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Abstract

Background

Low environmental temperatures are among the most challenging stressors in poultry

industries. Although landmark studies using acute severe cold exposure have been con-

ducted, still the molecular mechanisms underlying cold-stress responses in birds are not

completely defined. In the present study we determine the effect of chronic mild cold condi-

tioning (CMCC) on growth performances and on the expression of key metabolic-related

genes in three metabolically important tissues: brain (main site for feed intake control), liver

(main site for lipogenesis) and muscle (main site for thermogenesis).

Methods

80 one-day old male broiler chicks were divided into two weight-matched groups and main-

tained in two different temperature floor pen rooms (40 birds/room). The temperature of con-

trol room was 32°C, while the cold room temperature started at 26.7°C and gradually

reduced every day (1°C/day) to reach 19.7°C at the seventh day of the experiment. At day

7, growth performances were recorded (from all birds) and blood samples and tissues were

collected (n = 10). The rest of birds were maintained at the same standard environmental

condition for two more weeks and growth performances were measured.

Results

Although feed intake remained unchanged, body weight gain was significantly increased in

CMCC compared to the control chicks resulting in a significant low feed conversion ratio

(FCR). Circulating cholesterol and creatine kinase levels were higher in CMCC chicks
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compared to the control group (P<0.05). CMCC significantly decreased the expression of

both the hypothalamic orexigenic neuropeptide Y (NPY) and anorexigenic cocaine and

amphetamine regulated transcript (CART) in chick brain which may explain the similar feed

intake between the two groups. Compared to the control condition, CMCC increased the

mRNA abundance of AMPKα1/α2 and decreased mTOR gene expression (P<0.05), the
master energy and nutrient sensors, respectively. It also significantly decreased the expres-

sion of fatty acid synthase (FAS) gene in chick brain compared to the control. Although their

roles are still unknown in avian species, adiponectin (Adpn) and its related receptors (Adi-

poR1 and 2) were down regulated in the brain of CMCC compared to control chicks

(P<0.05). In the liver, CMCC significantly down regulated the expression of lipogenic genes

namely FAS, acetyl-CoA carboxylase alpha (ACCα) and malic enzyme (ME) and their

related transcription factors sterol regulatory element binding protein 1/2 (SREBP-1 and 2).

Hepatic mTOR mRNA levels and phosphorylated mTOR at Ser2448 were down regulated

(P<0.05), however phosphorylated ACCαSer79 (inactivation) was up regulated (P<0.05) in

CMCC compared to control chicks, indicating that CMCC switch hepatic catabolism on and

inhibits hepatic lipogenesis. In the muscle however, CMCC significantly up regulated the

expression of carnitine palmitoyltransferase 1 (CPT-1) gene and the mRNA and phosphory-

lated protein levels of mTOR compared to the control chicks, indicating that CMCC

enhanced muscle fatty acid β-oxidation.

Conclusions

In conclusion, this is the first report indicating that CMCCmay regulate AMPK-mTOR

expression in a tissue specific manner and identifying AMPK-mTOR as a potential molecu-

lar signature that controls cellular fatty acid utilization (inhibition of hepatic lipogenesis and

induction of muscle fatty acid β-oxidation) to enhance growth performance during mild cold

acclimation.

Introduction
Global warming can lead to extreme weather in various portions of the globe so that some
regions have extreme snowfall and others have increased intense and frequent heat waves [1].
These climate changes are predicted to continue to rise [2]. Environmental stressors (cold and
heat) are already affecting animals, insects and crops [3]. In expanding worldwide broiler
(meat-type chicken) production, the effects of cold stress on growth performances are contro-
versial depending on the stress severity, the exposure period, and the age of the chicken.
Indeed, sudden severe decrease of environmental temperature has been reported to negatively
affect growth performance (feed efficiency, meat yield, ascites, mortality) [4] and result in seri-
ous annual economic losses to the livestock and poultry industries [5]. On the other hand, con-
ditioning exposure of chickens at an early age to moderate decreased environmental
temperature has been reported to have a long-lasting effect and improve the ability of the
chicken to acclimatize and to cope better with stressors in later life [6]. Thus, insights into the
molecular mechanisms by which cold exposure affects chicken metabolism are of uppermost
interest in animal biology, health, wellbeing, and feed efficiency improvement.
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Cold stress induces many cellular alterations that in turn lead to various neuroendocrine,
physiological, and immunological adaptations [7]. Animals living in extreme climates show a
marked seasonal variation in both energy homeostasis (energy intake and expenditure) and
intermediary metabolism as a response to the changing metabolic requirements imposed by
differences in environmental temperature [8]. These variables are mediated by complex molec-
ular networks that are still not completely defined.

Depending on the type, degree and duration of the stress, cells can develop highly efficient
stress response and protein quality control systems to ensure their survival or activate stress
signaling cascades that proceed into cell-death pathway. Stress rapidly initiates the increased
synthesis of a group of stress proteins belonging to the heat shock protein (HSP) families.
These ubiquitously expressed molecular chaperones are classified into about six families (HSP-
10 to HSP-100) on the basis of their monomeric molecular weight [9]. They carry out crucial
housekeeping functions and orchestrate folding/unfolding and assembly/disassembly of pro-
tein complexes to maintain normal cell function. HSPs are regulated at transcriptional levels
through HSP transcription factors (HSF1-4) that bind to heat shock response element (HSE)
in the upstream promoter regions of HSPs [10]. Additionally, HSPs are subjected to various
post-translational modifications such as acetylation, S-nitrosylation and glycosylation [11–13].

