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Recent studies have identified that peripheral stimulation in Parkinson’s disease (PD)
is effective in tremor reduction, indicating that a peripheral feedback loop plays
an important role in the tremor reset mechanism. This was an open-label, quasi-
experimental, pre- and post-test design, single-blind, single-group study involving 20
tremor-dominant PD patients. The objective of this study is to explore the effect of
electrical muscle stimulation (EMS) as an adjunctive treatment for resting tremor during
“on” period and to identify the best machine learning model to predict the suitable
stimulation level that will yield the longest period of tremor reduction or tremor reset
time. In this study, we used a Parkinson’s glove to evaluate, stimulate, and quantify
the tremors of PD patients. This adjustable glove incorporates a 3-axis gyroscope to
measure tremor signals and an EMS to provide an on-demand muscle stimulation to
suppress tremors. Machine learning models were applied to identify the suitable pulse
amplitude (stimulation level) in five classes that led to the longest tremor reset time. The
study was registered at the www.clinicaltrials.gov under the name “The Study of Rest
Tremor Suppression by Using Electrical Muscle Stimulation” (NCT02370108). Twenty
tremor-dominant PD patients were recruited. After applying an average pulse amplitude
of 6.25 (SD 2.84) mA and stimulation period of 440.7 (SD 560.82) seconds, the total time
of tremor reduction, or tremor reset time, was 329.90 (SD 340.91) seconds. A significant
reduction in tremor parameters during stimulation was demonstrated by a reduction
of Unified Parkinson’s Disease Rating Scale (UPDRS) scores, and objectively, with a
reduction of gyroscopic data (p < 0.05, each). None of the subjects reported any
serious adverse events. We also compared gyroscopic data with five machine learning
techniques: Logistic Regression, Random Forest, Support Vector Machine (SVM),
Neural Network (NN), and Long-Short-Term-Memory (LSTM). The machine learning
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model that gave the highest accuracy was LSTM, which obtained: accuracy = 0.865
and macro-F1 = 0.736. This study confirms the efficacy of EMS in the reduction of
resting tremors in PD. LSTM was identified as the most effective model for predicting
pulse amplitude that would elicit the longest tremor reset time. Our study provides further
insight on the tremor reset mechanism in PD.

Keywords: Parkinson’s disease, electrical muscle stimulation, machine learning, tremor, Parkinson’s glove,
resetting mechanism

INTRODUCTION

Tremor is found in 70% of patients with Parkinson’s disease
(PD), usually occurring at rest (Hughes et al., 1993; Deuschl
et al., 1998). Resting tremors can cause considerable disability
for an individual with PD (Hughes et al., 1993), often
leading to stigmatization, feelings of shame, and psychological
difficulties (Zimmermann et al., 1994; Simpson et al., 2013). The
standard treatment of parkinsonian tremors are dopaminergic
and anticholinergic medications, but the outcomes are often
unreliable when compared to treatment outcomes for other
cardinal motor symptoms, such as bradykinesia and rigidity
(Jimenez and Vingerhoets, 2012). Moreover, there are no
evidence-based therapeutic guidelines that provide the efficacy
of specific dopaminergic medications for parkinsonian tremors
(Ferreira et al., 2013; Connolly and Lang, 2014). Current
therapeutic options for patients who fail to respond adequately
to standard treatment include surgical interventions or infusion
therapies, which can be associated with various side effects
(Benabid et al., 1996; Koller et al., 1997; Krack et al., 1998a,b;
Limousin et al., 1998; Pinter et al., 1999; Marjama-Lyons
and Koller, 2000; Pogarell et al., 2002; Crosby et al., 2003;
Katzenschlager et al., 2003; Ferreira et al., 2013). Therefore, there
is a real need to identify a new efficacious treatment, with fewer
adverse events, for this symptom.

