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Abstract: Interpenetrating polymer networks (IPNs) represent an interesting approach for tuning the
properties of silicone elastomers due to the possible synergism that may occur between the networks.
A new approach is presented, which consists of mixing two silicone-based networks with different
crosslinking pathways; the first network being cured by condensation route and the second network
by UV curing. The networks were mixed in different ratios and the resulted samples yield good
mechanical properties (improved elongations, up to 720%, and Young’s modulus, 1 MPa), thermal
properties (one glass transition temperature, ~−123 ◦C), good dielectric strength (~50 V/µm), and
toughness (63 kJ/m3).

Keywords: interpenetrating polymer networks; silicone elastomers; wave energy harvesting; dielec-
tric elastomer transducers

1. Introduction

Wave energy harvesting with dielectric elastomer transducers (DETs) is a relatively
new technology with great application potential [1–4]. This technology is built around a
variable capacitor, which is made of a dielectric elastomer with compliant electrodes on
both sides.

Based on the crosslinking system used, the chemical backbone structure, and the
type/amount of filler used, silicone elastomers can be soft or hard, biocompatible, or
cytotoxic. Due to the nature of the siloxane bond, silicone elastomers operate over a wide
temperature and humidity range, are highly flexible and elastic, and have high breakdown
strengths and low Young’s modulus. Furthermore, using a specially engineered mold or
a 3D printer, silicone elastomers can take nearly any shape. For these reasons, silicone
elastomers can be used in a wide range of applications, including energy harvesting (e.g.,
wave energy harvesting [5,6], energy harvesting using human walking motions [7]), braille
displays [8], robotics [9] (sensing skin), and they hold a significant share of the market for
aeronautical applications as well (adhesives in spacecrafts and airplanes, components of
wings, landing flaps, window gaskets, floor components) [10].

Silicone elastomers can be successfully used as dielectric elastomers in variable ca-
pacitors for wave energy harvesting due to the remarkable properties mentioned above,
but their conversion efficiency is still limited due to a low dielectric permittivity and poor
mechanical properties.

Different strategies can be used to improve the dielectric permittivity and/or mechan-
ical properties, such as adding polar groups to the polymer back-bone or in cross-linking
nodes or using fillers with high dielectric permittivity.
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The polar groups attached to the main polymer back-bone significantly reduce the
mechanical properties and dielectric breakdown strengths of the cross-linked elastomers,
even though they offer a high dielectric permittivity [11–13]. Generally, many fillers with
high dielectric permittivity are not compatible with the siloxane matrix. A compatibility
protocol must be followed to incorporate them into the siloxane matrix without causing
defects at the filler/matrix interface. This compatibility protocol is not always successful
and it adds another costly step to the preparation process. In most studies, the reinforcing
effect of the fillers resulted in an increase in Young’s modulus and a significant decrease in
dielectric strength, highlighting an imperfect compatibility.

Engineering elastomers with polymer networks that are interconnected after cross-
linking, known as interpenetrated polymer networks (IPNs), is another strategy used
to suppress the disadvantages of silicone elastomers. Thus far, many studies on IPNs
have focused on actuation, achieving promising results. Full silicone IPNs as dielectric
elastomers were first developed and studied by Brochu et al. [14]. They mixed a room
temperature cross-linked network (RTV) with a high temperature cross-linked network
(HTV) aiming to achieve a certain percent of preserved prestrained to increase the adhesion
between dielectric layers. Materials exhibited over 20% actuation strains for more than
30,000 cycles while driving a load. Tugui et al. [15] followed Brochu’s work and used polar
RTV networks obtaining promising materials for low voltage actuations with increased
dielectric permittivity when trifluoro-propyl and 3-cyanopropyl groups were used. In
another approach, Madsen et al. [16] replaced the RTV network by an ionic cross-linked
network between a low molecular weight carboxydecyl terminated PDMS and an amino-
functional PDMS in different wt % ratios. The obtained networks have higher dielectric
permittivity due to the ionic part of the IPNs, relatively high breakdown strengths, and
good actuation values based on figure of merit (FOM) calculations.