Emerging evidence indicates that the regulation of energy homeostasis and the stress
response are coupled physiological processes [14]. We and other groups have previously
shown that HSP-70 gene expression is regulated by various feeding-related hormones [15–18].
We also showed that acute cold stress alters the expression of key genes (leptin and uncoupling
protein, UCP) involved in the regulation of energy intake and expenditure in 5 week old broiler
chickens. Several recent studies investigating the effect of acute or chronic severe cold exposure
(-15 to 12°C) on neuropeptides, antioxidant, immune, immunoglobulin and cytokine systems
in immune organs, heart, hypothalamus and gastrointestinal tract in old (15 days to 4 weeks)
chickens have been reported [5,19–24]. However, data related to the effect of chronic mild cold
conditioning (CMCC) on metabolic-related genes in young chicks are scarce.

Therefore, the present study was designed to determine the effects of CMCC on the expres-
sion of hypothalamic feeding-related neuropeptides, hepatic lipogenesis- and muscle energy
expenditure-related genes, and the expression of HSPs and their related transcription factors
HSFs in three metabolically important tissues: brain (the main site of feed intake control), liver
(the main site of lipogenesis), and muscle (the main site for thermogenesis and energy expendi-
ture) in young chicks.

Materials and Methods

Ethic Statement
The present study was conducted in accordance with the recommendations in the guide for the
care and use of laboratory animals of the National Institutes of Health and the protocol was
approved by the University of Arkansas Animal Care and Use Committee under protocol 13026.

Animals
Male broiler chicks (Cobb males from the Cobb 500 female line) were hatched from a single
flock of 29-week-old hens in their third week of lay. At day one post-hatch, chicks (n = 80)
were weighed, divided in four body weight-matched groups and placed into four randomly
assigned floor pens (20 birds/pen) containing fresh pine shavings in two separate environmen-
tally controlled rooms. Control groups were maintained at 32°C for the first week. Cold-
stressed groups were maintained at 26.7°C for the first day and the ambient temperature was
reduced gradually by 1°C every day to reach 19.7°C at the seventh day. Chicks were given ad

CMCC Acclimation and Key Metabolic-Related Genes

PLOS ONE | DOI:10.1371/journal.pone.0142319 November 16, 2015 3 / 22



libitum access to clean water and a complete starter diet (12.7 MJ metabolizable energy Kg-1

and 220 g crude protein Kg-1). A relative humidity of* 55% and a 23 h light/1h dark cycles
were maintained until the end of the experiment (7 days). Body weight and feed intake were
recorded weekly. Body temperature was measured daily using a Braun Thermoscan IRT4520
thermometer (Kaz Inc, Southborough, MA). EDTA-treated whole blood and serum were col-
lected and assayed for standard hematology and metabolites. Birds were cervically dislocated
and whole brain, liver and leg muscle tissues were collected, snap frozen in liquid nitrogen and
stored at -80°C until use.

Measurement of circulating metabolites
Commercial colorimetric diagnostic kits were used to measure plasma glucose (Ciba Corning
Diagnostics Corp., OH), triglycerides, cholesterol and creatine kinase (Chiron Diagnostics,
Cergy Pontoise, France), lactate dehydrogenase (LDH, Bayer Healthcare, Dublin, Ireland), and
uric acid levels (Pointe Scientific Inc, Canton, MI) with an automated spectrophotometer
according to manufacturer’s recommendations. Briefly, glucose concentration was estimated
by the formation of NADH at 340 nm absorbance. When phosphorylated with ATP and hexo-
kinase, glucose yields glucose-6- phosphate and ADP which, in turn, is catalyzed by G-6-PD to
form 6-phosphogluconate and NADH. NADH formation is directly proportional to the
amount of glucose in the sample. Triglyceride levels were enzymatically determined based on
the action of lipase, glycerol kinase and glycerol-phosphate oxidase at 540 nm. Cholesterol lev-
els were enzymatically estimated in the presence of cholesterol esterase, cholesterol oxidase and
peroxidase at 500 nm. Creatine kinase levels were determined based on the rate of NADPH for-
mation measured at 340 nm in the presence of HK and G-6-PD. LDH activity was estimated
following the oxidation of lactate to pyruvate at 340 nm. Uric acid levels were measured using
the coupling of 4-aminoantipyrine with 2-hydroxy-2,4,6-tribromobenzoic acid and hydrogen
peroxide in the presence of peroxidase at 520 nm.

