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Abstract: Human ether-a-go-go-related gene (hERG) potassium channel blockage by small molecules
may cause severe cardiac side effects. Thus, it is crucial to screen compounds for activity on the hERG
channels early in the drug discovery process. In this study, we collected 5299 hERG inhibitors with
diverse chemical structures from a number of sources. Based on this dataset, we evaluated different
machine learning (ML) and deep learning (DL) algorithms using various integer and binary type
fingerprints. A training set of 3991 compounds was used to develop quantitative structure–activity
relationship (QSAR) models. The performance of the developed models was evaluated using a test set
of 998 compounds. Models were further validated using external set 1 (263 compounds) and external
set 2 (47 compounds). Overall, models with integer type fingerprints showed better performance than
models with no fingerprints, converted binary type fingerprints or original binary type fingerprints.
Comparison of ML and DL algorithms revealed that integer type fingerprints are suitable for ML,
whereas binary type fingerprints are suitable for DL. The outcomes of this study indicate that the
rational selection of fingerprints is important for hERG blocker prediction.
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1. Introduction

The human ether-a-go-go related gene (hERG) or KCNH2 gene encodes a voltage-gated potassium
channel known as the hERG channel. This channel plays a key role in cardiac action potential
repolarization. Reduced function of hERG causes potential action prolongation and increases the risk
for potentially fatal ventricular arrhythmia, torsades de pointes. Therefore, preclinical hERG testing
is essential in the drug discovery process to avoid cardiac toxicity [1]. Recently, many drugs such as
astemizole, terfenadine, cisapride, thioridazine, grepafloxacin and sertindole were withdrawn from the
market due to undesired cardiotoxicity effects [2,3]. Nowadays, the US Food and Drug Administration
(FDA) demands in vitro hERG assay of lead compounds prior to clinical trials [4]. The side effects of
unexpected hERG channel binding by drug candidates are a major challenge in the drug discovery
process [5]. The development of an accurate prediction model for hERG channel blockers is crucial in
the early stages of drug discovery and development.

Although the electron microscopy structure of the membrane protein hERG is known [6], its X-ray
crystal structure is not available. Thus, structure-based hERG blocker prediction is challenging.
However, a few structure-based hERG blocker predictions were attempted with homology modeling
using structures of the related potassium ion channels as templates [7]. Several researchers have
applied a ligand-based drug design approach to identify hERG blockers. They used various machine
learning (ML) algorithms such as naïve Bayes (NB) [8], support vector machine (SVM) [9], random
forest (RF) [10] and k-NN [11]. Sun et al. reported an NB model with a receiver operating characteristic
(ROC) value of 0.87 on the basis of 1979 compounds [12]. Jia et al. applied SVM methods and
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atom-type descriptors without fingerprints on 1043 compounds to develop a model with accuracy of
0.94 [9]. Yap et al. developed a model with accuracy of 0.97 based on 310 compounds using similar
methodology [13]. Marchese Robinson et al. built an RF model with Matthews correlation coefficient
(MCC) of 0.83 using a dataset of 368 compounds. They used the extended-connectivity fingerprint
(ECFP_4) for developing the model [14]. Kim et al. developed a model with accuracy of 0.96 using
the RF algorithm on a dataset of 293 compounds [15]. Chavan et al. reported a k-NN model with
accuracy of 0.55 on the basis of 1967 compounds [11]. The deep learning (DL) approach with artificial
neural networks (ANN) has also been used to predict hERG blockers [16,17]. Cai et al. applied DL to
7889 compounds and obtained accuracy of 0.93 and an area under the receiver operating characteristic
curve (AUC) value of 0.97 for the best model [17]. Zhang et al. applied DL to 1871 compounds and
developed a model with accuracy of 0.78 [18]. Several research papers have reported the application
of ML or DL techniques on hERG blockers. However, smaller datasets were used in the previous
publications as compared to the recent papers utilizing the DL approach. Datasets for hERG blockers
have grown in recent years.