Our new approach consists in mixing two RTV networks in different rations with
different cross-linking pathways: condensation (RTV-C) and UV cure (RTV-UV). The green
full silicone IPNs obtained by this method present several advantages in comparison to pre-
viously presented strategies, such as requiring no complex chemical reactions to add polar
groups or including several steps in the preparation procedure needed for filler incorpora-
tion that may lead to defects in the membrane or phase separations. Thus, a more scalable
and cheaper method to obtain tuned silicone-based dielectric elastomers is presented that
lead to superior energy harvesting properties as compared to commercial products.

2. Experimental
2.1. Materials

The following reagents were used as received: hydroxyl-terminated polydimethyl-
siloxane (FD 80, Mn = 70,000 g/mol), from was purchased from Wacker Chemie AG;
Tetraethylortosilicate (TEOS, Mn = 208.33 g/mol, d = 0.933 g/mL, assay = 98%), dibutyltin
dilaurate (DBTDL, Mn = 631.56 g/mol, d = 1.066 g/mL, assay = 95%), and 2,2-dimethyl-
2-phenylacetophenone (DMPA, Mn = 256.30 g/mol, assay = 99%) were purchased from
Sigma-Aldrich; two vinyl-terminated polydimethylsiloxane (DMSV31, Mn = 28,000 g/mol,
d = 0.97 g/mL, assay > 95% and DMSV22, Mn = 9600 g/mol, d = 0.97 g/mL, assay > 95%)
from Gelest; mercapto-functional silicone (GP-367, 5.4% SH, Mn = 3647 g/mol) from
Gennese Polymer Corporation, Burton, MI 48529, USA.

2.2. Equipments and Methods

Electrical breakdown tests were performed on an in-house-built device based on
international standards (IEC 60243-1 (1998) and IEC 60243-2 (2001)) and film thicknesses
were measured through microscopy of cross-sectional cuts. The distance between the
spherical electrodes was set accordingly with a micrometer stage and gauge. An indent of
less than 5% of sample thickness was added, to ensure that the spheres were in contact with
the sample. The polymer film was slid between the two spherical electrodes (diameter of
20 mm), and the breakdown was measured at the point of contact by applying a stepwise
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increasing voltage (50–100 V/step) at a rate of 0.5–1 steps/s. Each sample was subjected to
12 breakdown measurements, and an average of these values was given as the breakdown
strength of the sample.

Dielectric relaxation spectroscopy (DRS) was performed on a Novocontrol Alpha-A
high-performance frequency analyser (Novocontrol Technologies GmbH & Co, Montabaur,
Germany) operating in the frequency range 10−1–106 Hz at ambient temperature and at
low electrical field (~1 V/mm). The dimeter of the electrode used was 20 mm.

The stress/strain curves were recorded on a Shimadzu AGS-J deformation apparatus
at ambient temperature and at a rate of deformation of 200 mm/min with a load cell
capable of measuring forces up to 1 kN and a sample film of 25 mm × 5 mm. For each
point, five samples were tested and the average value was taken.

The small-angle X-ray scattering experiments (SAXS) were performed on a Nanostar
U-Bruker system equipped with a Vantec 2000 detector (diameter of 200 mm) and an
X-ray I µS microsource. The wavelength of the incident X-ray beam was λ = 1.54 Å (Cu
Kα) and the beam was collimated by three pinholes. The scattered intensity I (q) was
plotted as a function of the momentum transfer vector q = 4π sin θ/λ, where λ is the
wavelength of the X-rays and θ is half the scattering angle. The sample-to-detector distance
was 107 cm allowing measurements with q values between 0.008 Å−1 and 0.3 Å−1. The
angular scale was calibrated by the scattering peaks of a silver behenate standard. The
samples, in powder form were mounted on a dedicated holder using kapton foil and
measured under vacuum at constant temperature, 25 ◦C for 10,000 s. The raw data was
normalized for the transmission coefficient and the incoherent scattering due to background
was subtracted using the SAXS–Bruker AXS software. The data analysis was done with the
following software: Bruker AXS and “Irena: tool suite for modeling and analysis of small-angle
scattering” [17,18].

