-
nologies have shown more and more importance in various
applications [1, 2]. Among them, recognition technologies
based on fingerprint [3, 4], palmprint [5, 6], iris [7, 8], and
face [9, 10] are the most popular.

The brain is the center of the nervous system and themost
important and complex organ in the human body. Though
different brains may be alike in the way they act and have
similar traits, scientists have confirmed that no two brains are
or will ever be the same [11]. Both genes (what we inherit)
and experience (what we learn) could allow individual brains
to develop in distinctly different ways. Recent studies show
that the so-called jumping genes, which ensure that identical
twins are different, may also influence the brains [12]. All

these studies show that the human brain is a work of genius in
its design and capabilities, and it is unique.Though brain gray
matter will change with age or disease, it shows steadiness in
adulthood [13, 14].Thequestionwe are interested in this study
is as follows: can we use the brain for identity authentication?

This paper analyzes the uniqueness of human brain
and proposes to use the brain for personal identification
(authentication). Comparedwith other biometric techniques,
brain recognition is more resistant to forgery (e.g., fake
fingerprints [15]) and spoofing (e.g., face disguise [16]). Brain
recognition is also more reliable to identify the escapee
since one’s brain can hardly be modified, whereas other
biologic traitsmay be altered, such as altered fingerprints [17].
Palaniappan and Mandic [18] established a Visual Evoked
Potential- (VEP-) based biometrics, and simulations have
indicated the significant potential of brain electrical activity
as a biometric tool. However, VEP is not robust to the
activity of brain. Aloui et al. [19] extracted characteristics of
brain images and used them in an application as a biometric
tool to identify individuals. Their method just uses a single
slice of the brain and thus suffers from the influence of
noise. Another drawback of this method is that it only uses
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intraday scanned brain images, and thus does not consider
the interday variation of the acquisition.

The human brain consists of white matter, gray matter,
and cerebrospinal fluid.The gyrus is distributed among white
matter and gray matter. The shape or the structure of the
gray matter of each brain is unique, and it is insensitive to
acquisition noise and artifacts [20]. To recognize different
person, we can compare the difference in brains’ gray matter.
Thus, the first step of brain recognition is brain acquisition.
There are great developments of various neuroimaging tech-
niques. In this study, we select magnetic resonance imaging
(MRI) that is a noninvasive brain imaging technique [21, 22].
After acquiring the brain images, we implement a modified
brain segmentation algorithm to extract gray matter from
the brain images. Then, a low level feature based matching
technique is utilized to investigate individual differences in
the whole brain. The approach is applied to two data sets to
evaluate the uniqueness of the brain based on recognition
(identity authentication). The experimental results illustrate
the individual differences of brain images. We found that the
individual differences in using the brain for recognition are
meticulously distinct and brain matching performs very well
in the verification task, indicating that the brain can be used
for identity authentication theoretically.

Biometric recognition technologies are generally based
on the diversity of biological traits [23]. Our preliminary
study that appeared in [24] has confirmed the diversity
of the brain. The present paper proposes a practical brain
authentication system. (1) It proposes to segment the brain
and extract the gray matter shape feature, which is more
robust to interclass variation. (2) It introduces an alignment
technique for the practical system, and this is the foundation
for verification. (3) In the matching stage, we utilize chamfer
matching which is robust for matching the shapes of two
different images. Comparing results show that shape-based
chamfer matching performs better.

The rest of the paper is organized as follows. Section 2
briefly introduces various acquisition methods of brain
images and illustrates the modality used in this study.
In Section 3, a modified brain segmentation algorithm is
proposed for gray matter extraction. Section 4 presents the
gray matter matching algorithm. Experimental results are
presented in Section 5. We finish with summary in Section 6.

2. The Brain Acquisition

The first step of brain recognition is brain acquisition. There
are great developments in various neuroimaging techniques,
such as positron emission tomography (PET), computed
tomography (CT), electroencephalograph (EEG), magne-
toencephalograph (MEG), and magnetic resonance imaging
(MRI).These technologies can generally be classified into two
categories: invasive techniques and noninvasive techniques,
and invasive techniques cannot be applied to healthy humans.
Though CT does not rely on radioactive contrast medium,
it does use X-ray, which can be harmful. Both MEG and
EEG enjoy high temporal resolution. However, MEG is very
expensive and the spatial resolution of EEG is significantly
low. By comparison, MRI has both high spatial and high

Figure 1: An example of MR image: 3D view from behind with part
of hindbrain clipped.

temporal resolution, and it does not require radioactive
contrast medium, making it noninvasive.