Fingerprints used in the former ligand-based drug design studies on hERG as well as other targets
were mostly binary types representing 0 or 1 [19–22]. Fingerprints describe chemical substructures as
numerical category data. The number of a binary type fingerprint is usually restricted to 1024 bits [23].
The integer type fingerprints describe chemical structures in more detail with various substructures.
They produce a large number of category data types useful for ML. Although integer type fingerprints
indicate diversity of chemical substructures, they are limited to commercial software such as the
Pipeline Pilot (PP) module of Discovery Studio (DS) software (BIOVIA, San Diego, CA, USA) [24].
In the present study, we calculated integer as well as binary type fingerprints for a dataset of hERG
blockers. Integer type fingerprints were computed using PP and they included extended-connectivity
fingerprints (ECFP_2, ECFP_4 and ECFP_6) and functional-class fingerprints (FCFP_2, FCFP_4 and
FCFP_6). Binary type chemistry development kit (CDK) fingerprints (standard, extended and graph)
were computed using the R package. We used both types of fingerprints for ML and DL. Our results
show that rational selection of fingerprints is important for hERG blocker prediction. We have discussed
the advantages and disadvantages of integer and binary type fingerprints in ML and DL.

2. Results

2.1. Dataset Splitting

As discussed in the methodology section, a dataset consisting of hERG blockers was divided
into the training and test sets in the ratio 4:1. The training and test sets consisted of 3991 and 998
compounds, respectively. Principle component analysis (PCA) was performed to verify the diversity
of the chemical space of the dataset. PCA analysis with eight common descriptors, including partition
coefficient (AlogP), molecular weight (MW), hydrogen-bond donor (HBD), hydrogen-bond acceptor
(HBA), rotatable bond number (RBN), number of rings (Num Rings), number of aromatic rings (Num
Arom Rings) and molecular fractional polar surface area (MFPSA), showed high chemical diversity of
the compounds within the training and test sets (Figure 1). Generally, PCA descriptors are indirect
numeric type representations of chemical structures. However, fingerprints representing chemical
substructures are not numeric type. They are Boolean type indicating existence or nonexistence (1 or 0)
of a unique fingerprint. Therefore, additional integer and binary type fingerprints were computed
to validate the division of the dataset. As shown in Figure 2, integer type PP fingerprints (ECFP_6
and FCFP_6) and binary type CDK fingerprints (standard and extended) showed similar fingerprint
frequency for the training and test sets. Binary type CDK fingerprints displayed relatively lower
fingerprint frequency than integer type PP fingerprints. This is due to the limited size of the binary
type CDK fingerprints (1024 bits). PCA analysis and fingerprint frequency calculations validate the
appropriate splitting of the dataset into training and test sets.
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Figure 1. Principle component analysis (PCA) for the training and test sets of hERG blockers. 
Independent variables included partition coefficient (AlogP), molecular weight (MW), hydrogen-
bond donor (HBD), hydrogen-bond acceptor (HBA), rotatable bond number (RBN), number of rings 
(Num Rings), number of aromatic rings (Num Arom Rings) and molecular fractional polar surface 
area (MFPSA). Blue and yellow spheres indicate training and test sets, respectively. 

 
Figure 2. Fingerprint frequency of the training and test sets of hERG blockers. X-axis denotes 
fingerprint identifier whereas Y-axis denotes the fingerprint frequency. Representative integer type 
PP fingerprints: (A) ECFP_6 and (B) FCFP_6. Representative binary type chemistry development kit 
(CDK) fingerprints: (C) standard and (D) extended. For validating the appropriate split of the dataset 
into training and test sets, the top 20 of PP integer fingerprint identifiers were selected as 
representatives depending on the inclusion order. Furthermore, the top 20 of CDK binary fingerprint 
identifiers were chosen as representatives depending on the binary sequence (1024 bits). Fingerprint 
frequency was calculated as the observed number of unique fingerprint identifiers/the total number 
of chemical data (training set = 3991 and test set = 998). 

2.2. Model Building and Evaluation 

The training set comprising 3991 compounds was used to build the models and the test set 
consisting of 998 compounds was used to evaluate the performance of the developed models. 
Different integer and binary type fingerprints were utilized for model building (Figure 3 and 
Supplementary materials Tables S1 and S2). All control models which lacked fingerprints and 
included only descriptors (AlogP, MW, HBD, HBA, RBN, Num Rings, Num Arom Rings and 
MFPSA) as features showed average predictive accuracy (Q) of 0.77 (ML = 0.79 and DL = 0.75) and an 
average area under the receiver operating characteristic curve (AUC) value of 0.82 (ML = 0.82 and DL 
= 0.81). The addition of fingerprints in the features improved the performance of the models. All 
models including integer type PP fingerprints (ECFP_2, FCFP_2, ECFP_4, FCFP_4, ECFP_6 and 