RNA isolation, reverse transcription and quantitative real-time PCR
Total RNA was extracted from chick tissues by Trizol reagent (Life Technologies) according to
manufacturer’s recommendations, DNAse treated and reverse transcribed (Quanta Biosci-
ences). RNA integrity and quality was assessed using 1% agarose gel electrophoresis and RNA
concentrations and purity were determined for each sample by Take 3 micro volume plate
using Synergy HT multi-mode microplate reader (BioTek). The RT products (cDNAs) were
amplified by real-time quantitative PCR (Applied Biosystems 7500 Real-Time PCR system)
with Power SYBR green Master Mix (Life Technologies). Oligonucleotide primers used for
chicken hypothalamic neuropeptides, HSPs, HSFs, lipogenesis- and energy expenditure-related
genes are summarized in Table 1. The qPCR cycling conditions were 50°C for 2 min, 95°C for
10 min followed by 40 cycles of a two-step amplification program (95°C for 15 s and 58°C for 1
min). At the end of the amplification, melting curve analysis was applied using the dissociation
protocol from the Sequence Detection system to exclude contamination with unspecific PCR
products. The PCR products were also confirmed by agarose gel and showed only one specific
band of the predicted size. For negative controls, no RT products were used as templates in the
qPCR and verified by the absence of gel-detected bands. Relative expressions of target genes
were determined by the 2–ΔΔCt method [25].

Western blot analysis
Total proteins were extracted from chick tissues, quantified, and subjected to Western blot as
we previously described [26,27]. The rabbit polyclonal anti-phospho mechanistic target of
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Table 1. Oligonucleotide qPCR primers.

Gene Accession numbera Primer sequence (5’ ! 3’) Orientation Product size (bp)

NPY NM_205473 CATGCAGGGCACCATGAG Forward 55

CAGCGACAAGGCGAAAGTC Reverse

AgRP AB029443 GCGGGAGCTTTCACAGAACA Forward 58

CGACAGGATTGACCCCAAAA Reverse

Ox AB056748 CCAGGAGCACGCTGAGAAG Forward 67

CCCATCTCAGTAAAAGCTCTTTGC Reverse

Ox1R AB110634 TGCGCTACCTCTGGAAGGA Forward 58

GCGATCAGCGCCCATTC Reverse

Ox2R XM_004945362 AAGTGCTGAAGCAACCATTGC Forward 61

AAGGCCACACTCTCCCTTCTG Reverse

Adpn AY786316 ATGGACAAAAGGGAGACAAAGG Forward 64

TCCAGCACCCATATACCCAAA Reverse

AdipoR1 NM_001031027 CCGGGCAAATTCGACATC Forward 58

CCACCACGAGCACATGGA Reverse

AdipoR2 NM_001007854 TTGCCACTCGGAAGGTGTTT Forward 60

AGTGCAATGCCAGAATAATCCA Reverse

Pomc AB019555 GCCAGACCCCGCTGATG Forward 56

CTTGTAGGCGCTTTTGACGAT Reverse

Cart KC249966 GCTGGAGAAGCTGAAGAGCAA Forward 60

GGCACCTGCCCGAACTT Reverse

Ob-R NM_204323 GCAAGACCCTCTCCCTTATCTCT Forward 70

TCTGTGAAAGCATCATCCTGATCT Reverse

Ghrl AY303688 CACTCCTGCTCACATACAAGTTCA Forward 75

TCATATGTACACCTGTGGCAGAAA Reverse

GHS-R1a NM_204394 GCACAAATCGGCAAGGAAA Forward 61

GTGACATCTCCCAGCAAATCC Reverse

CRH NM_001123031 TCAGCACCAGAGCCATCACA Forward 74

GCTCTATAAAAATAAAGAGGTGACATCAGA Reverse

FAS JO3860 ACTGTGGGCTCCAAATCTTCA Forward 70

CAAGGAGCCATCGTGTAAAGC Reverse

ACCα NM_205505 CAGGTATCGCATCACTATAGGTAACAA Forward 74

GTGAGCGCAGAATAGAAGGATCA Reverse

SCD-1 NM_204890 CAATGCCACCTGGCTAGTGA Forward 52

CGGCCGATTGCCAAAC Reverse

AMPKα1 NM_001039603 CCACCCCTGTACCGGAAATA Forward 68

GGAAGCGAGTGCCAGAGTTC Reverse

AMPKα2 NM_001039605 GCGGAGAGAATCTGCTGGAA Forward 62

TGTAAGCATGGACGTGTTGAAGA Reverse

AMPKβ1 NM_001039912 TTGGCAGCAGGATCTGGAA Forward 60

AAGACTGTTGGTCGAGCTTGAGT Reverse

AMPKβ2 NM_001044662 TGTGACCCGGCCCTACTG Forward 56

GCGTAGAGGTGATTGAGCATGA Reverse

AMPKγ1 NM_001034827 CAAGCCGTTGGTCTGCATCT Forward 56

GGGAGGAGACGGCATCAA Reverse

AMPKγ2 NM_001278142 TGCCATGCCATTCTTGGA Forward 62

CCACCTTGCGAGAAGCATTT Reverse

AMPKγ3 NM_001031258 CCCAAGCCACGCTTCCTA Forward 57

(Continued)
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Table 1. (Continued)

Gene Accession numbera Primer sequence (5’ ! 3’) Orientation Product size (bp)

