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Abstract The SARS-CoV open reading frame 6 (ORF6) is
transcribed into mRNA6 and encodes a putative 7.5 kDa acces-
sory protein, SARS 6, with unknown function. In this study, we
have confirmed the SARS 6 protein expression in lung and intes-
tine tissues of the SARS patients and in SARS-CoV infected
Vero E6 cells by immunohistochemistry. Further studies by
immunoblot and confocal microscopy analyses revealed the
expression and the endoplasmic reticulum (ER) localization of
the recombinant SARS 6 protein in mammalian cells. Expression
of SARS 6 protein in mammalian cells elicits biological activity
of stimulating cellular DNA synthesis.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

The severe acute respiratory syndrome (SARS) is an infec-

tious disease with mortality rate approximately 10% of the

cases and had spread over 30 countries in 2003 [1]. The path-

ogenic mechanisms of the causative agent, SARS-CoV, are not

well characterized.

The SARS-CoV genome analyses predicted fourteen ORFs.

ORFs 1a and 1b constitute the replicase genes required for vir-

al RNA synthesis. The remaining 12 ORFs encode the four

structural proteins, Spike (S), Membrane (M), Nucleocapsid

(N) and Envelope (E), as well as eight putative accessory pro-

teins varying in size and position in the genome [2,3]. The eight

putative accessory proteins share no homology to known pro-

teins.

The uniqueness of the SARS putative accessory proteins to

other known coronavirus might be crucial to the clinical man-

ifestation of SARS. However, the functions of SARS-CoV

hypothetical proteins are poorly understood. Recently, acces-
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sory protein SARS 3a was found to induce apoptosis [4]. In

addition, the hypothetical protein 7a was shown to interact

with SARS 3a and the structural proteins in Vero E6 cells

[5,6]. These findings highlighted the potential functions of

these hypothetical proteins in the pathogenesis of SARS.

The SARS 6 protein is 63 amino acids in length, also known

as the X3 protein. A minimal transcription regulatory se-

quence is located upstream of the gene (ORF6) and its mRNA

(mRNA6) exists in SARS-CoV infected Vero cells [7,8]. In this

study, the expression and possible function of the SARS 6 pro-

tein were investigated.
2. Materials and methods

2.1. Cell culture
Vero E6 (African green monkey kidney fibroblasts) and CHO (Chi-

nese hamster ovary) cells were obtained from American Type Culture
Collection (Manassas, VA, USA). Cells were maintained in high glu-
cose DMEM (Gibco BRL Life Technologies Inc., Carlsbad, CA,
USA) containing 3.7 g/l sodium bicarbonate, 10% FBS, 100 U/ml pen-
icillin and 100 lg/ml streptomycin at 37 �C in 5% CO2.

2.2. Selection of clinical specimens
Samples were selected retrospectively following the guidelines of lo-

cal ethical committee [9]. SARS was diagnosed according to previously
established criteria of the World Health Organization (www.who.int/
csr/sars/en/). The outbreak in the Prince of Wales Hospital, Hong
Kong, and the sequences of events leading to the world endemics
has been reported [10,11]. Pathology of all 8 autopsies has been previ-
ously described [12]. The control autopsies were chosen randomly at
around the same period of time (March–November) in preceding
years. The diagnosis included lung and non-lung pathology. These
controls were not age-matched and they had no SARS-CoV infection
as confirmed by in situ hybridization and five different antibodies to
SARS-CoV N, S, M and 3a proteins. For cases with pulmonary infec-
tion, routine cultures for common virus and bacteria had been per-
formed. Coronaviral infections of any kind were not suspected
clinically in these cases.

