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Background
DNA methylation has been demonstrated to be highly dynamic and essential for many 
biological processes. The importance of DNA methylation on biological processes has 
been shown for gene regulation and cell differentiation amongst others [1, 2]. With the 
advent of microarray technology in epigenetic research, researchers become supported 
with a deep and comprehensive overview on changes in DNA methylation applicable for 
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Background:  With the widespread availability of microarray technology for epigenetic 
research, methods for calling differentially methylated probes or differentially methyl-
ated regions have become effective tools to analyze this type of data. Furthermore, 
visualization is usually employed for quality check of results and for further insights. 
Expert knowledge is required to leverage capabilities of these methods. To overcome 
this limitation and make visualization in epigenetic research available to the public, we 
designed EpiVisR.

Results:  The EpiVisR tool allows to select and visualize combinations of traits (i.e., 
concentrations of chemical compounds) and differentially methylated probes/regions. 
It supports various modes of enriched presentation to get the most knowledge out of 
existing data: (1) enriched Manhattan plot and enriched volcano plot for selection of 
probes, (2) trait-methylation plot for visualization of selected trait values against meth-
ylation values, (3) methylation profile plot for visualization of a selected range of probes 
against selected trait values as well as, (4) correlation profile plot for selection and visu-
alization of further probes that are correlated to the selected probe. EpiVisR additionally 
allows exporting selected data to external tools for tasks such as network analysis.

Conclusion:  The key advantage of EpiVisR is the annotation of data in the enriched 
plots (and tied tables) as well as linking to external data sources for further integrated 
data analysis. Using the EpiVisR approach will allow users to integrate data from traits 
with epigenetic analyses that are connected by belonging to the same individuals. 
Merging data from various data sources among the same cohort and visualizing them 
will enable users to gain more insights from existing data.
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epigenome-wide association analysis (EWAS). The Illumina Infinium HumanMethyla-
tion450 BeadChip (GPL13534 platform) became widely used to measure DNA methyla-
tion in roughly 485.000 CpG (cytosine followed by guanine nucleotide) sites [3]. Using 
the later developed Illumina MethylationEPIC BeadChip (EPIC array, GPL23976 plat-
form) the coverage was expanded to about 850.000 CpG locations [4, 5].

A lot of EWAS have been performed using these techniques, which results in the 
increased availability of epigenetic datasets [6–12]. Usually, these results become 
reported and documented as differentially methylated CpG related to a certain trait [12, 
13]. In environmental sciences dealing with the exposome [14], a common approach 
is based on searching for an association between (genome-wide) DNA methylation 
changes and the internal load on various chemicals (multi-trait analyses). Such an 
approach evokes a large number of results that have to be screened thoroughly. Com-
mon methods applied after calculating regression models are mainly based on filter-
ing the results from corrected p-values. Large scale databases that collect and analyze 
such data exist [15]; they also allow enrichment as well as network analyses. In addition, 
approaches based on visualization by heatmap, such as Complex Heatmap, are in use 
[16, 17].

Many R based computational tools for analysis of DNA methylation data have been 
developed. An overview of existing toolsets can be found in [10]. In recent years online 
toolsets like EWAS Atlas [12], EWAS Data Hub [18] or EWAS Open Platform [15] 
emerged. They enable new interaction methods with already existing data, but lack spe-
cific interactive annotation. EpiVisR was conceived and developed to fill this gap.

Deeper analysis of results found in EWAS can be tedious and time consuming. To get 
a faster overview about the biological importance of significant findings in EWAS. We 
propose EpiVisR, a toolset that integrates visualization as well as annotation and linkage 
to external data sources for further analyses. It enables the users to inspect results found 
in an a priori regression process (i.e. from meffil package [19]) visually. The visualization 
described here relies on individuals’ data from three domains (individuals’ data, trait 
data, DNAm data) as shown in Fig. 1.