ACGGAAGGTGCCGACACA Reverse

mTOR XM_417614 CATGTCAGGCACTGTGTCTATTCTC Forward 77

CTTTCGCCCTTGTTTCTTCACT Reverse

ME AF408407 AGATGAAGCTGTCAAAAGGATATGG Forward 62

CACGCCCCTTCACTATCGA Reverse

ATPcl NM_001030540 CTTTTAAGGGCATTGTTAGAGCAAT Forward 65

CCTCACCTCGTGCTCTTTCAG Reverse

SREBP-1 AY029224 CATCCATCAACGACAAGATCGT Forward 82

CTCAGGATCGCCGACTTGTT Reverse

SREBP-2 AJ414379 GCCTCTGATTCGGGATCACA Forward 63

GCTTCCTGGCTCTGAATCAATG Reverse

INSIG-1 NM_001030966 TGGCGCTGGTGCTGAAC Forward 63

TGACCTCGTCGGGAAACAG Reverse

INSIG-2 NM_001031261 CAGCGCTAAAGTGGATTTTGC Forward 65

CAATTGACAGGGCTGCTAACG Reverse

UCP NM_204107 TGGCAGCGAAGCGTCAT Forward 59

TGGGATGCTGCGTCCTATG Reverse

ANT AB088686 GCAGCTGATGTCGGCAAA Forward 56

CAGTCCCCGAGACCAGAGAA Reverse

NRF-1 NM_001030646 GGCCAACGTCCGAAGTGAT Forward 55

CCATGACACCCGCTGCTT Reverse

Ski M28517 GGCCCTGCTGCTTTCTCA Forward 75

AGGTTCCGCTGGGTCTTTG Reverse

CPT-1 AY675193 GCCCTGATGCCTTCATTCAA Forward 60

ATTTTCCCATGTCTCGGTAGTGA Reverse

S6K1 NM_001109771 GTCAGACATCACTTGGGTAGAGAAAG Forward 60

ACGCCCTCGCCCTTGT Reverse

PGC-1α NM_001006457 GAGGATGGATTGCCTTCATTTG Forward 62

GCGTCATGTTCATTGGTCACA Reverse

PGC-1β XM_414479 TTGCCGGCATTGGTTTCT Forward 66

CACGGGAAGCCACAGGAA Reverse

PPARα AF163809 CAAACCAACCATCCTGACGAT Forward 64

GGAGGTCAGCCATTTTTTGGA Reverse

PPARδ NM_001001460 CACTGCAGGAACAGAACAAAGAA Forward 67

TCCACAGAGCGAAACTGACATC Reverse

HSP70 JO2579 GGGAGAGGGTTGGGCTAGAG Forward 55

TTGCCTCCTGCCCAATCA Reverse

HSP60 NM_001012916 CGCAGACATGCTCCGTTTG Forward 55

TCTGGACACCGGCCTGAT Reverse

HSP27 XM_001231557 TTGAAGGCTGGCTCCTGATC Forward 58

AAGCCATGCTCATCCATCCT Reverse

HSF1 L06098 GAGACGGACCCGCTGATCT Forward 58

GGTCGAACACATGGAAGCTGTT Reverse

HSF2 NM_001167764 GCCCAGCAACCAGCTTATCA Forward 63

TGTTCATCCAACACCAAGAAACTC Reverse

HSF3 L06126 CAGAGCGACGACGTCATCTG Forward 66

CCGCTGCTCATCCAGGAT Reverse

(Continued)
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rapamycin (mTOR)Ser2448 (#2971), anti-mTOR (#2972), anti-phospho AMP-activated protein
kinase alpha (AMPKα)Thr172 (#2531), anti-AMPKα1 (#2795), anti-AMPKα2 (#2757) anti-
phospho acetyl-CoA carboxylase alpha (ACCα)Ser79 (#3661), anti-ACCα (#3662), anti-HSP90
(#PA5-17610), and mouse monoclonal anti-HSP70 (#MAI-91159) were used. Protein loading
was assessed by immunoblotting with the use of rabbit anti-β actin (#4967) or rabbit anti-vin-
culin (#V4139). Pre-stained molecular weight marker (Precision Plus Protein Dual Color) was
used as a standard (BioRad). All primary antibodies were purchased from Cell Signaling Tech-
nology, except for the anti-HSP70 and anti-HSP90 which were purchased from Pierce Thermo
Scientific, and anti-vinculin which was purchased from Sigma-Aldrich. The secondary anti-
bodies were used (1:5000) for 1 h at room temperature. The signal was visualized by enhanced
chemiluminescence (ECL plus) (GE Healthcare Bio-Sciences) and captured by FluorChemM
MultiFluor System (Proteinsimple). Image Acquisition and Analysis were performed by Alpha-
View software (Version 3.4.0, 1993–2011, Proteinsimple).

Statistical analysis
Growth performance (feed intake FI, body weight gain BWG, and feed conversion ratio FCR),
plasma metabolite parameters (cholesterol, glucose, triglyceride, uric acid, LDH and creatine
kinase), and gene and protein expression data were analyzed by the Student’s unpaired t-test.
Body temperature data were analyzed using two-way repeated-measures ANOVA with time as
the repeated measure and treatment (TN vs cold exposure) as factors. Data are expressed as the
mean ± SEM and analyzed using Graph Pad Prism software (version 6 for windows). Signifi-
cance was set at P<0.05.