2.3. SARS-CoV infection of Vero E6 cells
The CUHK-W1 strain of SARS-CoV (GenBank Accession No.

AY278554) was grown and assayed in the cells [13,14]. Briefly,
SARS-CoV was used to infect Vero E6 cells maintained in DMEM
with 10% FBS at 60–70% confluence, and with a multiplicity of infec-
tion (MOI) of 10. Subsequently, cells were harvested at the desired
cytopathic effect (CPE) for immunohistochemistry detection [9].
blished by Elsevier B.V. All rights reserved.

http://www.who.int/csr/sars/en/
http://www.who.int/csr/sars/en/
mailto:yuanyuanho@cuhk.edu.hk 


6764 H. Geng et al. / FEBS Letters 579 (2005) 6763–6768
2.4. Generation of SARS 6 protein antipeptide antibody
Rabbit anti-SARS 6 antibody (designated PUP3) was produced by

Abgent Inc. (San Diego, CA, USA) and Century Biotech Limited
(Hong Kong, China). The peptide sequence for antibody production
was TKKNYSELDDEEPMELDYP [9].

2.5. Immunohistochemical studies
Paraffin blocks were prepared from infected or control Vero cells

fixed with 10% formalin. Autopsy specimens were fixed with 10% for-
malin and embedded in paraffin blocks and standard avidin-biotin
method was used for immunohistochemical studies on 4-lm sections.
PUP3 antibodies (1:100 dilution) and StreptABComplex/HRP Duet
Reagent Set (DAKO, Glostrup, Danmark) were used with 3,3 0-diam-
inobenzidine tetrahydro-chloride as the chromogen. Antigen retrieval
was performed by microwave pretreatment twice in 10 mM citrate buf-
fer, pH 6.0, or 0.1 M EDTA buffer, pH 8.0, with preliminary heating at
780 W for 3 min followed by 480 W for 10 min.

2.6. Construction of SARS 6 protein expression vectors
The SARS 6 cDNA (CUHK-Su10, GenBank Accession No.

AY282752) [3] was subcloned into pEGFP-N1 (BD Bioscience, Clon-
tech, Palo Alto, CA, USA) and pcDNA3.1 (Invitrogen, Life Technol-
ogies, Carlsbad, CA, USA) vectors. For cloning the SARS 6–EGFP
(Enhanced green fluorescent protein) fusion protein, the SARS 6
cDNA was PCR amplified using primer set SARS 6-GFP-F (5 0-
GGCGCCGAGCTCATGTTTCATCTTGTTGAC-30) and SARS 6-
GFP-R (5 0-CCGGGGTACCTCTGGATAATCTAACTCCAT-3 0),
incorporating SacI and KpnI sites for ligation into the pEGFP-N1 vec-
tor. To generate the untagged protein, the SARS 6 cDNA was PCR
amplified using forward primer SARS 6-F (5 0-GGCGCCGGTACC-
ATGTTTCATCTTGTTGAC-3 0) and reverse primer containing the
Fig. 1. Immunohistochemical staining of SARS 6 protein using anti-SARS
SARS patient. Terminal ileum sections of (C) SARS patient and (D) Non-S
translation stop codon, SARS 6-R (5 0-GGCGCCTCTAGATTATG-
GATAATCTAACTC-30) incorporating KpnI and XbaI sites for liga-
tion into the pcDNA3.1 vector. These constructs were sequenced to
confirm the correct identity and the orientation of the subcloned frag-
ments.

2.7. Expression of SARS 6 protein in Vero E6 and CHO cells
Plasmids were introduced into cells by Lipofectamine� 2000 reagent

(Invitrogen, Life Technologies). To establish the polyclonal cell lines
with stable recombinant protein expression, cells harboring pEGFP-
N1-based constructs were exposed to 1000 lg/ml G418 (Sigma, St.
Louis, MO, USA) whereas cells harboring pcDNA3.1-based con-
structs were exposed to 120–200 lg/ml hygromycin B (Merck & Co.
Inc., NJ, USA) for a one-month selection period.

2.8. Immunoblot assay
Cells were suspended in PBS and lysed by sonication on ice. Cell

proteins were separated by SDS–PAGE and transferred onto a Hy-
bond membrane. The membrane was blocked with 5% non-fat dry
milk for 1 h and then incubated with primary antibody for 1.5 h at
room temperature. The membrane was then washed and incubated
with an appropriate secondary antibody for 1 h at room temperature.
The detection steps were performed using the enhanced chemilumines-
cent ECL kit (Amersham Biosciences, Buckinghamshire, UK).