Differential scanning calorimetry (DSC) measurements were conducted on a 200 F3
Maia DSC (Netzsch, Germany) calibrated with indium. A total 10 mg of sample was heated
in aluminum crucibles with punched and sealed lids in nitrogen purge gas (flow rate
50 mL/min) and at a heating rate of 10 ◦C/min.

The computations were carried out with Gaussian G16 software [19]. Quantum me-
chanics (QM) method was selected for computations that included a description of the
physical properties at the scale of atoms and subatomic particles (electrons) by density
functional theory (DFT). DFT calculations have been reported to provide reliable results
that balance the description of the optimized geometries with a good estimation of the
energy gaps in π-conjugated oligomers and polymers [20]. As functional for computation,
LC-wPBE [21] and 6–31 G (d,p) basis set was selected. The computational determination
includes an optimization of a network node structure not on the entire polymer matrix.
The network node structure included two compounds in computations: A–Figure S1 and
B–Figure S2. The equilibrium molecular geometry was tested by Hessian matrix calculation
and no imaginary frequency was obtained. This calculation indicated that optimized molec-
ular geometry corresponds to a minimum of the potential energy. Additionally, the dipole
moment and the partial atomic charges such as molecular electrostatic potential (MEP)
surface, atomic polarizability tensor (APT), and the HOMO-LUMO (Highest Occupied
Molecular Orbital-Lowest Unoccupied Molecular Orbital) energy gap were calculated with
the DFT method. Based on these calculations, it could be estimated why a molecular system
has a good permittivity (compound B) and another slightly lower (compound A).

Rheological characterization of the prepared films was performed with a TA Instru-
ments ARES-G2 Rheometer set to 2% controlled strain mode, thus helping to stay within the
linear viscoelastic regime. Measurements were performed with a parallel plate geometry
of 8 mm at room temperature, with a normal force of 7 N and in the frequency range
100–0.01 Hz.

Atomic force microscopy (AFM) measurements for the topography of the samples
were performed at room temperature and under ambient pressure, using a Scanning Probe
Microscope SOLVER PRO-M AFM, NT-MDT (Russia). The images of the film surfaces
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were taken using the tapping mode with a high resolution no-contact silicon NSG10
cantilever. In all AFM measurements the scan range was 10 µm in the X-Y direction. Imagine
acquisition and roughness parameters measurements were done with Nova 1.0.26.1443
software provided by NT-MDT. For a set of n numbers or values of a discrete distribution
x1, x2, . . . . . . , xn, the root-mean-square (abbreviated “RMS”) is defined as:

RMN =

√
x2

1 + x2
2 + . . . + x2

n
n

;

where: RMN = root mean square; n = number of measurements; xi = each value.

2.3. Sample Preparation

The samples were obtained based on two siloxane-based polymer networks com-
bined in different ratios and crosslinked by different pathways, as described in Table 1.
Proper amounts, as described in Table S1, of hydroxyl-terminated polydimethylsiloxane
(FD-80), which was used to obtain the first polymer network (A), and a vinyl-terminated
polydimethylsiloxane (DMSV31 or DMSV22), used to obtain the second polymer network
(B or C), were dissolved in a laboratory beaker for 15 min in toluene under rigorous stir-
ring. After dissolving the polymers, TEOS, used as condensation curing crosslinker for
network A, and a low molecular weight mercapto functional silicone (GP-367), used to cure
network B or C by UV thiol-ene reaction, were added and mixed for 10 min. Previously
dissolved DMPA, used as photo initiator in thiol-ene crosslinking, and DBTDL catalyst for
condensation cure, were finally added, and stirring was maintained for another 2 min. The
final mixture was poured on a Teflon petri dish and left for 15 min under UV radiation
(A UV lamp G20T10 UVC 20W from Sankyo Denki, which emits ultraviolet radiations at
a wavelength of 253.7 nm, with a UV output of 7.5 W was used in the experiments) to
crosslink network B or C. After UV radiation, the samples were kept in laboratory condition
for 12 h for the condensation cure to take place and successfully crosslink network A. All
samples were easily peeled off the substrate and kept for another 4 weeks in laboratory
conditions for ageing before further characterizations. The networks are schematically
represented in Scheme 1.