Results

CMCC improves growth performances in chicks
As shown in Fig 1a, both weekly and total (whole 3-wk period) cumulative feed intake did not
differ between the control and CMCC chicks, however the total body weight gain (3-wk period)
was significantly higher in CMCC group compared to the control resulting in significant lower
FCR (P<0.05, Fig 1b and 1c). The body temperature (BT) of the control chicks significantly
increased from day 3 to day 7 of the first week compared to day 1, however the BT of CMCC

Table 1. (Continued)

Gene Accession numbera Primer sequence (5’ ! 3’) Orientation Product size (bp)

HSF4 NM_001172374 CAAAGAGGTGCTGCCCAAGT Forward 60

AGCTGCCGGACGAAACTG Reverse

18S AF173612 TCCCCTCCCGTTACTTGGAT Forward 60

GCGCTCGTCGGCATGTA Reverse

a Accession number refer to Genbank (NCBI).

ACC, acetyl-CoA carboxylase; AdipoR, adiponectin receptor; Adpn, adiponectin; AgRP, agouti related peptide; AMPK, AMP-activated protein kinase;

ANT, adenine nucleotide translocator; ATPcl, ATP citrate lyase; Cart, cocaine and amphetamine regulated transcript; CPT, carnitine palmitoyltransferase;

CRH, corticotropin releasing hormone; FAS, fatty acid synthase; Ghrl, ghrelin; GHS-R1a, ghrelin receptor; HSF, heat shock factor; HSP, heat shock

protein; INSIG, insulin induced gene; ME, malic enzyme; mTOR, mechanistic target of rapamycin; NPY, neuropeptide Y; NRF, nuclear respiratory factor;

Ob-R, leptin receptor; Ox, orexin; OxR, orexin receptor; PGC, PPARδ coactivator; Pomc, pro-opiomelanocortin; PPAR, peroxisome proliferator activator of

transcription; SCD, stearoyl-CoA desaturase; Ski, avian sarcoma viral oncogene homolog; S6K1, ribosomal S6 kinase; SREBP, sterol regulatory element

binding protein; UCP, uncoupling protein.

doi:10.1371/journal.pone.0142319.t001
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chicks remained the same during the first 7 days (Fig 1d). When BT of both groups were plot-
ted together, CMCC chicks exhibited higher BT at the first day and lower BT from day 3 to day
7; however the difference was not statistically discernable (Fig 1d).

CMCC alters circulating metabolite levels
CMCC significantly increased the circulating levels of cholesterol (Chol) and creatine kinase
(CK) without affecting circulating glucose (Glc), triglyceride (TG), uric acid (UA) and L-lactate
dehydrogenase (LDH) levels (Fig 2a and 2b).

Fig 1. Effect of CMCC on growth performances in young broiler chicks. Cumulative feed intake FI (a), body weight gain BWG (b), feed conversion ratio
FCR (c), and body temperature (d). Data are presented as mean ± SEM (n = 40) for each week and for the total experimental period (3 weeks). *P<0.05.
Different letters indicate daily difference in body temperature within each group (a-c and α, difference within control and cold group, respectively).

doi:10.1371/journal.pone.0142319.g001
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Fig 2. Effect of CMCC on plasmametabolite levels. Plasma levels of Chol, Glc, TG, UA (a), LDH and CK (b) were determined at the first week using
commercial kits as described in materials and methods. Data are presented as mean ± SEM (n = 6). *Indicate a significant difference between cold and
control group (P<0.05).

doi:10.1371/journal.pone.0142319.g002
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CMCC affects the expression of hypothalamic feeding-related genes in
chicks
Since the effect of some neuropeptides in chicken is not fully understood and established, we
classified them in the present section based on their effects in mammals. CMCC significantly
down-regulated the expression of the orexigenic hypothalamic neuropeptide NPY, adiponectin
(Adpn) and its related receptors AdipoR1 and AdipoR2 compared to the control group
(P<0.05, Fig 3a). The expression of hypothalamic agouti-related protein (AgRP), orexin (Ox)
and its related receptors (Ox1R and Ox2R) remained unchanged between the control and
CMCC groups (Fig 3a). Among the anorexigenic neuropeptides, only cocaine and amphet-
amine regulated transcript (Cart) was significantly down-regulated in CMCC compared to
control chicks (P<0.05, Fig 3a). CMCC significantly down regulated the expression of hypo-
thalamic fatty acid synthase (FAS) and mechanistic target of rapamycin (mTOR), and up regu-
lated the expression of AMP-activated protein kinase alpha 1 and 2 (AMPKα1 and α2)
(P<0.05, Fig 3b) and AMPKγ1/2 (P<0.05, S1 Fig). The expression of acetyl-CoA carboxylase
alpha (ACCα), stearoyl-CoA desaturase1 (SCD-1), ribosomal p70 S6 kinase (S6K1), and
AMPKβ1/β2 and γ3 remained unchanged between the cold and the control groups (Fig 3b and
S1 Fig). Neither HSP (HSP70 and HSP27), nor their related transcription factors (HSF1-4)
mRNA abundances, were affected by CMCC compared to control group (Fig 3c).