Due to its high resolution and not requiring radiative
contrast medium, MRI has been utilized in brain research
since the early 1990s [21]. It has grown rapidly andhas become
one of the most important brain imaging techniques. The
increasing popularity ofMRI comes from two characteristics.
The first characteristic is that it has no known harmful
side effects making it a very patient-friendly and widely
accepted technique. Secondly, it produces images with very
high anatomical resolution and specificity especially for soft
tissues. Therefore, we choose MRI as the modality for this
study.

Figure 1 shows an example ofMR image (256×256×128),
and its three projections are shown in Figure 2. The sagittal
image is viewed as the front (anterior) of the head at the right
and the top of the head is shown at the top. This is as if the
subject is viewed from the right. The coronal image is viewed
as the top (superior) of the head displayed at the top and the
left is shown on the left.This is as if the subject is viewed from
behind.The axial image is viewed as the front (anterior) of the
head at the top and the left is shown on the left. This is as if
the subject is viewed from above.

3. Feature Extraction

The quality of MR images may be degraded by various
factors. Firstly, MRI equipment is likely disturbed by exter-
nal electromagnetic signals, and they are slightly unsteady.
Secondly, in the process of scanning, the testee may have
an atom of unavoidably movement. Thirdly, various kinds
of physiological signals from human body are correlated to
each other, and the SNR (signal-to-noise ratio) ofMRI signals
is often very low (approximately 2%–5% in 1.5 T MRI signal
systems and 5%–20% in 4T MRI signal systems). Under the
joint effect of various factors, an MR image is the mixture of
several signals. Besides the structure information which we
are really interested in, the other information can be treated
as noise. Technically speaking, it is impossible to remove
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Figure 2: The three projections of the MR image in Figure 1: (a) sagittal, (b) coronal, and (c) axial.

the noise completely. Therefore, though there are intergroup
analytical procedures based on voxel, they are not suitable
for uniqueness analysis. In this recognition problem, due to
the hugeness of database, more discriminative features other
than voxel are needed. The shape of gray matter is stable for
the same person and variant individually [25], and this study
utilizes such feature to recognize and analyze the difference
in human brain.Thus, we firstly segment the brain image and
extract the graymatter then binarize the graymatter to extract
the shape feature.

3.1. Segmentation. To incorporate both local and global
characteristic features of the MR images, we combine the
prior information [26] of the human brain and the clus-
tering algorithm for segmentation. The prior information
(illustrated in Figure 3) is the approximate knowledge about
the spatial distribution of the brain tissues. We choose the
maximum likelihood “mixture model” algorithm [27] as the
clustering algorithm. The algorithm consists of two steps,
which is described as follows.

3.1.1. Determine the Affine Transformation. To determine the
affine transformation, we need to find a matrix𝑀 which can
multiply the coordinates of the voxels from the image 𝐼 to
the corresponding coordinates of the template 𝑇. Let [𝑥, 𝑦, 𝑧]
denote the coordinates of 𝐼, and let [𝑥, 𝑦, 𝑧] denote the
corresponding coordinates of 𝑇, then the transformation can
be illustrated as
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Clearly, the fourth row of the transformation matrix 𝑀 is
[0 0 0 1]. Assume that the transformation is rigid body,
one can obtain a reasonable mapping of most normal brain

images to a template image using just a 6-parameter affine
transformation, which is formulated as follows:
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where 𝑝
1
, 𝑝
2
, and 𝑝

3
are the translation parameters to axis 𝑥,

𝑦, and 𝑧, and 𝑝
4
, 𝑝
5
, and 𝑝

6
are the corresponding rotation

parameters. There are no zoom parameters, since the MR
images used in this study are scanned by the same modality.

Now, to determine the affine transformation𝑀, we need
to optimize the parameter set {𝑝

1
, 𝑝
2
, . . . , 𝑝

6
}. This can be

done by minimizing the sum of square differences between
the image 𝐼 and the template 𝑇. We apply an iterative process
to optimize the parameters. Specifically, we use Taylor’s
theorem to generate a linear approximation to the original
optimization problem and solve the approximated problem
at each iteration. The chance of finding a local minimum is
reduced by smoothing the data (in this study, MR images are
convolved with a 5mm full width at half maximumGaussian
kernel). Thus the method generally converges within a few
iterations.
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Figure 3: The tissue probability of the template for (a) gray matter, (b) white matter, (c) CSF, and (d) “others,” respectively.