Table 1. The wt % ratios used to obtain the reference samples and the IPNs (AxBy or AxCy).

Network
Sample

A B C A1B1 A2B1 A1B2 A1C1 A2C1 A1C2

A * 1 0 0 1 2 1 1 2 1
B ** 0 1 0 1 1 2 0 0 0
C ** 0 0 1 0 0 0 1 1 2

*—condensation cross-linking; **—UV cross-linking; x and y stands for network rations.

Scheme 1. Schematic representation of the silicone-based IPNs formation.
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3. Results and Discussions

Based on an elastic and stiff network, new silicone-based IPNs have been designed.
The elastic network was made of hydroxyl-terminated PDMS with a high molecular weight,
which was cross-linked with TEOS by condensation (A network). A low molecular weight
vinyl-terminated PDMS network was cross-linked with a mercapto functional cross-linker
via thiol-ene addition. Two low molecular weight vinyl-terminated PDMSs were selected
to investigate the impact of the rigid network’s molecular weight (B and C network). Two
sample series (AxBy and AxCy) were created by mixing the networks in varied weight
percent proportions and a reference series (A–C). SEM was used to examine the cross-
section morphology of the samples. A wrinkle-like morphology was noticed in sample
A (Figure 1a), which is made of a polymer with a high molecular weight. A flake-like
structure can be seen in sample C (Figure 1c) which is made of a low-molecular-weight
polymer. Sample B, which is based on a polymer with an intermediate molecular weight
compared to the other two (A and C), has a morphology that is a hybrid between the
wrinkle-like and flake-like structures (Figure 1b).

Figure 1. Cross-section morphology of samples A (a), B (b), and C (c); 4 µm scale.

The morphology of the AxBy (Figure 2) series is determined by the A network; the
larger the network A’s weight ratio is, the more pronounced is the wrinkle-like structure.
The flake-like structure is prevailing where more network B is present (Figure 2c). For
instance, the 1:1 ratio (Figure 2a) offers a wrinkle-like morphology that is more dense and
less pronounced than the 2:1 ratio (Figure 2b).

Figure 2. Cross-section morphology of samples A1B1 (a), A2B1 (b), and A1B2 (c); 5 µm scale.

In the case of the AxCy series (Figure 3), the same pattern can be observed. The net-
work with the lower molecular weight, the rigid one, dictates the morphological structure
of the samples, but in this case it changes dramatically. One can observe the appearance of
a structure similar to spherical aggregates (Figure 3a) and a structure that is denser with
smaller spherical aggregates when a higher ratio of the A network was used (Figure 3b).



Polymers 2022, 14, 211 6 of 13

Figure 3. Cross-section morphology of samples A1C1 (a), A2C1 (b), and A1C2 (c); 5 µm scale.

The surface topography of polymer composite materials used in electronics is very
important for the quality of contact with the metal surfaces of devices, in our case for the
formation of capacitors and can influence the values for capacity, electrical permittivity,
breakdown voltage, temperature factor, mechanical strength and adhesion to electrodes.

In this regard, the evaluation of surface roughness is one of the most important
criteria. In many studies determination of the surface roughness was performed using a
profilometer device. In the present study, AFM evaluation was used, which is a modern
and precise method. The Figure 4 shows the 3D images and phase contrast for A and C
precursors and for AxCy samples, for a 10 × 10 µm scan area.

Figure 4. AFM scans of the reference samples (A–(a), C–(b)) and AxCy series (A1C1–(c), A1C2–(d),
A2C1–(e)) and phase contrast for sample A1C1–(g), with statistical parameters of roughness-(f).

For all investigated samples, RMS is below 0.05 microns, therefore, it is suitable for
use in variable capacitor systems for wave energy harvesting with dielectric elastomer
transducers. AFM investigations of the polymer network films revealed no considerable
transformation of the surface’s morphology from precursors to polymer networks sam-
ples. The value of phase contrast is about 10◦ ÷ 20◦ (on surface); this indicates a good
homogeneity and there are no phase separations.