CMCC down-regulates hepatic lipogenic gene expression in chicks
CMCC significantly down-regulated the expression of hepatic FAS, ACCα, malic enzyme
(ME), sterol regulatory element binding protein 1 and 2 (SREBP-1 and 2) and mTOR com-
pared to the control group (P<0.05, Fig 4a). The expression of ATP citrate lyase (ATPcl), stear-
oyl-CoA desaturase 1 (SCD-1), AMPKα1/2, AMPKβ1/2, AMPKγ1/2/3, and insulin induced
gene 1 and 2 (INSIG-1 and 2) did not differ between the control and CMCC groups (Fig 4a
and S1 Fig). Concomitant with these changes, CMCC decreased the phosphorylated levels of
mTORSer2448 and increased the phosphorylated levels of ACCαSer79 compared to the control
group (Fig 4b and 4c). CMCC induced the hepatic HSP27 and HSP70 mRNA levels and
HSP70 protein expression compared to the control group (P<0.05, Fig 5b and 5c), however
hepatic expression of HSF1-4 remained unchanged between the two groups (Fig 5a).

CMCC alters the expression of metabolic-related genes in young chick
muscles
CMCC did not affect the expression of uncoupling protein (UCP), adenine nucleotide translo-
cator (ANT), nuclear respiratory factor 1 (NRF-1) and the avian sarcoma viral oncogene
homolog Ski, key genes involved in the regulation of mitochondrial function and energy expen-
diture (Fig 6a). However, it significantly induced the expression of carnitine palmitoyltransfer-
ase 1 (CPT-1), AMPKγ3 and mTOR and down-regulated the expression of peroxisome
proliferator-activated receptor alpha (PPARα) compared to the control group (P<0.05, Fig 6a
and S1 Fig). The expression of PPARγ, PPARγ coactivator alpha and beta (PGC-1α and PGC-
1β), SREBP-1/2, AMPKα1/2, AMPKβ1/2, and AMPKγ1/2 did not differ between the two
groups (Fig 6a and S1 Fig). In line with the variation of gene expression, CMCC increased the
phosphorylated levels of mTORSer2448 compared to the control group (P<0.05, Fig 6b and 6c).
Total AMPKα2 protein levels were significantly decreased in the CMCC compared to the con-
trol group (Fig 6b). Only HSF-1 gene expression was higher in CMCC chicks compared to the
control group (P<0.05, Fig 7a); however the expression of HSP70, HSP60, HSP27, HSF2-4 did
not differ between the two groups.
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Fig 3. Effect of CMCC on feeding-related genes and HSPs in the brain of young broiler chicks.Relative expression of hypothalamic feeding-related
neuropeptides (a), lipogenic genes (b), HSPs and HSF (c) were determined by qPCR using 2-ΔΔCt method [25]. Data are presented as mean ± SEM (n = 6). *
Indicate a significant difference between cold and control group (P<0.05).

doi:10.1371/journal.pone.0142319.g003
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Fig 4. Effect of CMCC on lipogenesis-related genes in liver of young broiler chicks.Relative expression of lipogenic genes and their related
transcription factors (a) was measured by qPCR as described in material and methods. Phosphorylated and total protein levels of AMPK, mTOR and ACC
were determined byWestern blot (b) and presented as p-protein/total protein ratio (c). β-actin was used as loading and housekeeping control. Data are
presented as mean ± SEM (n = 6). *Indicate a significant difference between cold and control group (P<0.05).

doi:10.1371/journal.pone.0142319.g004
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Discussion
Low and high environmental temperatures are the most challenging stressors impacting both
poultry and livestock industries. Cold stress, for instance, has been reported to cause an esti-
mated total annual economic loss to the Chinese poultry industry of 100 million in currency

Fig 5. Effect of CMCC on HSP and HSF expression in liver of young broiler chicks.HSP and HSFmRNA levels were measured by qPCR (a). HSP70
and HSP90 protein levels were determined byWestern blot (b) and presented as normalized ratio to β-actin (c). The values represent the mean ± SEM
(n = 6). *Indicates a significant difference between cold and control group (P<0.05).

doi:10.1371/journal.pone.0142319.g005
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Fig 6. Effect of CMCC onmetabolic-related genes in muscle of young broiler chicks.Relative expression of mitochondrial- and metabolic-related genes
was determined by qPCR (a). Phosphorylated and total protein levels of AMPKα1/α2 and mTORwere determined byWestern blot (b) and presented as p-
protein/total protein ratio (c). The values represent the mean ±SEM (n = 6). * Indicates a significant difference between cold and control group (P<0.05).

doi:10.1371/journal.pone.0142319.g006
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[5]. A tremendous amount of seminal work has been done to identify the animal physiological
and behavioral responses to cold stress and improve management strategies, however, the
underlying molecular mechanisms are still not completely defined. In the present study, we
aimed to determine the effect of CMCC on growth performance, plasma metabolite levels, and
the expression of key metabolic-related genes.