2.9. Subcellular localization of SARS 6 protein
Cells were seeded on sterile coverslips in 12-well plates then transfec-

ted with SARS 6–EGFP fusion constructs and/or pDsRed2-ER mar-
ker plasmids (BD Bioscience, Clontech). 30 h posttransfection, cells
were washed and observed under a laser scanning confocal microscope
(Leica Model TCS-NT, Leica Microsystems, Heidelberg, Germany).
6 antibody (PUP3). Lung sections of (A) SARS patient and (B) Non-
ARS patient. The arrowheads indicate the positive signals.
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2.10. DNA synthesis analysis
Cells were plated in 24-well plates (0.7 · 105 cells/well) and syn-

chronized for 48 h in DMEM containing 0.1% FBS. DNA synthesis
was then perform by incubating cells in medium containing 10% FBS
and 1 lCi/ml [3H]-thymidine (Amersham Biosciences) for 24 h at
37 �C. At the end of incubation, media were removed and cells were
washed with ice-cold PBS. Cellular macromolecules were then fixed
with ice-cold 10% trichloroacetic acid (TCA). Unincorporated [3H]-
thymidine was removed by further washing steps. TCA precipitates
were dissolved by 1% SDS and subjected to scintillation counting
[15].
3. Results and discussion

3.1. Detection of SARS 6 protein in SARS-CoV infected

patients and cells

By immunohistochemical staining, SARS 6 protein was de-

tected in pneumocytes of the lungs and surface enterocytes

of terminal ileum from eight SARS autopsy cases (representa-

tive data shown in Fig. 1A and C). Immunohistochemical sig-

nals were positive only in those tissues in which virus could be

isolated [9]. No positive signals were detected in the corre-

sponding tissues from ten non-SARS cases (Fig. 1B and D).

It is known that lung and small intestine are the primary tar-

gets of SARS-CoV infection [10]. Our results confirmed that

the hypothetical SARS 6 protein indeed existed and expressed

in lung and intestine tissues of SARS-CoV infected clinical pa-

tients.
Fig. 3. Expression of recombinant SARS 6 protein. (A) SARS 6–EGFP fus
anti-GFP antibody (1:3000 dilution). Lane 1–50 lg protein from pEGFP-N1
EGFP fusion protein-expressing Vero E6 cells. Lane 3–20 lg protein from
SARS 6–EGFP fusion protein-expressing CHO cells. (B) SARS 6–EGFP fusi
(PUP3) (1:3000 dilution). Lane 1–50 lg protein from SARS 6–EGFP fusion
3b–EGFP fusion protein-expressing cells. Lane 3–50 lg protein from pEGFP
Vero E6 cells probed with anti-SARS 6 antibody (PUP3) (1:3000). Lane 1–5
50 lg protein from pcDNA3.1 vector transfected cells.

Fig. 2. Immunohistochemical staining of SARS 6 protein in Vero E6 cells u
non-infected cells. The arrowheads indicate the positive signals.
To further confirm the expression of SARS 6 protein in

SARS-CoV infected cells, Vero E6 cells were infected with

SARS-CoV CUHK-W1 strain (GenBank Accession No.

AY278554) followed by immunohistochemical staining. The

results showed that SARS 6 protein was detected in SARS-

CoV infected cells but not in non-infected control cells.

Fig. 2A and 2B provides photographic details consistent with

previously described observations [9].