Although not exactly known, the mechanism of
tremorogenesis in PD is complex, generated by interactions
between central and peripheral (local mechanical-reflex) loops
(Hallett, 1998; Deuschl et al., 2000; McAuley and Marsden,
2000; Deuschl et al., 2001) with the contralateral primary motor
cortex likely to be the major driver for tremor in activities
selected by the basal ganglia (putamen, globus pallidus, and
subthalamic nucleus) (Helmich et al., 2012; Hirschmann et al.,
2013). The amplitude of tremor is probably determined by a
network within the cerebellum acting through the thalamus
(Helmich et al., 2011). The role of peripheral mechanisms for
tremor in PD is less clear, but is considered to be involved in
the maintenance and modulation of the amplitude of tremor
(Deuschl et al., 2000; McAuley and Marsden, 2000). While
central tremor generation is the main target for most current
PD treatments (e.g., thalamotomy or thalamic DBS), some
evidence has indicated that peripheral stimulation involving
either mechanical resonance (such as bone, joint, and soft tissue)
or feedback resonance (represented as a reflex mechanism) can
also generate or modulate tremor even when driven from a
central origin (McAuley and Marsden, 2000). In one early study,
supramaximal electrical peripheral nerve stimulation inhibited

rhythmic EMG activity in parkinsonian tremor for a period of
around 200 ms with the duration of inhibition varying inversely
with ongoing tremor (Britton et al., 1993). Another study also
demonstrated a significant attenuation of parkinsonian tremor
(up to 62%) following electrical muscle stimulation (EMS) of the
afferent muscles (Javidan et al., 1992). As muscles can generate
tremor, direct and strong mechanical conditions imposed upon
the muscle might be able to reset tremor, even if that tremor
originates from a central source.

Based on promising results from early studies (Mones and
Weiss, 1969; Bathien et al., 1980; Lee and Stein, 1981; Britton
et al., 1992, 1993), recent investigators have explored the
potential of EMS as a treatment of parkinsonian tremor. While
efficacy has been replicated in a number of recent studies,
others have reported conflicting results associated with potential
side effects (Javidan et al., 1992; Maneski et al., 2011; Zhang
et al., 2011; Gallego et al., 2013; Bo et al., 2014; Dosen et al.,
2014). Our group recently explored the benefits of EMS in
the reduction of medically refractory resting tremor in PD
patients in both open-label and randomized-controlled studies
(Jitkritsadakul et al., 2015, 2017). Significant reductions in
transient tremor were achieved during EMS which correlated
with a reduction in the clinical tremor score obtained from the
Unified Parkinson’s Disease Rating Scale (UPDRS) (Jitkritsadakul
et al., 2015, 2017). This preliminary evidence supported the
possibility of a tremor reset mechanism from EMS (Jitkritsadakul
et al., 2015). From direct visual observation, following a 10-
s stimulation period, tremor reduction remained stable for
a further 10 s after withdrawal of EMS before returning to
baseline levels (Jitkritsadakul et al., 2015). Using a 30-s square-
wave stimulation, some patients had visual tremor reductions
for up to 3 min before their tremor re-emerged to the pre-
stimulation level—we interpreted this period as a tremor reset
time (Jitkritsadakul et al., 2017). It seems that a longer period
of stimulation may produce a longer period of tremor reduction
(Jitkritsadakul et al., 2015, 2017).

Recent advances in machine learning analytics in PD have
allowed the development of methods that can recognize human
motion using training information obtained from multiple
sensors. Deep learning, as a type of machine learning that
typically involves multilayered neural networks to perform a
variety of input-output modeling tasks, has been shown to be
capable of detecting tremor (Yao et al., 2019), motor fluctuations
(Aich et al., 2020), and freezing of gait (Sigcha et al., 2020)
in PD; however, no prior studies have investigated the role of
machine learning for predicting the best outcomes with EMS
for tremor in PD. We hypothesized that EMS had a direct
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tremor reduction effect, and the higher pulse amplitude and/or
the greater stimulation time may produce a longer tremor reset
time. Therefore, the objectives of this study were to: (1) evaluate
the effect of EMS and the tremor reduction in PD; (2) assess
the level of pulse amplitude that produces significant tremor
reduction with the longest tremor reset time; and (3) identify
the best machine-learning model for predicting stimulation levels
that yield the longest tremor reset time.