Once the optimization has converged to the final solution,
we obtain the rigid body transformation 𝑀 which approxi-
mately maps 𝐼 to 𝑇. The affine transformation matrix 𝑀 is
used in the next step, and we can map the prior information
𝑃
𝑇
to the probability 𝑃

𝐼
of image 𝐼.

3.1.2. Segment the Image. Assume that theMR image consists
of a number of distinct tissue types, and each type can be seen
as a cluster. Every voxel of the image belongs to one of the
clusters. We further assume that the voxel intensities of each
cluster distribute as a single-argument normal distribution,
which can be described by the mean, the variance, and the
number of voxels belonging to the tissue type (cluster).

In addition, we have prior knowledge of the spatial
distribution of these clusters for the template 𝑇 (see Figure 3
for illustration). These images contain values in the range of
0 to 1, and they represent the prior probability that a voxel
being GM,WM, or CSF after the image is transformed to the
same space using a 6-parameter affine transformation.

We use four clusters: three for GM, WM, and CSF and
one for “others” (including background and scalp, eyes, etc.).

Using the 6-parameter affine transformation 𝑀 determined
in the previous step, we can map between the space of the
image 𝐼 and that of the probability images 𝑃

𝑇
. 𝑃
𝑇
is a four-

dimensional image consisting of 𝑃
𝑇
(1, x), 𝑃

𝑇
(2, x), 𝑃

𝑇
(3, x),

and 𝑃
𝑇
(4, x) for GM, WM, CSF, and “others,” respectively. x

is the three-dimensional coordinate. Assume that there are𝑁
voxels in the image 𝐼, then the initial probabilities for the 𝑁
voxels can be assigned as follows:

𝑝
𝑛𝑘
= 𝑃
𝑇
(𝑘,𝑀

−1x
𝑛
) , (3)

where 𝑛 = 1, 2, . . . , 𝑁, and 𝑘 = 1, 2, 3, 4 indicate the cluster
type.

After the prior probabilities of all voxels for each cluster
have been acquired, a modified maximum likelihood “mix-
ture model” algorithm [27] is used to iteratively compute the
final probabilities for each voxel. The algorithm is based on
the assumption that the intensities of the voxels belonging
to each cluster have multivariate normal (Gaussian) distri-
butions. Each distribution can be described by the mean,
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the variance, and the number of voxels belonging to the
corresponding cluster.

The algorithm firstly estimates the distribution parame-
ters, that is, in the normal case, the means 𝜇

𝑘
, the variance

𝜎
𝑘
, and the number of voxels belonging to the class 𝑘, say𝑚

𝑘
.

Secondly, based on the estimated distributions, the probabil-
ity density functions can be estimated. Finally, it updates and
normalizes the probabilities based on the probability density
functions.The algorithm repeats iteratively until convergence
(or reaching a prespecified iteration number). The algorithm
specifying how the belonging probabilities are updated at
each iteration is summarized as follows.

(1) Initialization: set 𝑡 = 0, 𝑝
𝑛𝑘
(0) = 𝑝

𝑛𝑘
, where 𝑝

𝑛𝑘
is

computed by (3).

(2) Compute the number (𝑚) of voxels belonging to each
of the 4 clusters as follows:

𝑚
𝑘
=

𝑁

∑
𝑛=1

𝑝
𝑛𝑘
(𝑡) , (𝑘 = 1, 2, 3, 4) . (4)

(3) Compute the mean voxel intensities for each cluster
(𝜇) as follows:
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)
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and 𝜇
𝑘
is a weighted mean of the image voxels, where

the weights are the current estimated probabilities.

(4) Compute the variance of each cluster in the way
similar to the mean:
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(5) Compute the probability density functions for each
cluster at each voxel:

𝑔
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=

1

√2𝜋𝜎
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𝑛
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) , (7)

where 𝑛 = 1, 2, . . . , 𝑁. and 𝑘 = 1, 2, 3, 4.