Figure 1. Principle component analysis (PCA) for the training and test sets of hERG blockers.
Independent variables included partition coefficient (AlogP), molecular weight (MW), hydrogen-bond
donor (HBD), hydrogen-bond acceptor (HBA), rotatable bond number (RBN), number of rings (Num
Rings), number of aromatic rings (Num Arom Rings) and molecular fractional polar surface area
(MFPSA). Blue and yellow spheres indicate training and test sets, respectively.
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Figure 2. Fingerprint frequency of the training and test sets of hERG blockers. X-axis denotes fingerprint
identifier whereas Y-axis denotes the fingerprint frequency. Representative integer type PP fingerprints:
(A) ECFP_6 and (B) FCFP_6. Representative binary type chemistry development kit (CDK) fingerprints:
(C) standard and (D) extended. For validating the appropriate split of the dataset into training and
test sets, the top 20 of PP integer fingerprint identifiers were selected as representatives depending
on the inclusion order. Furthermore, the top 20 of CDK binary fingerprint identifiers were chosen as
representatives depending on the binary sequence (1024 bits). Fingerprint frequency was calculated
as the observed number of unique fingerprint identifiers/the total number of chemical data (training
set = 3991 and test set = 998).

2.2. Model Building and Evaluation

The training set comprising 3991 compounds was used to build the models and the test set
consisting of 998 compounds was used to evaluate the performance of the developed models. Different
integer and binary type fingerprints were utilized for model building (Figure 3 and Supplementary
materials Tables S1 and S2). All control models which lacked fingerprints and included only descriptors
(AlogP, MW, HBD, HBA, RBN, Num Rings, Num Arom Rings and MFPSA) as features showed
average predictive accuracy (Q) of 0.77 (ML = 0.79 and DL = 0.75) and an average area under the
receiver operating characteristic curve (AUC) value of 0.82 (ML = 0.82 and DL = 0.81). The addition of
fingerprints in the features improved the performance of the models. All models including integer
type PP fingerprints (ECFP_2, FCFP_2, ECFP_4, FCFP_4, ECFP_6 and FCFP_6) displayed average Q
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and AUC values of 0.87 (ML = 0.86 and DL = 0.88) and 0.92 (ML = 0.91 and DL = 0.93), respectively.
Integer type fingerprints were converted to binary type using the “Convert Fingerprint” module of PP.
The conversion of integer type to binary type fingerprints decreased the performance of the models. All
models including converted binary type PP fingerprints demonstrated average Q and AUC values of
0.77 (ML = 0.75 and DL = 0.81) and 0.81 (ML = 0.77 and DL = 0.84), respectively. The open-source based
CDK fingerprints (standard, extended and graph) are originally binary type and cannot be converted
to integer type. Models with original binary type CDK fingerprints showed a comparatively higher
performance than converted binary type PP fingerprints. All models, including binary type CDK
fingerprints, exhibited average Q and AUC values of 0.86 (ML = 0.83 and DL = 0.89) and 0.90 (ML = 0.87
and DL = 0.93), respectively. Integer type PP fingerprints exhibited a higher performance than original
binary type CDK fingerprints for ML. However, integer type PP fingerprints demonstrated a slightly
lower performance than original binary type CDK fingerprints for DL. Compared to integer type PP
fingerprints and original binary type CDK fingerprints, converted binary type PP fingerprints showed
lower performance for both ML and DL. Comparison of different algorithms revealed that the RF
algorithm produced better models than others. Models derived using the RF algorithm exhibited
average Q and AUC values of 0.90 and 0.95, respectively, for both integer type PP fingerprints as
well as original binary type CDK fingerprints. Furthermore, the RF algorithm produced the best
model with FCFP_2 integer type PP fingerprint. This model showed Q and AUC values of 0.91 and
0.95, respectively.
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2.3. External Validation 

Two external sets were used for further validation of the models. As discussed in the 
methodology section, external set 1 (Ex-1) from ChEMBL database and external set 2 (Ex-2) from 
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for Ex-1 and Ex-2 using integer and binary type fingerprints are summarized in Figure 4 and Tables 
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Figure 3. Models built using integer and binary type fingerprints for hERG blockers. X-axis denotes
fingerprint types whereas Y-axis denotes the performance. Control lacking fingerprint only include
descriptors, I: integer type PP fingerprints, CB: converted binary type PP fingerprints, OB: original
binary type CDK fingerprints, NB: naïve Bayes, SVM: support vector machine (L: linear, P: polynomial,
R: radial), RF: random forest, ANN: artificial neural network (layer size 100, 200, and 400) for deep
learning. (A,B) Accuracy value for the models using machine learnings (A) and deep learning (B).
(C,D) AUC value for machine learnings (C) and deep learning (D).