The individuals table of the dataset in use (shown in Fig.  1) provides key informa-
tion for joining data as well as information for stratification by sex. Trait data becomes 
merged to DNAm data to show up in various types of visualization. DNAm data itself is 
shown in the annotated Manhattan and volcano plots of EpiVisR.

Implementation
EpiVisR provides a visualization module that shows data calculated by a prior calculation 
step. Due to heterogeneity of the data to be analyzed, the calculation step is implemented 
outside the EpiVisR package. Therefore, it can be easily adopted to the variable structure 
needed. Most notable here is the adjustment for cell type proportions as described in 
[5] and [20]. Also, adjustment for DNA methylation affecting the subject’s constitutions 
such as sex, gestational age, ethnicity, and obesity [21] should be taken into account.

The EWAS model calculation does not necessarily need a visual interface. We recom-
mend using a software package such as meffil for model calculation [19]. The calculation 
module should provide results files with < P_VAL > , < Beta > , and < DeltaMeth > columns 
for each CpG. The β-value here is defined as
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for each CpG site [22]. Delta methylation is defined as the difference of methylation 
between highest and lowest found β-value at each CpG site:

Other definitions for delta methylation (e.g. IQR) might be feasible and depend 
on the research question as well as on the used toolset for EWAS model calculation. 
Results should be stored as one file per trait. These files are then used in the visualiza-
tion module: In a first step, all results from a certain folder are read into a data frame. 
Minimum as well as maximum values for all descriptive metrics are calculated. These 
aggregated values can be used for a first selection of trait under investigation out of a 
possible long list of traits.

Because of the static nature of the results, we implemented a caching strategy. 
Therefore it is not necessary to load  .csv files over and over again. Instead, the data 
frame with all result summaries is stored in a separate  .rds file for later and faster 
reuse.

EpiVisR was developed as web app on top of the shiny web application framework 
version 1.7.1 [23]. We used a modularized approach implementing shiny modules for 
easier maintaining, reuse, and future improvement. Even though the shiny framework 
offers the concept of reactive programming with seamless updates of related objects, 
we implemented EpiVisR in an event-driven approach. Otherwise, the users would 
have to wait at certain processing steps due to large amounts of data that have to be 
loaded between those processing steps. In consequence, every loading process must 
be started explicitly by the users.

β =
intensity methylated

intensity methylated + intensity unmethylated

�methylation = max (β)−min (β)

Fig. 1  Relationship of trait, DNAm and EWAS analyses; each DNAm probe is available for many individuals 
as well as each trait; this allows merging of DNAm data with trait data by individuals Id as key attribute; 
visualization described here is based on this merge step



Page 4 of 12Röder et al. BMC Bioinformatics          (2022) 23:292 

Data tables in the user interface (UI) were built using the shiny DT module [24]. All 
plots are built on top of the widely used plotly framework [25]. Therefore, it is pos-
sible to drag, to move, and to zoom within the plots as well as to export these plots.

EpiVisR is controlled by a configuration file < config.yml > , which is stored in the 
same folder as the R scripts for visualization. The description of configuration param-
eters is included in the configuration file itself. Details on how to store data and how 
to set config file are given in the package vignette on GitHub (see the section “Avail-
ability and requirements”).

EpiVisR subdivides into several components: each component containing a UI as 
well as the server logic in one R file:

•	 < inputTrait.R > for selection of the folder containing the result files and for selec-
tion of trait under investigation;

•	  < plotManhattanVolcano.R > for visualization of enriched Manhattan and volcano 
plots as well as for the selection of differentially methylated probes. Gene names 
as well as further genomic features of probes are annotated to probes in plots and 
tables. These gene names were annotated from the meffil R package [19] (where 
available) and become merged together with delta methylation values as well as 
p-values from the scenario of the currently analyzed trait under investigation;

•	 < plotTraitDNAm.R > for showing the relationship between trait under investiga-
tion and DNAm, stratified by sex;

•	 < plotDNAmProfile.R > for visualization of the genomic region around the differ-
entially methylated probe;

•	 < DTCorrelatingProbes.R > for identification and plotting of probes somewhere on 
the epigenome that correspond to the probe currently under investigation;

•	 < server.R > containing and referring to the module’s server components;
•	 < ui.R > containing and referring to the module’s UI components;
•	 < util.R > containing several service functions not relating to a particular module.