(6) Utilize a new mixture model algorithm:

𝑞
𝑛𝑘
= 𝑔
𝑛𝑘
𝑝
𝑛𝑘
(𝑡) , (8)

where 𝑛 = 1, 2, . . . , 𝑁. and 𝑘 = 1, 2, 3, 4.

(7) Normalize and update the probabilities:

𝑝
𝑛𝑘
(𝑡 + 1) =

𝑞
𝑛𝑘

∑
4

𝑘=1
𝑞
𝑛𝑘

, (9)

where 𝑛 = 1, 2, . . . , 𝑁, and 𝑘 = 1, 2, 3, 4. Then,
the belonging probabilities integrate to unity at each
voxel.

(8) Decide to continue or break:

If (probabilities have converged)
break.

Else
𝑡 = 𝑡 + 1,Goto Step (2).

Endif

The algorithm is repeated iteratively and the parameters
(𝜇
𝑘
, 𝜎
𝑘
, and 𝑚

𝑘
, 𝑘 = 1, 2, 3, 4) fit in the distribution

better and better. Meanwhile, the belonging probabilities
(𝑝
𝑛𝑘
, 𝑛 = 1, 2, . . . , 𝑁, 𝑘 = 1, 2, 3, 4) change steadily to

reflect the real segmentation. Though the values of 𝑚
𝑘
, (𝑘 =

1, 2, 3, 4) are computed from the probabilities, they do not
describe the distributions and the probabilities themselves.
The probabilities are iteratively computed from the a priori
probability images, and they are more accurate to reflect the
distributions. Thus the improvement of the “mixture model”
tends to make the algorithm have better convergence. The
values of 𝑝

𝑛𝑘
(𝑛 = 1, 2, . . . , 𝑁, 𝑘 = 1, 2, 3, 4) are in range

[0, 1], and most of them may finally converge to one of the
two endpoints: 0 or 1.

Figure 4 shows the segmentation results (gray matter)
of one brain image estimated by the proposed method. The
results show that the algorithm can segment the MR images
with satisfactory precision for matching.

3.2. Extracting Gray Matter. Even for the same subject, if the
MR images are scanned at different time, the gray matter
intensities of these images will be different to each other.
This is due to the influence of various factors, including
endogenic (e.g., blood pressure and brain activity) and
exogenic ones (e.g., the electronics of the MR system and
the external environment). Thus, we cannot match two MR
images directly using the gray matter intensities. Though
the intensities may change at different scanning times, the
structure of the tissues is stable and insensitive to acquisition
noise and artifacts. Inspired by this property, we propose to
extract the gray matter structure first and then conduct the
matching.

Let 𝑃
𝑔
denote the probabilities for the gray matter cluster.

The greater value of𝑃
𝑔
(x) indicates the higher probability that

voxel x belongs to the gray matter cluster. We extract the gray
matter structure via segmenting 𝑃

𝑔
. After the segmentation

of 𝑃
𝑔
, we get a binarized image that represents the structure

of the gray matter using Otsu’s method [28]. Since the images
scanned on different visits may be scaled quite differently, the
binarized image is more robust than 𝑃

𝑔
.

4. Matching Gray Matter

To compare two binarized gray matter images 𝐵
1
and 𝐵

2

(extracted from the two MR images, denoted as 𝐼
1
and 𝐼
2
,

resp.), the first step is to align the corresponding two images.
In this study, an alignment-based matching algorithm is
implemented. Matching by alignment has received a great
deal of attention during the past decades [29, 30], since it
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Figure 4: Segmentation results (gray matter) by the proposed method: (a) sagittal; (b) coronal; and (c) axial.

is simple in theory, efficient in discrimination, and fast in
speed. The proposed alignment-based matching algorithm
decomposes the gray matter matching into two stages.

(1) Alignment stage: where transformations such as
translation and rotation between 𝐵

1
and 𝐵

2
are esti-

mated and one of the two gray images is aligned with
the other one according to the estimated parameters;

(2) matching stage: where the similarities between𝐵
1
and

𝐵
2
are evaluated by chamfer matching and an linear

transformation is used to normalize the similarity
scores.