Fig 7. Effect of CMCC on HSP and HSF expression in the muscle of young broiler chicks.HSP and HSFmRNA levels were measured by qPCR (a).
HSP70 and HSP90 protein levels were determined byWestern blot (b) and presented as normalized ratio to β-actin (c). The values represent the
mean ± SEM (n = 6). *Indicates a significant difference between cold and control group (P<0.05).

doi:10.1371/journal.pone.0142319.g007

CMCC Acclimation and Key Metabolic-Related Genes

PLOS ONE | DOI:10.1371/journal.pone.0142319 November 16, 2015 15 / 22



The standard rearing practice in poultry industry is to maintain the average environmental
temperature at 32°C during the first week of chick age and gradually decrease it (2 to 3°C/
week) to about 22°C at 4 weeks. Although chickens are homeothermic and able to engage adap-
tive and/or protective mechanisms to cope with cold stress and re-establish their body temper-
ature homeostasis, sudden severe cold stress could be detrimental. The strong negative effect of
severe cold stress on avian growth performance, health and welfare is well documented
[4,7,28,29]. In the present study, growth performances (BWG and FCR) were improved by
CMCC during the first week and at the end of the experimental period (3 weeks) compared to
the control group, corroborating previous studies in chickens exposed to short-term cold con-
ditioning [6,30]. Shinder et al. [31] found that embryonic cold conditioning also improved
growth performance and reduced ascites incidence in chickens. In contrast, Baarendse et al.
[32] reported that exposure of chickens to a moderate reduction in house temperature during
early post-hatching period have long-term negative effects on growth performance. The dis-
crepancies between these findings might be related to several factors including chicken strain
(Hubbard HY vs. Cobb chickens in Baarendse’s [32] and our studies, respectively), duration of
cold exposure (5 vs. 7 days in Baarendse’s and our studies, respectively), and/or experimental
conditions (diet composition, stress, density and feeding system).

In an attempt to better understand the mechanisms underlying the adaptation and acclima-
tization to CMCC, we measured circulating metabolic substrates in both chick groups. In
agreement with previous studies in mammals and chickens [33–35], plasma CK and choles-
terol levels were both higher in CMCC chicks compared to control group. CK, which catalyzes
the reaction of ATP and creatine to phosphocreatine, is released into the circulation following
changes in the permeability of the sarcolemma in response to various stressors [36] and is gen-
erally accepted as an indicator of muscle damage. As LDH levels were not affected during
CMCC exposure in the present study, the increased levels of circulating CK indicates its poten-
tial role in maintaining high ATP turnover at low temperature as previously reported [37]. It is
possible that the increased levels of plasma CK, observed in our study, is a result of an
enhanced skeletal muscle mass [38,39] that is mirrored in higher BWG in CMCC compared to
control chicks. Although the mechanisms underlying the CMCC-induced cholesterol elevation
are not known at this time, we hypothesize that chicks heavily rely on mobilizing energy from
body fat to satisfy their higher energy requirement.

As changes in growth performances (BWG and FCR) are mainly caused by feed intake,
energy expenditure and intermediary metabolism, we next performed in depth analysis of key
regulators gene expression in three metabolically important tissues; the brain (main site for
feed intake regulation) [40], the liver (main site for lipogenesis) [41], and the muscle (main site
for thermogenesis and energy expenditure) [42]. The brain contains the satiety and hunger
centers and two separate populations of neuronal cell types. One synthesizes orexigenic neuro-
peptide Y (NPY) and agouti-related peptide (AgRP) [43,44], while the other produces anorexi-
genic pro-opiomelanocortin (POMC) and cocaine and amphetamine regulated transcript
(CART) [45,46]. These neuropeptides interact in a complex way with each other and with the
central melanocortin system, melanin-concentrating hormone, orexin, ghrelin and adiponec-
tin, to mention a few, to regulate energy homeostasis in mammals [for review see [47]]. A
recent study, using microarray analysis, reported 24h-cold exposure-induced changes in
chicken hypothalamic gene expression [5]. Our work complements and adds to this study by
showing that CMCC down regulated the expression of the potent orexigenic NPY and anorexi-
genic CART genes which may explain the similar feed intake observed between the control and
CMCC chicks. Central adiponectin (Adpn) and its related receptors (AdipoR1 and AdipoR2)
were down regulated by chronic CMCC in our experimental conditions. Although the role of
adiponectin in the regulation of feed intake in mammals is controversial [48,49], its role has
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not been previously addressed in avian species. As we did not see an effect of CMCC on feed
intake despite the significant decrease in central adiponectin system, we speculate that adipo-
nectin might be involved in the regulation of thermogenesis, energy expenditure and/or lipid
metabolism as previously reported in mammals [50]. We also identified central FAS-AMPK-
mTOR as a new pathway involved in chronic mild cold response. This pathway has been
reported to be involved not only in the regulation of energy homeostasis in both mammalian
and avian species [51–54], but also in the regulation of energy expenditure [55] and lipid
metabolism [56]. It is likely that during cold stress and in order to maintain their normal body
temperature, the chicks increased their metabolic heat production by facultative/adaptive ther-
mogenesis which in turn activates the key cellular energy sensor AMPK and thereby inhibits
mTOR (another energy/nutrient-sensitive kinase) activation and the switch from anabolic to
catabolic state.