EpiVisR works with current versions of Firefox, Edge and RStudio integrated 
browser. It can be installed from GitHub into an interactive R environment (RStudio) 
using devtools: devtools::install_github("steroe/EpiVisR").

Results and discussion
Depending on the original research question, various formats are used in different 
EWAS databases. To distinguish between important and irrelevant CpG (probe) 
locations, at least a p-value as well as a methylation difference or methylation range 
(depending on the scale level of the trait under investigation) should be available in 
the dataset under investigation.

We propose the use of delta methylation values for differentially methylated probes 
(DMP) in addition to usually reported β values from regression models [21]. They 
allow selecting candidate probes with a methylation difference above a certain thresh-
old. This enables further validation of findings by other methods than microarray 
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technology (e.g., pyro sequencing). EpiVisR recognizes these attributes from their col-
umn labels: < P_VAL > , < Beta > , and < DeltaMeth > .

Example data was drawn from the LiNA cohort study [26, 27] and anonymized 
afterwards.

Origin of data, preprocessing, and quality checking

Results from EWAS are usually generated by adjusted regression models and shared 
in long tables with probeIDs, p-values and delta methylation β for each trait under 
investigation that was analyzed. Thus, all common preprocessing steps to generate 
these β values (using meffil [19] or similar packages) were done in prior steps. EpiVisR 
starts with a table containing probeIDs, delta methylation values, and p-values. Unu-
sual small p-values (near lower bound of the float data type in IEEE 754, the technical 
standard for floating-point computation [28, 29]) can be excluded [18]. Whether this 
is necessary depends on which system delivered the p-values from regression models. 
The same applies for models with small case counts (n). Both might be not reliable 
and therefore omitted.

EpiVisR can exclude multimodal probes from further processing. This works based 
on a pre-defined list of those probes, which is stored in a file named < MultiMod-
ProbesFileName > and referenced in the config file.

All selected probes are internally annotated with information provided by the mef-
fil package [19]. This annotation is used in all visualization steps for annotation with 
gene symbols as well as other genomic features available from meffil.

Selection of traits

EpiVisR is able to process folders with results from many traits. They can be ordered 
by various measures such as the p-value, delta methylation, and other graph-based 
measures. The scatter plot of trait vs. methylation is available at least in the memory 
of software during runtime while building the regression models during the screening 
process. From this scatter image it is easy to calculate graph-based measures by using 
the scagnostics method [30, 31]. If these measures were calculated during the screen-
ing process, they can be used to filter and select traits for visual inspection. In case of 
a huge number of significant findings, these graph-based measures allow filtering for 

Fig. 2  Trait selection using a list of filtering criteria; most important are the columns p-value and delta 
methylation; graph based scagnostics measures are also available
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a further criterion before visual inspection of the results. Besides, measures such as 
the p-value or delta methylation can serve as selection criteria (Fig. 2).

Visualization

EpiVisR has a user-friendly design to support the users in finding new insights. It offers 
the flexibility to use various types of visualization, supporting plots, and showing the 
relationship of a certain trait under investigation to a single CpG methylation as well as 
the methylation profile over a certain genomic region. The plots shown here use a data 
set which was distorted by batch effects for demonstration purposes.

	(i)	 The enriched Manhattan plot (Fig.  3) shows the -log10 p-value (P_VAL) of 
the regression model for a trait against the location of CpG on the microarray 
(globalArrayPosition) (Fig. 3). Each dot represents a CpG. The color coding visu-
alizes the chromosome a certain CpG belongs to. To show and select only most 
important CpG locations, it is possible to limit the number CpG by % of top ranked 
p-values. Compared to a classical Manhattan plot [32, 33] the enrichment allows to 
identify important CpG in terms of prior knowledge.