4.1. Alignment of Gray Matter Images. In order to align the
two gray matter images, the parameters of translation and
rotation between the two images are needed to be estimated.
In other words, the affine transformationmatrix𝑀

𝑏
mapping

𝐵
1
to 𝐵
2
is needed. Let 𝐵

1
denote the aligned gray matter

image from 𝐵
1
by 𝑀

𝑏
. The transformation matrix should

minimize the error between 𝐵


1
and 𝐵

2
. Ideally, 𝐵

1
and 𝐵

2

can be treated as two sets of stereoscopic points and can be
aligned completely by two corresponding point pairs. A true
alignment between two point patterns can be obtained by
testing all possible corresponding point pairs and selecting
the optimal one. However, due to the presence of noise and
deformations, the points of 𝐵

1
cannot always be aligned

exactly with respect to those of 𝐵
2
. Moreover, the number of

points is always very large (e.g., for a 256 × 256 × 128 image,
the number is 8388608 ≈ 107), which leads to a prohibitively
large number of possible correspondences. Therefore, an
alignment by corresponding point pairs is not practical even
though it is feasible.

In the segmentation stage, we have determined the trans-
formation matrix. We can make use of these results to finish
the alignment. Let 𝑀

1
and 𝑀

2
denote the transformation

matrix from 𝐼
1
and 𝐼
2
to the template 𝑇, respectively. Then

the transformation mapping from 𝐼
1
to 𝐼
2
is

𝑀
12
= 𝑀
1
𝑀
−1

2
. (10)

Thus we can align the two binarized gray matter images
𝐵
1
and 𝐵

2
without estimating the transformation matrix.

Though this strategy uses a transitional image 𝑇 as the
bridging, it preserves the alignment accuracy since it exploits
the original plenty voxel information of the images.

4.2. Matching. Matching methods can be mainly divided
into three classes [31]: (1) algorithms that use the image
pixel (voxel) values directly; (2) algorithms that use low-level
features such as edges and corners; and (3) algorithms that use
high-level features.Methods which use the image pixel values
directly, such as correlation methods, are sensitive to shift
and rotation between images, thus they are not widely used.
The drawback of high-level matching methods is that high-
level features need to be extracted first and identified, which
is a rather difficult task. We treat gray matter based brain
matching as a problemof low-levelmatching. Comparedwith
the other two methods, low-level matching method is more
robust than methods that use the image pixel values directly,
and its features are easier to extract than high-level matching
methods.

Denote 𝐵
1
and 𝐵

2
as the aligned binarized gray matter

images from 𝐵
1
and 𝐵

2
, respectively. Actually, 𝐵

2
is the same

as 𝐵
2
, since it only needs to transform 𝐵

1
to 𝐵
1
. Here we use

𝐵
2
only for looking good in deduction. Among all the low-

level matching methods, chamfer matching is a state-of-art
algorithm. Chamfer matching is widely used to match shapes
in two different images [32, 33]. In the chamfermatching step,
the difference between two aligned gray matter images, 𝐵

1

and 𝐵
2
, is computed as shown below:

𝑑 = ∑
x
miny {dis (x, y) , with 𝐵



1
(x) = 1, 𝐵

2
(y) = 1} , (11)

where x and. y can be any possible three-dimensional coor-
dinates with 𝐵

1
(x) = 1 and. 𝐵

2
(y) = 1, respectively. dis(x, y)

is the Euclidean distance between x and y. A smaller 𝑑means
a higher probability that the two MR images come from the
same subject.
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After 𝑑 is computed, the similarity (final score 𝑠) between
the two gray matter images, 𝐵

1
and 𝐵

2
, is normalized from 𝑑

by

𝑠 = −
100 − 0

𝑑max − 𝑑min
× (𝑑 − 𝑑min) + 100

= (1 −
𝑑 − 𝑑min

𝑑max − 𝑑min
) × 100,

(12)

in which 𝑑max and 𝑑min (obtained by training) represent the
possible maximum and minimum value of all differences 𝑑,
respectively. Equation (12) normalizes the scores to interval
[0, 100], where 100 means full matching while 0 stands for
mismatching.

5. Experiments

The experiments are conducted on two data sets: OAS1 and
OAS2. The data sets can be downloaded from the Open
Access Series of Imaging Studies (OASIS) website [34].There
are 416 (half of which are selected for training set) persons
in OAS1 and 150 persons in OAS2. For each person, 𝑇

1
-

weighted structural magnetization-prepared rapid gradient
echo (MP-RAGE) images are obtained with the following
parameters: TR = 9.7ms, TE = 4.0ms, slice thickness =

1.25mm, slice number = 128, flip angle = 10
∘, and in-

plane resolution = 256 × 256 (1mm × 1mm). There
are many persons that participate in at least two separate
visits (necessary for testing system’s robustness to interday
variation) on which MRI data are obtained.