2.3. External Validation

Two external sets were used for further validation of the models. As discussed in the methodology
section, external set 1 (Ex-1) from ChEMBL database and external set 2 (Ex-2) from recent publications [25–29]
consisted of 263 and 47 hERG blockers, respectively. Model predictions for Ex-1 and Ex-2 using integer
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and binary type fingerprints are summarized in Figure 4 and Tables S3–S6 (Supplementary materials),
respectively. The control models exhibited an average Q value of 0.79 (ML = 0.80 and DL = 0.78) for Ex-1.
The Ex-1 showed average Q values of 0.87 (ML = 0.86 and DL = 0.88), 0.80 (ML = 0.77 and DL = 0.82) and
0.86 (ML = 0.83 and DL = 0.88) for integer type PP fingerprints, converted binary type PP fingerprints
and original binary type CDK fingerprints, respectively. Ex-1 displayed higher predictive accuracy for
both integer type PP fingerprints and original binary type CDK fingerprints than for the control models.
However, integer type PP fingerprints produced comparatively higher predictive accuracy than original
binary type CDK fingerprints. Converted binary type PP fingerprints showed predictive accuracy similar
to the control models. Integer type PP fingerprints exhibited higher predictive accuracy than original
binary type CDK fingerprints for ML. However, integer type PP fingerprints exhibited predictive accuracy
similar to the original binary type CDK fingerprints for DL. Control models exhibited an average Q value
of 0.76 (ML = 0.79 and DL = 0.73) for Ex-2. The Ex-2 showed average Q values of 0.80 (ML = 0.80 and
DL = 0.80), 0.71 (ML = 0.71 and DL = 0.70) and 0.70 (ML = 0.72 and DL = 0.68) for integer type PP
fingerprints, converted binary type PP fingerprints and original binary type CDK fingerprints, respectively.
Compared to the control models, Ex-2 displayed higher predictive accuracy for integer type PP fingerprints
while it showed lower predictive accuracy for original binary type CDK fingerprints and converted binary
type PP fingerprints. Integer type PP fingerprints exhibited higher predictive accuracy for both ML and
DL as compared to the original binary type CDK fingerprints and converted binary type PP fingerprints.
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Figure 4. Model prediction to external sets. X-axis denotes fingerprint types whereas Y-axis denotes
the performance for accuracy. Control lacking fingerprint include only descriptors, I: integer type PP
fingerprints, CB: converted binary type PP fingerprints, OB: original binary type CDK fingerprints,
NB: naïve Bayes, SVM: support vector machine (L: linear, P: polynomial, R: radial), RF: random forest,
ANN: artificial neural network (layer size 100, 200, and 400) for deep learning. (A,B) Ex-1 prediction
for machine learnings (A) and deep learning (B). (C,D) Ex-2 prediction for machine learnings (C) and
deep learning (D).

In accordance with the model-building results, converted binary type PP fingerprints reduced the
predictive accuracy of the models. Original binary type CDK fingerprints exhibited comparatively
higher predictive accuracy than converted binary type PP fingerprints for Ex-1. However, Ex-2
displayed slightly lower predictive accuracy for original binary type CDK fingerprints as compared
to converted binary type PP fingerprints. This might be due to the small data size of the Ex-2
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(47 compounds). Further parameters for external validation of the developed models are provided in
Tables S3–S6 (Supplementary materials). These included true positive (TP), true negative (TN), false
positive (FP), and false negative (FN). It can be seen in the supplementary tables that TN predictions
were higher than FN. This might be because compounds in the whole dataset as well as the external sets
were intended to develop as inhibitors for other drug targets but they also inhibited hERG, to produce
toxicity. During model building, the RF algorithm displayed the same average Q value of 0.90 for both
integer type PP fingerprints as well as original binary type CDK fingerprints. However, the RF model
predictions for Ex-1 and Ex-2 using integer type PP fingerprints were found to be better than original
binary type CDK fingerprints. The RF models with integer type PP fingerprints showed average Q
values of 0.89 and 0.79 for Ex-1 and Ex-2, respectively. The RF models with original binary type CDK
fingerprints exhibited average Q values of 0.88 and 0.74 for Ex-1 and Ex-2, respectively. The best model
that was obtained using the RF algorithm and FCFP_2 integer type PP fingerprint showed Q values of
0.90 and 0.81 for Ex-1 and Ex-2, respectively.