The spherical self-organized structures were analyzed by SAXS in comparison with
C as a reference (pure PDMS network). The XR scattering curves in logarithmic scale as
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a result of SAXS characterization are showed in Figure 5. At low q values, the scattering
curves obtained analyzing C and A1C2 samples (Figure 5a,c) have an upturn trend line
behavior. This aspect is characteristic for samples where large aggregate structures without
a clearly defined geometry are present. Therefore, samples C and A1C2 are made of densely
cross-linked networks. The scattering curve obtained analyzing sample A2C1 (Figure 5b)
has a Guinier region (I = constant) from which the following parameters can be estimated:
Rg = 17 nm, Dmax = 2.58 × Rg = 43.86 nm, and corresponds to spherical self-assembling
structures. Thus, the ratio with more A network (A2C1) leads to more space for network
C to self-assemble in aggregates with uniform dimensions and shapes. In all cases, the
scattering curves have a peak at low q values. This peak at q = 0.03 Å−1 corresponds to a
Bragg distance of d = 20.9 nm in case of A1C2, and q = 0.05 Å−1 with d = 12.5 nm for sample
C. In case of sample A2C1, this peak is at 0.035 Å−1 with a Bragg distance of d = 17.9 nm. It
is well-known that the lower the q values are, the bigger the within organized structures are.
The diffusion curves obtained analyzing the IPNs present a second peak at q = 0.096 Å−1

which correspond to a Bragg distance of d = 6.5 nm. This peak indicates a variation of
electronic densities throughout significantly less distance as compared to sample C.

Figure 5. XR scattering curves in logarithmic scale for samples C (a), A2C1 (b), and A1C2 (c).

Sample A possess a typical dielectric permittivity of 3 (Figure 6a), specific for pure
silicone elastomers (PDMS). Samples B and C have a slight increase of the dielectric per-
mittivity, due to the sulphur bridges formed after UV-induced thiol-ene crosslinking. The
influence of the sulphur bridges on the dielectric properties were emphasised by a sim-
plified computational study. The computational determination includes an optimization
of a network node structure not on the entire polymer matrix (Figures S1 and S2). The-
oretical results reveal that in case of the equilibrium molecular geometries, the values
of dipole moments were 2.23 D for compound A and 4.63 D for molecular structure B
(Figures S1 and S2). Introducing S atoms into the intramolecular configuration, the dipole
moment value increases as an effect of polarity changing. Additionally, the presence of S
atoms into the network nodes gives a supplementary negative charge as well as a large
number of lone electron pairs, as compared to the network nodes A where only the oxygen
atoms have the lone electron pairs. Moreover, the introduction of S atoms in the intramolec-
ular fragments results in appearing of a new electronic configuration and the partial atomic
charges are changed. As shown in Figures S3 and S4, compounds A and B contain atoms
represented by positive and negative charges, thus forming polar bonds, especially in
the compound B, making it more suitable for an increased permittivity. Furthermore, the
synergy given by the combination of both networks provides an increased dielectric per-
mittivity, around 4.2 (Figure 6a). The dielectric losses remain low, specific to silicone-based
elastomers (Figure 6b).
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Figure 6. The dielectric spectra of the prepared samples; (a)–dielectric permittivity, (b)–dielectric loss.

The glass transition temperature domain (Tg) is an important parameter, since it
determines polarization conditions and dipole concentration, orientation, and stability.
The Tg further dictates thermal and mechanical properties of polymer-based materials.
Hence, its determination by adequate techniques, such as DSC, is a crucial aspect in the
characterization of multicomponent polymer-based materials [22,23]. It is also known that
the presence of a single Tg domain is a sign of good phase miscibility between components,
as it may be observed from Figure 7, Figure S5, and Table S2. The single Tg domain of
the samples, around –120 ◦C, and the melting profile, around –43 ◦C, are typical to PDMS.
During the obtaining of interpenetrating polymer networks, a synergism of the comprising
components properties takes place by a forced phase compatibilization [24].