3.2. Expression of recombinant SARS 6 protein

The expression of the SARS 6–EGFP fusion protein was

determined by immunoblot assays using anti-GFP or anti-

SARS 6 (PUP3) primary antibodies (Fig. 3A and B). The

molecular weight of EGFP and SARS 6 protein are 27

and 7.5 kDa, respectively. In both Vero E6 and CHO cells,

the anti-GFP antibody recognized the expressed SARS 6–

EGFP fusion protein showing the anticipated �34.5 kDa

band (Fig. 3A, lanes 2 and 4). The PUP3 antibody also rec-

ognized a single band with the expected molecular size

(Fig. 3B). No signals were detected in Vero cells transfected

with SARS 3b–EGFP fusion constructs or pEGFP-N1 con-

trol vectors (Fig. 3B, lanes 2 and 3), indicating the specificity

of the antibody against the SARS 6 protein. Using the same

antibody, expression of the untagged SARS 6 protein in

Vero E6 cells was also confirmed (Fig. 3C). Interestingly, gi-

ven the same amount of sample loading, the expression of

the untagged SARS 6 protein was weaker relative to the
ion protein-expressing Vero E6 cells and CHO cells were probed with
vector transfected Vero E6 cells. Lane 2–50 lg protein from SARS 6–
pEGFP-N1 vector transfected CHO cells. Lane 4–20 lg protein from
on protein-expressing Vero E6 cells probed with anti-SARS 6 antibody
protein-expressing cells. Lane 2–50 lg protein from SARS-CoV SARS
-N1 vector transfected cells. (C) Untagged SARS 6 protein-expressing
0 lg protein from untagged SARS 6 protein-expressing cells. Lane 2–

sing anti-SARS 6 antibody (PUP3): (A) SARS-CoV infected cells; (B)
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expression of the SARS 6–EGFP fusion protein. The CMV

promoter drives protein expression in both pcDNA3.1 and

pEGFP-N1 vectors, the possibility that the SARS 6–EGFP

fusion protein has higher stability as compared to the un-
Fig. 4. Subcellular localization of recombinant SARS 6 protein by confocal
fusion constructs and pDsRed2-ER marker plasmids showing (A) perinuclea
and (C) Merged image of colocalization of SARS 6 with the ER marker p
Subcellular localization of SARS 6–EGFP fusion protein expressed in CHO
tagged SARS 6 protein cannot be excluded. The difference

in expression may also be due to the differences in the tem-

poral expression or transcription kinetics of the two plas-

mids.
microscopy. (A)–(C) Vero E6 cells co-transfected with SARS 6–EGFP
r localization of SARS 6–EGFP fusion protein, (B) ER compartment,
rotein. (D) Subcellular localization of EGFP in Vero E6 cells. (E, F)
cells. (G, H) Subcellular localization of EGFP expressed in CHO cells.



Fig. 5. SARS-CoV SARS 6 expression stimulates DNA synthesis. 3H-
thymidine incorporation assays were performed on vector control and
SARS 6-expressing cells. (A) Stable CHO cell lines. Inset, transiently
transfected CHO cells (B). Stable Vero E6 cell lines. Inset (bar chart),
transiently transfected Vero E6 cells. Inset (gel photo): Immunoblot
confirmation of stable expression of the SARS 6 protein in Vero E6
cells using the anti-SARS 6 antibody (PUP3). Each lane contained
50 lg total cell protein. Lane 1 – pcDNA3.1 vector transfected Vero E6
cells (vector control). Lane 2 – SARS 6-expressing Vero E6 cells. Each
bar represents the means ± S.D. of three to six experiments in triplicate
or quadruplicate set up and the difference between control and SARS
6-expressing cells was determined by Student�s t test with a significance
determined at p < 0.05 level.

Table 1
Expression of SARS 6 stimulates DNA synthesis in several stable cell
lines derived from independent transfection

Cell line 3H-thymidine incorporation

Vector control cells
(means ± S.D. in DPM)

SARS 6-expressing cells
(means ± S.D. in DPM)

CHO 1 6107 ± 1601.5 8428 ± 1000.7*

CHO 2a 5741 ± 963.3 10451 ± 3194.2*

CHO 3 6431.5 ± 1312.7 10126 ± 2437.5*

Vero E6a 126622 ± 3775.3 137486 ± 6266.7*

aData presented in Fig. 5.
*Significant difference between SARS 6-expressing and vector control
cell lines detected by Student�s t test (p < 0.05).
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3.3. Subcellular localization of SARS 6 protein

The SARS 6 protein is expressed both in lung and intestine

of SARS patients and SARS-CoV infected Vero E6 cells by

immunohistochemical staining as shown in Figs. 1 and 2.