5.1. Matching. Each brain in the database is matched with the
other brains. Genuine matching indicates that two matching
brain images are acquired from the same subject, while
imposter matching indicates that two matching brain images
are scanned fromdifferent individuals.The genuinematching
pairs are generated by images from the same subject but
different visits.

The distributions of normalized genuine and imposter
matching scores are shown in Figure 5. It can be observed
from this figure that two peaks exist in the distribution of
matching scores. One peak is located at a value near 58,
corresponding to the imposter matching scores. The other
pronounced peak resides at the value 88 and is associatedwith
the genuine matching scores. This result indicates that our
algorithm is capable of differentiating brains at a high rate of
accuracy by selecting an appropriate value of the threshold.
Table 1 shows the true acceptance rates and false rejection
rates with different threshold values. The false rejection
rate is defined as the percentage of genuine pairs with
their matching scores below the threshold value. The result
illustrates that the proposed verification system can gain
very high true acceptance rates at low false rejection rates,
indicating the possible use of brain images for authentication.
Compared with Aloui’s method [19], our algorithm can reach
to amaximum accuracy [19] of 99.46%, which ismuch higher
than the maximum accuracy of 98.25% in Aloui’s method.
The main shortage of Aloui’s method is that it just uses one

Table 1: The true acceptance rates and false rejection rates with
different threshold values.

(a) OAS1

Threshold value True acceptance rate False rejection rate
68 99.814% 5.31%
69 99.938% 5.76%
70 99.984% 6.17%
71 99.999% 6.70%
72 99.999% 7.32%

(b) OAS2

Threshold value True acceptance rate False rejection rate
68 98.771% 0.73%
69 99.671% 0.77%
70 99.926% 1.02%
71 99.994% 1.57%
72 100.000% 2.82%

slice of the brain image, and it is hard to extract the same slice
at different scans.

5.2. Comparing with Pixel-Based Matching. The proposed
matching algorithm is based on feature matching. To com-
pare it with the pixel-based (intensity) matching, we also
conduct the matching experiment on the same database. The
pixel-based matching used the intensity directly for evaluat-
ing the similarity between brain images. Figure 6 shows the
receiver operating curves (ROCs) plotting false acceptance
rate (FAR) versus false rejection rate (FRR) of pixel-based
matching scheme (solid line) and the proposed scheme (dash
line). FRR is defined as the percentage of imposter matches
in all genuine pairs, while FAR is defined as the percentage
of genuine matches in all imposter pairs. The results show
that the gray matter matching can largely improve the
performance, compared with the intensity matching. FRR
can be reduced a lot by matching the gray matter against
the intensity-based matching. The equal error rates (EERs)
of the gray matter matching on the two data sets are 2.13%
and 0.86%, which are much lower than those of the intensity
matching (3.88% and 0.92%), respectively. This also validates
the effectiveness of the proposed algorithm.

6. Conclusion and Future Work

We have analyzed the uniqueness of the brain and designed
a verification system for identity authentication. The system
operates in two stages: gray matter extraction and gray
matter matching. A modified brain segmentation algorithm
was developed. A binarization scheme was conducted to
extract the gray matter which can improve the performance
of matching. An alignment-based matching algorithm was
proposed for gray matter matching. Experimental results
show that our system achieves excellent performance in
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Figure 5: Distributions of genuine and imposter matching scores; vertical axis represents distribution of matching scores in percentage. (a)
Distribution of matching scores on OAS1. (b) Distribution of matching scores on OAS2.
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Figure 6: The ROCs of pixel-based (intensity) matching and the proposed feature-based matching.

the testing database. Though currently the acquisition of the
brain is still time consuming and expensive for users, we
believe that the brain will be one of themembers of biometric
technologies in the future when the acquisition technique is
developed.

Aloui’s method only uses a slice and can reach a fair
performance. This enlightens us that we may decrease the
resolution of MRI image and then can speed up the acqui-
sition and processing step. Thus our future work will focus

on two aspects. (1) Decrease the resolution of MRI image
by sampling, and then analyse the performance. (2) Use low
resolution device which can be of low cost and fast to obtain
the MRI image and make the system applicable.
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