	(ii)	 In the enriched volcano plot [34] (Fig. 4) the -log10 p-value (P_VAL) of the regres-
sion model for a trait is shown against the delta methylation measure (DeltaMeth), 
provided by prior screening algorithm. Exemplarily, Fig.  4 shows a greater vari-
ance in hyper-methylated probes (DeltaMeth > 0) than hypo-methylated ones (Del-
taMeth < 0), which is represented by a larger group of CpG on the right-hand side 
of the enriched volcano plot.

	(iii)	 Both the Manhattan and the volcano plot can be enriched with further informa-
tion, shown here by the size of the dots. This can be used to show the number 
of already known effects on a certain probe from an annotation table in order to 
decide more easily which effects are worth deeper inspection. In the examples 

Fig. 3  CpG selection using enriched Manhattan plot a showing p-values of differentially methylated CpG in 
relation to location on genomic region (chromosome). Color coding b shows chromosome location of CpG
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shown here, we used data from the MRC-IEU EWAS catalog [35], showing the 
number of prior findings concerning a certain probe visualized by the diameter of 
each dot. From either the Manhattan or volcano plot, the users can select a single 
probe for deeper inspection of the relationship between the probe and trait under 
investigation by clicking on a certain dot (probe).

	The example shown in Fig. 3 highlights cg07474076, which is located on chr16 in gene 
FLYWCH1 and has n = 4 prior reports in the MRC-IEU catalog. Chromosome 
coordinates as well as further biological relevant information can be obtained from 
a table tied with the plots, which holds annotated information as text.

	(iv)	 In a trait-methylation plot, the range of values in the trait under investigation vs. 
methylation at a certain CpG location can be shown. Lines represent the trend of 
trait – CpG relationship together with confidence interval as shadows. The trait-
methylation plot can additionally be stratified to other attributes such as < gen-
der > , which are stored in the traits table (Fig. 5). An additional horizontal violin 
plot shown below the trait-methylation plot visualizes the distribution of sex-strat-
ified trait under investigation.

	(v)	 The methylation profile shows the methylation of all samples (connected by 
straight lines) covered by the EWAS on a single selected CpG in the center of the 
plot and its neighboring CpG (Fig.  6). The value (concentration) of the selected 
trait under investigation (e.g., chemical compound) is shown on a color scale to the 
right (c). The length of the visualization window can be adjusted according to the 
selected probe by using the input bar (a) above the plot (b). Distribution of values 
is visualized using the density plot (d). Most notably in this example is the clearly 
visible separation of values with high concentration values in trait under investi-
gation (blueish/greenish lines) from the lower concentrations (reddish/ yellowish 
lines) over a range of three CpGs from the 3rd to the 5th probe in Fig. 6.

Fig. 4  CpG selection using enriched volcano plot a showing relationship between p-values of differentially 
methylated CpG and delta methylation of those CpG; left side negative deltas, right side positive deltas; color 
coding b shows chromosome location of CpG
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	The methylation profile plot does not show real distances between probes. It shows only 
the CpGs available on the microarray in use (in this example, the GPL23976 plat-
form).

	(vi)	 An additional table with all probes shown in the methylation profile plot can be 
used for exporting methylation data of selected probes together with trait data into 
external tools (Fig. 7).

Fig. 5  Trait-methylation plot (a) showing relationship between delta methylation and value of trait under 
investigation for all individuals (black), for females (pink), for males (blue); Distribution of values of trait under 
investigation is given in violin plot (b) below

Fig. 6  Methylation (DNAm) profile plot (a) showing methylation level (y axis) for each individual over 
a certain genomic range (globalArrayPosition on x axis) with selected CpG in the center (b); value 
(concentration) of trait under investigation is color coded (c) (red color for low concentration, blue for high 
concentration); violin plot (d) on the right hand side shows distribution of trait under investigation stratified 
by sex of individuals. DMR window size can be adjusted using the slider bar showing selected number of CpG 
up- and downstream of CpG under consideration (e). For better readability, we do not show real distances 
between CpG. Distances Information on location, annotation, and effect size is given above the methylation 
profile plot (a)
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	The above example (Fig.  3 to Fig.  6) clearly shows a methylation difference of delta 
methylation = 0.102 (~ 10%) for CpG cg07474076 between the lowest and highest 
values of the endogenous biomolecule under investigation.