Figure 7. DSC second heating curves of the studied materials: (a)–Reference networks: A, B and C;
(b)–AxBy series; (c)–AxCy series.

From Figure 7, a general decreasing tendency in the melting profile and the crystallinity
degree may also be seen. An explanation resides in the disruption of the ordered conforma-
tion through hydrogen bonding, due to the formation of a new crystalline phase during the
IPNs formation. This observation is in good agreement with literature data [24,25].

The loss tangent (tan δ = G”/G’) plot (Figure 8) provides some insight into the poly-
mers’ molecular motion and damping behaviour. When compared to all other samples, the
rigid network B has higher tan δ values. Sample B’s sharp increase in tan δ at lower frequen-
cies (0.1–0.01 Hz) is due to the long relaxation times of the long dangling chains [26]. This
is also visible for sample C, but due to the low molecular weight of the vinyl terminated
PDMS, it is less pronounced. At these frequencies, however, no such relaxations were found
in the IPNs. Furthermore, the prepared IPNs have significantly fewer dangling chains and
lower viscous losses, as evidenced by the low tan δ values for the IPNs at lower frequencies.
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Figure 8. Low shear linear viscoelastic rheology of reference samples and the IPNs.

The elastomers obtained based on networks A, B, and C are soft with low tensile
stresses and moderate elongations at break dictated by the molecular weights and the
chosen cross-linking type. The long dangling chains emphasized by low shear linear
viscoelastic rheology act as a plasticizer and give to sample B the lowest stress (0.1 MPa)
and the highest elongation at break (330%), with a low value of Young’s modulus (calculated
at 5% strain, 0.24 MPa). With a lower molecular weight of the vinyl terminated PDMS, the
plasticizer effect is less pronounced, as in case of Sample C, having a decreased elongation
at break (106%) and an increased Young’s modulus (0.47 MPa). The mechanical properties
of the IPNs are drastically influenced by the presence of the rigid networks. The rigid
network B acts as reinforcing agent, and the AxBy series have increased tensile stress and
slightly decreased elongations at break (Figure 9, Table S4) compared to reference samples.
Using a rigid network with a lower molecular weight (C), AxCy series have the highest
tensile stress (1.74 MPa) and reach elongation at break more than twice compared to starting
networks (720%). Moreover, the yield strength of both series (which denotes the elastic
limit of the stress-strain curves) shifts to maximum elongation at break.

Figure 9. The mechanical properties (stress-strain curves) of the reference samples (a) and of the IPNs (b,c).

Single damping peaks are observed in the DMA scans (Figure 10), conforming a
substantial interpenetration of the two networks. The corresponding damping peak tem-
peratures, which are taken as glass transition temperatures (Tg), are listed in Table S3.
No important variations of melting temperatures can be observed, which are in good
correlation with DSC (Figure 7). The shapes of tan δ peaks does not change too much,
whereas the intensity and the position of the damping peak changes directly related to the
A and C ratio. The presence of higher ratio of A enhances the mobility of the IPN, and the
height of tan δ peak increases up to 0.11. The greater the C content is, the more rigid is the
IPN structure. The lowest damping peak intensity (0.08) observed for the A1C2 suggests
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that the C network brings a strong restraining effect on the polymer network segmental
mobility. This restraint is in accordance with the increasing trend of the storage modulus.

Figure 10. DMA characterization of reference sample A and AxCy series.

The breakdown strength of ratio 1:1 IPNs (A1B1 and A1C1) is similar to reference
samples (A, B, C), Figure 11. While in ratio 2:1 (A2B1 and A2C1), the breakdown strength
is higher than the reference ones. This might be due to the to the presence of free un-
crosslinked chains that diminished in the IPNs in the 2:1 ratio, resulting in the suppression
of electromechanical instability and consequently enhancing the breakdown strength.
However, when the content of UV-crosslinked PDMS is increased, the Ebd of A1B2 is
dramatically deteriorated due to the morphology irregularities (Figure 2c) causing more
electromechanical instability or voids in the network. Nevertheless, the morphology
between A2C1 and A1C2 are similar (Figure 3b,c), which is more homogenous than A1C1
(Figure 3a), therefore both exhibiting higher breakdown strength than reference monomodal
(A, C) and A1C1 samples.