3. Discussion

The unwanted blockage of the hERG channel by drug candidates could lead to fatal cardiotoxicity.
Thus, it is essential to screen compounds for activity on hERG channels early in the drug discovery
process to decrease the risk of a drug candidate failing in preclinical safety studies. Due to the
unavailability of the crystal structure of the hERG channel, researchers mainly use the ligand-based
drug design approach to identify hERG blockers. Several ML and DL approaches have been applied.
However, fingerprints used in the majority of the previous studies were mostly binary type [30,31].
These fingerprints are limited in size and generally restricted to 1024 bits. The integer type fingerprints
describe chemical structures in more detail, but they are limited to commercial software. Fingerprints of
the integer type have not been explored much for the prediction of hERG blockers or for the prediction
of other drug target inhibitors. In this study, we computed both integer and binary type fingerprints
for a dataset of hERG blockers and evaluated various ML (NB, SVM, RF and Bagging) and DL (ANN)
algorithms. A training set of 3991 compounds was used to develop QSAR models. The performance of
the developed models was evaluated using a test set of 998 compounds. Models were further validated
using two external sets (Ex-1: 263 compounds and Ex-2: 47 compounds).

The overall results showed that addition of fingerprints to the descriptors improved the
performance of the models. Models with integer type PP fingerprints displayed slightly better
performance than models with binary type CDK fingerprints. Conversion of integer type PP fingerprints
to binary type PP fingerprints reduced the performance of the models. Except for small-sized Ex-2,
models with binary type CDK fingerprints showed better performance than converted binary type PP
fingerprints. Comparison of different algorithms revealed that models built by RF outperformed those
built by other algorithms. This is in agreement with a previous study that reported high performance
of the RF models [17]. The RF algorithm demonstrated a similar performance for both integer type
PP fingerprints as well as original binary type CDK fingerprints during model building. However,
the RF models with integer type PP fingerprints showed comparatively better predictions for both
the external sets than the RF models with original binary type CDK fingerprints. The best model
was obtained using the RF algorithm and FCFP_2 integer type PP fingerprint. Comparison of ML
and DL algorithms revealed that ML models with integer type PP fingerprints demonstrated better
performance and predictions than ML models with binary type CDK fingerprints. On the other hand,
DL models performed slightly better with binary type CDK fingerprints as compared to DL models
with integer type PP fingerprints. However, DL models exhibited similar predictions for both integer
type PP fingerprints and binary type CDK fingerprints for Ex-1. In the case of small-sized Ex-2, ML
and DL models showed better predictions with integer type PP fingerprints as compared to ML and
DL models with binary type CDK fingerprints.

The outcomes of the study suggested that integer type fingerprints improved the performance
and predictive ability of QSAR models. Although integer type fingerprints could be applied to both



Molecules 2020, 25, 2615 7 of 10

ML and DL, these fingerprints did not improve the predictive accuracy of DL models significantly.
Moreover, they required long computation time due to the large number of features. Numerous
fingerprint identifiers caused memory problems in some ANN packages such as “nnet”. Due to
memory problems, integer type fingerprints needed to be converted to binary type for DL. Our results
demonstrated that conversion of fingerprints from integer to binary type reduced the performance
and the predictive ability of the models in both ML and DL. Compared to integer type fingerprints,
original binary type fingerprints produced DL models with slightly better performance. Furthermore,
the predictive ability of DL models with binary type fingerprints was comparable to DL models with
integer type fingerprints. Accordingly, binary type fingerprints are recommended for DL. Binary
type fingerprints were suitable for both ML and DL due to their limited size. However, binary type
fingerprints produced ML models with comparatively lower performance and predictive ability than
ML models with integer type fingerprints. Consequently, integer type fingerprints are recommended
for ML. In conclusion, rational selection of fingerprints is important for hERG blocker prediction.