Although the specific subcellular localization of SARS 6 pro-

tein cannot be determined in these immunohistochemical re-

sults, notice the positive signals detected outside the nuclei of

the SARS-CoV infected Vero E6 cells (Fig. 2). The subcellular

localization of the SARS 6 protein in mammalian cells was fur-

ther determined by expressing the SARS 6–EGFP fusion con-

structs in Vero E6 and CHO cells. Confocal microscopy

showed that SARS 6–EGFP protein was localized to the per-

inuclear region and colocalized with ER marker (Fig. 4A–C)

in Vero E6 cells. A similar localization pattern of the SARS

6–EGFP was obtained in CHO cells (Fig. 4E and F). In con-

trast, the control EGFP protein was distributed throughout

the cells (Fig. 4D, G and H) as expected [16]. EGFP fusion

protein has been a commonly used marker to determine sub-

cellular localization of proteins, i.e., the HIV accessory protein

Vpr, to circumvent the need for immunofluorescence staining

[16]. This approach is particularly suitable for the studies to

which the antibody supply is limited (i.e., the current study).

In many cases, the construction of a C-terminal fusion protein

retains the normal biological activity of the heterologous part-

ner [16–18]. Pewe et al., reported similar perinuclear subcellu-

lar localization of SARS 6 protein with HA tag on the

background of the neurotropic strains of mouse hepatitis virus

(MHV) in rodent cells [19]. The identification of the SARS 6

protein subcellular localization laid the ground for further

understanding of its role in SARS-CoV biology. Nevertheless,

whether endoplasmic reticulum localized SARS 6 protein elic-

its any biological activities by interacting with other viral or

cellular proteins requires further investigation.

3.4. Thymidine incorporation studies

In the attempt to elucidate the biological function of the

SARS 6 protein, [3H]-thymidine incorporation was measured

in both CHO and Vero E6 cells expressing the untagged SARS

6 protein to evaluate its effects on DNA synthesis. In these

experiments, since unincorporated [3H]-thymidine was re-

moved following the fixation of macromolecules by TCA in

the washing steps, the cell associated radioactive counts in

these experiments reflect the actual DNA synthesis. Fig. 5

and Table 1 show that both transient and stable expression

of the SARS 6 protein induced DNA synthesis in CHO cells

(Fig. 5A) and in Vero E6 cells (Fig. 5B).

Viral accessory proteins have been shown to elicit function

in cell growth and survival. The HIV accessory protein Vpr

is not essential for HIV replication. However, Vpr induces cell

cycle arrest and apoptosis when expressed in cultured mamma-

lian cells [20,21]. In addition, human T-lymphotropic virus

type 1 (HTLV-1) accessory protein p12I is localized to the

endoplasmic reticulum and it can increase intracellular calcium

and cell proliferation [22]. It is speculated that a protein local-

ized to ER may modify intracellular signaling pathways by

regulating Ca2+ homeostasis in the ER and thus affect cellular

DNA synthesis. Similarly, SARS-CoV may also evolve various

mechanisms to optimize cellular conditions to its own benefit.

At the current stage, the significance of SARS 6-induced DNA

synthesis in SARS-CoV biology remains elusive, since such

observation is obtained independent of the context of the

whole viral genome. Nevertheless, such biological activity
further substantiates the expression of the SARS 6 protein in

the cells and implies its interaction with cellular components.

In conclusion, the evidence provided here indicates that the

SARS-CoV ORF6 encodes a viral protein which is expressed
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both in lung and intestine of SARS patients and SARS-CoV

infected Vero E6 cells. Recombinant expression of the SARS

6 protein revealed its ER localization and biological activity

of stimulating cellular DNA synthesis.
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