Figure 11. Dielectric strength of the prepared samples.
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Toughness (UTT, Equation (1)) refers to how much energy a material can absorb per
unit volume before rupturing. Having improved elongation at break, sample A2C1 has the
highest value, exceeding the commercial silicone elastomer Elastosil 3060.

UTT =

Smax∫
0

TnmdS (1)

∆W
V

= 0.5ε′ε0U2

(
1− 1

(Smax + 1)2

)
(2)

where UTT—Toughness [kJ/m3]; Tnm—Tensile stress [MPa]; Smax—elongation at break [%];
∆W/V—energy output [mJ/cm3]; ε′—dielectric permittivity; ε0—dielectric permittivity of
free space [F/m]; U—applied electric field [25 V/µm].

The energy that can be harvested from one cycle of elongation-relaxing can be esti-
mated from Equation (2). It can be noticed that the estimated energy output (∆W/V) is in
good correlation with toughness and the highest values were obtained for sample A2C1
with the best mechanical properties and toughness (Figure 12).

Figure 12. Toughness and energy output of the prepared samples.

4. Conclusions

New silicone-based IPNs were developed based on an elastic network and a rigid one.
The elastic network was a high molecular weight hydroxyl-terminated PDMS cross-linked
via condensation route with TEOS (A network). The rigid network was a low molecu-
lar weight vinyl-terminated PDMS crosslinked via thiol-ene addition with a mercapto
functional crosslinker. To study the influence of the molecular weight of the rigid net-
work, two low molecular weight vinyl-terminated PDMSs were chosen (DMSV31 with
Mn = 28,000 g/mol and DMSV22, with Mn = 9600 g/mol). The networks were mixed in
different wt % rations to give two sample series (AxBy and AxCy) and the reference series
(A–C). The wt % ratio and the molecular weight of the vinyl-terminated PDMS had great
influence. The cross-section morphology emphasized wrinkle-like and flake-like structures
in correlation with the wt % ratio used. The wrinkle-like structure is more pronounced
when network A’s weight ratio is higher, and vice versa, the flake-like structure is pre-
vailing where more network B was used. In case of network C, the morphology changes
and spherical aggregates formed, which are denser and smaller when a higher ratio of
the A network was used. The large aggregate wrinkle-like structures without a clearly
defined geometry were demonstrated by SAXS and the spherical aggregates proved to
be around 43.86 nm in size. The AFM scans showed no phase separation, which is in
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good correlation with a single glass transition temperature emphasized by DMA and DSC.
Additionally, tan δ values reveal that the sample A2C1 (ratio 2:1 between the elastic and
the rigid network) is the most suitable combination, which is in good correlation with
the mechanical properties. Sample A2C1 gives the highest elongation at break (720%),
achieving high toughness (63 kJ/m3) and energy output (10.45 mJ/cm3).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14010211/s1, Figure S1: Representation of the equilib-
rium geometry and dipole moment orientation for structure A into the ground state. Theoretical
calculations performed with the LC-wPBE/6-31G(d,p) method; Figure S2: Representation of the
equilibrium geometry and dipole moment orientation in the case of the structure B (or C) into the
ground state. Theoretical calculations performed with the LC-WPBE/6-31G(d,p) method; Figure S3:
Electrostatic potential rendered as a mapped surface in the vicinity of molecule A (computation done
at LC-wPBE/6-31G(d,p) level of theory); Figure S4: Electrostatic potential rendered as a mapped
surface in the vicinity of molecule A (computation done at LC-wPBE/6-31G(d,p) level of theory);
Table S1: The amounts used for obtaining the IPNs and the reference samples; Table S2: Thermal
characteristics extracted from DSC data; Figure S5: Inset of DSC data emphasizing the glass transition
temperature; Table S3: DMA data of reference sample A and AxCy series; Table S4: Mechanical and
dielectric data of prepared samples in comparison with representative IPNs from literature.
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