4. Materials and Methods

4.1. Dataset

A dataset consisting of 5252 compounds with hERG inhibition values (IC50 and Ki) was obtained
from the ChEMBL database [32]. The reported Ki values were converted into IC50 values. In accordance
with previous studies, compounds with IC50 ≤ 1 µM and IC50 > 10 µM were classified as active and
inactive compounds, respectively [15,16]. Active and inactive compounds were defined as 1 and 0,
respectively. Prior to splitting the dataset into training and test sets, 263 compounds (5% of the dataset)
were extracted by random selection as Ex-1 using DS 2019 software (BIOVIA, San Diego, CA, USA).
The remaining dataset with 4989 compounds was randomly partitioned into training and test sets in
the ratio 4:1. The training and test sets consisted of 3991 and 998 compounds, respectively. In addition
to the ChEMBL dataset, 47 hERG blockers reported in recent research papers were collected as Ex-2
from recent publications [25–29]. Active and inactive compounds for the external set 2 (Ex-2) were
defined in the same way as discussed for the ChEMBL dataset (Table 1). The training set was used for
the model building whereas the test and external sets (Ex-1 and Ex-2) were used for model evaluation.

Table 1. Dataset used in the present study.

Source Set Compounds Active
Compounds

Inactive
Compounds

ChEMBL database
(Total compounds: 5252)

Training set 3991 1201 2790
Test set 998 278 720
Ext-1 263 67 196

Recent research papers
(Total compounds: 47) Ext-2 47 18 29

4.2. Fingerprint Calculation

The PP integer type fingerprints were computed using the “molecular fingerprint” module of PP.
The “atom abstraction” option was set to atom type and functional class for calculating ECFP and FCFP
fingerprints, respectively. The “maximum distance” option was set to 2, 4 and 6 for generating different
types of ECFP and FCFP fingerprints (ECFP_2, FCFP_2, ECFP_4, FCFP_4, ECFP_6 and FCFP_6).
Integer type fingerprints were converted to binary type fingerprints using the “Convert Fingerprint”
module of PP. CDK binary type fingerprints (standard, extended and graph) were computed with
“rcdk” package [33] of R (version 3.5.2, R Core Team, Vienna, Austria) [34]. The “get.fingerprint”
function was used for the calculation of the fingerprints. The fingerprint frequency was determined
for validating the appropriate split of the dataset into training and test sets. Fingerprint frequency was
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calculated as the observed number of unique fingerprint identifiers/the total number of chemical data
(training set = 3991 and test set = 998).

4.3. Model Building

In this study, we evaluated one DL algorithm: ANN, and four ML algorithms: NB, SVM, RF
and bagging. DS 2019 software was used for NB and bagging because it supports only these two
algorithms. R package was employed for NB, SVM, RF, ANN. NB is available in both R and DS
packages. NB-DS computes only integer type fingerprints but it is possible to calculate both integer as
well as binary type fingerprints using NB-R. We utilized both the packages to evaluate NB. The “create
Bayesian model” protocol of DS was used for NB-DS. The laplacian value was set to the default value
of 1. The “create recursive partitioning model” protocol of DS was employed for decision-tree based
bagging such as RF. The number of trees was set to 100. The “e1071” package [35] of R was utilized
for NB and SVM. NB models were created using the “naïveBayes” function. The Laplace parameter
was set to 1. SVM models were developed using the “svm” function. The linear, polynomial and
radial methods were implemented for SVM. While implementing, linear, polynomial and radial kernel
functions were selected. The “randomForest” package [36] of R was used for a decision-tree based
RF. The number of trees was set to 100. The “h2o” package [37] of R was utilized for ANN with three
hidden layers. The “Rectifier activation” function was employed, and the number of iterations was set
to 20. The layer size parameter was set to 100, 200, and 400 for three hidden layers. Descriptors were
calculated using DS. These included AlogP, MW, HBD, HBA, RBN, Num Rings, Num Arom Rings and
MFPSA. Except for the control models, all developed models included fingerprints. Control models
comprised only descriptors.

4.4. Model Evaluation

Model performance was evaluated in terms of predictive accuracy (Q), the area under the receiver
operating characteristic curve (AUC), true positive (TP), true negative (TN), false positive (FP) and
false negative (FN). The “calculate molecular property” protocol of DS 2019 software and “predict”
function of R package were used for the model evaluation.

Supplementary Materials: The following are available online. Table S1. Models built using integer type
fingerprints. Table S2. Models built using binary type fingerprints. Table S3. Model prediction for external set 1
using integer type fingerprints. Table S4. Model prediction for external set 1 using binary type fingerprints. Table
S5. Model prediction for external set 2 using integer type fingerprints. Table S6. Model prediction for external
set 2 using binary type fingerprints. The supplementary excel data for the compound list and detailed model
prediction data used in this research for hERG blocker prediction.
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