Consistent with our hypothesis and in agreement with previous studies [57], CMCC down
regulated the hepatic expression of the key lipogenic genes FAS (which catalyzes the synthesis
of long-chain fatty acid synthesis through the condensation of acetyl-CoA and malonyl-CoA
in a complex seven-step reaction), ACCα (multifunctional enzyme which catalyzes the carbox-
ylation of acetyl-CoA to malonyl-CoA, the rate-limiting step in fatty acid synthesis) and ME
(which catalyzes the oxidative decarboxylation of malate to pyruvate and generates NADPH
for fatty acid biosynthesis). The concomitant decrease in hepatic SREBP1/2 mRNA abundance
indicates that CMCC down regulated the lipogenic gene expression at transcriptional levels
through these key transcriptional factors [58]. ACCα is also regulated at translational levels
and by phosphorylation/dephosphorylation of targeted serine residues. The increase of ACCα
phosphorylation at Ser79 indicates its inactivation by CMCC and further support the notion of
fatty acid synthesis inhibition [59]. Furthermore, the decrease of hepatic mTOR phosphoryla-
tion consolidates the concept of activated catabolic pathways in the liver of chicks exposed to
CMCC. mTOR has been found to play a role in lipogenesis with the finding that rapamycin
(mTOR inhibitor) blocks the expression of lipogenic genes and impairs the nuclear accumula-
tion of the SREBPs [60]. Although the exact molecular mechanisms by which SREBPs are regu-
lated by mTOR are not well defined, it is believed to be mediated by ribosomal S6 kinase 1
(S6K1) [61]. As recently reported, mTOR may also regulate the SREBP-lipogenic gene tran-
scriptional networks through the negative regulation of lipin 1 [62]. Several other molecular
mediators such as PPARα/δ, Akt and PKA are not ruled out [63,64] and further studies are
warranted.

Nonshivering thermogenesis (NST) is a common adaptive response to cold found in a num-
ber of mammalian and avian species [65], however the site and mechanisms appear to be dif-
ferent. While brown adipose tissue is well known to account for a large proportion of
mammalian NST [66] via activation of UCP-1, skeletal muscle, however is the main site of
avian NST [42]. Mechanisms involved in avian NST are still unclear but may involve reduced
energetic coupling in skeletal muscle mitochondria through activation of an avian homolog of
mammalian UCP1. We have previously identified avian muscle UCP [67] and we and others
found that it was up regulated by short severe cold exposure [68–70]. Here, neither UCP nor
other mitochondrial-related genes (ANT, NRF-1 and Ski) are altered by CMCC indicating that
our experimental conditions are not harsh. The difference observed between this and previous
studies may be related to severity and duration of environmental temperature at which birds
were acclimated. Indeed, Duchamp’s group recently reported that muscle NST, UCP expres-
sion and the intensity of mitochondrial oxidative phosphorylation increased in proportion
with the harshness of cold [69]. CMCC induced CPT-1, the rate-limiting enzyme in the β-oxi-
dation of long chain fatty acids [71]. Taken together our data indicate that the decreased activ-
ity of ACCα causes a decrease in malonyl-CoA concentration which in turn induces CPT-1
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activity and enhances fatty acid β-oxidation. The increased mRNA levels and phosphorylation
of mTOR in the muscle of CMCC chicks indicate that mitochondrial fatty acid utilization and
oxidation are very likely regulated by mTOR [72].

Finally to assess whether our experimental conditions were stressful or not, we determined
the mRNA abundance and protein expression of HSPs, known as key stress markers, and their
related transcription factors HSFs in all three tissues. During stress, HSPs are rapidly synthe-
sized and are involved in folding/unfolding and assembly/disassembly of protein complexes to
protect stressed cells. In our study, CMCC induced the expression of avian HSP-70 and HSP-
27 only in the liver but not in the muscle or the brain, indicating a tissue-specific regulation of
HSPs by cold exposure. Additionally, our data suggested that liver tissue may be more sensitive
to cold stress compared to other tissues and supports a protective function of HSPs as previ-
ously reported in myocardium [20,73].

In summary, we provided new evidence that CMCC can improve growth performances
(BWG and FCR) in young chicks through a modulation of key metabolic-related genes. AMPK
and mTOR seem to be a key molecular signatures orchestrating cellular fatty acid utilization
(inhibition of hepatic lipogenesis and increase of muscle fatty acid β-oxidation) to satisfy
energy requirement during cold exposure. These findings open a new vista on the role of the
AMPK-mTOR pathway in cold acclimation and further studies are needed to determine the
up- and down-stream mediators that can be used in genetic selection to improve avian thermo
(cold)-tolerance.

Supporting Information
S1 Fig. Effect of CMCC on AMPKβ and AMPKγ subunits in young broiler chickens. Rela-
tive expression of AMPKβ1/β2 and AMPKγ1/2/3 in the brain (a), liver (b), and muscle (c) was
measured by qPCR using 2-ΔΔCt method. Data are mean ± SEM (n = 6). � Indicate a significant
difference between cold and the control group (P<0.05).
(TIF)
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