	(vii)	We furthermore provide a correlation profile plot for selected CpG and its most 
correlated CpGs of interest (Fig. 8). The table shows correlation coefficients (corr.
coeff) together with annotated CpG information (gene.symbol, genomic feature, 
etc.). Selected CpGs can be visualized in the plot below the table.

All these visualization tools should help to obtain a fast impression from prior calcu-
lated regression models to make trustworthy conclusions. A detailed description of the 
workflow and interaction with the software is given in the packages vignette on GitHub.

Interfacing to external tools

All probeIDs are enriched with additional hyperlinks that link to the EWAS data hub 
[18] and allow further inspection against prior findings related to this particular probe.

Fig. 7  Traits data merged with methylation data; this represents the base data for plotting the methylation 
profile plot in Fig. 6 together with the selected DMR window and can be used for exporting data to external 
tools

Fig. 8  Correlation profile plot (b) showing CpG which are correlated to the selected CpG; correlated CpG are 
selected in the table on the top (a) and plotted below using different colors
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Comparison of standard deviation (SD) at a certain CpG location with findings from 
other studies can also be used to determine whether a DMP is related with a certain 
trait under investigation or not. Given a DMP was found in a single cohort and no other 
cohort with the same trait is available, the SD at this particular probe can be calculated 
and visualized also without information on the trait under investigation. If the DMP 
does persist in the compared cohort, then there is a high probability that the DMP was 
not found by chance.

A further important source for identifying useful associations of DNAm to trait under 
investigation are annotations leading to pathways, linking together functionally asso-
ciated and differentially methylated probes at various locations besides correlation. 
EpiVisR supports the export of probe lists into external tools for pathway analysis by 
compiling together all necessary data (gene.symbol, p-value, delta methylation) from 
significant probes. In contrast to gene analysis, where the change in gene expression 
is measured as an ‘n-fold change’, we use the measure ‘delta methylation’ for results of 
EWAS data.

Strengths and limitations

EpiVisR is solely based on R programming language and is based on a local file-system 
for storage of results, with no local database required. Both were designed this way to 
ensure high performance. Simultaneously, this is a limitation since interdependencies 
between different traits under investigation cannot be systematically recognized.

Conclusions
EpiVisR enables the users to visualize results from regression models, describing meth-
ylation profiles for certain trait under investigation. It furthermore allows inspecting the 
relationship between trait under investigation and methylation in a visual way in order 
to produce high-quality plots by using the plotly framework and to generate lists of dif-
ferentially methylated probes for subsequent external analysis (e.g., pathway analysis).

To the best of our knowledge, EpiVisR is the first implementation that covers the 
aspects of result visualization, enrichment, and linking to external databases for EWAS 
with multiple trait under investigation. This in turn will allow easier selection of relevant 
trait under investigation for further inspection.

Availability and requirements
Project name: EpiVisR. Download location: EpiVisR can be downloaded from https://​
github.​com/​SteRoe/​EpiVi​sR. Operating systems: various, platform independent. Pro-
gramming language: R (version 4.1.2). Additional libraries: shiny library (version 1.7.1), 
plotly library (version 4.10.0), QCEWAS library (version 1.2–2), data.table library (ver-
sion 1.14.2) [24], tidyverse meta package (1.3.1) [36], RcolorBrewer library (1.1–2) [37] 
License: MIT. Restrictions for non-academics use: none.

Abbreviations
DMP	� Differentially methylated CpG probe
DMR	� Differentially methylated CpG region
DNAm	� CpG methylated DNA
EWAS	� Epigenome-Wide Association Studies

https://github.com/SteRoe/EpiVisR
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SD	� Standard deviation
UI	� User interface
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