MATERIALS AND METHODS

This was an open-label, quasi-experimental, pre- and post-
test design, single-blind, single-group study involving 20 PD
patients. The study was conducted at Chulalongkorn Centre
of Excellence for Parkinson’s Disease and Related Disorders1

The study protocol was approved by the Institutional Review
Board, Faculty of Medicine, Chulalongkorn University (IRB
483/57). The IRB granted us to permission this treatment
as an adjunctive treatment during “on” period when patients
were optimized on oral medications. Information regarding
this research study was provided and written informed consent
was obtained from every subject at enrollment in accordance
with the declaration of Helsinki. The study was registered at
the www.clinicaltrials.gov under the name “The Study of Rest
Tremor Suppression by Using Electrical Muscle Stimulation”
(NCT02370108) with the translation of study protocol provided
as the Supplementary Material 1. Supplementary Figure 1
provides a complete detailed CONSORT flowchart. A TREND
checklist is provided as the Supplementary Material 2. All
subjects met the clinical diagnosis criteria for PD according
to the United Kingdom Parkinson’s Disease Society Brain
Bank criteria (Hughes et al., 1993). As tremors in Parkinson’s
disease patients are heterogeneous presentation and classified
in 3 different types of tremor patterns, including class I
tremor, class II tremor, and class III tremor. In order to
reduce clinical heterogeneity of tremor, we recruited only PD
patients with type 1, classic Parkinsonian tremor according to
the consensus statement of the Movement Disorder Society
(Deuschl et al., 1998). In addition, all patients must have
drug resistant tremor as defined as the subjects either failed
to experience a clinically relevant and useful improvement
in tremor under an optimized antiparkinsonian therapy with
various agents, or side effects encountered under an effective anti-
tremor therapy were intolerable. We also recruited only subjects
whose tremor were unresponsive to at least 2 oral dopaminergic
medications and anticholinergics (Jitkritsadakul et al., 2015).
None of participants received device-aided therapies, such as
infusion therapy or deep brain stimulation. Similar details of
inclusion and exclusion criteria were shown in our previous study
(Jitkritsadakul et al., 2015). The calculation of the sample size was
based on the results of the RMS of the angular velocity before
and during stimulation from previous publication (Jitkritsadakul
et al., 2015), which suggested that at least 7 subjects were

1www.chulapd.org

FIGURE 1 | The Parkinson’s glove. The Parkinson’s glove is a specially
designed adjustable glove, which incorporates a tremor detection module and
an electrical muscle stimulation module to detect and suppress resting hand
tremors. The control panel was developed using an Android application on a
mobile phone connected via Bluetooth to the Parkinson’s glove.

required for the comparison for tremor outcomes in this study
(Supplementary Material 3).

Procedures
Before enrollment, all recruited patients received stable anti-
parkinsonian medications for at least 30 days. A movement
disorder neurologist (OP) conducted individual interviews with
participants to obtain their demographics and clinical data
relevant to the study. Parkinsonian and tremor assessments, both
clinical and objective, were done for each patient to determine
the severity of PD symptoms during both “off” and “on” periods.
Physical examinations of each patient were recorded by video
for later review. Parkinsonian symptoms were clinically assessed
according to the UPDRS and Hoehn and Yahr (HY) scale.
Marked tremor criteria are clinically defined by a sum score of
at least 8 out of 32 on UPDRS tremor items 16, 20, and 21
(tremor score), or, if the tremor is present on one side only,
by a tremor score of at least 6 out of 32 (Zimmermann et al.,
1994; Pogarell et al., 2002). Parkinsonian tremors were objectively
assessed with the tremor detection module of a Parkinson’s glove
during both “off” and “on” periods, however, the assessment of
tremor during stimulation was done during “on” periods only
(2–3 h after the last intake of medications) in order to evaluate
the additional benefits of EMS for tremor reduction. Standard
oral medications for PD tremor usually give a maximum of
50% tremor reduction for each dose (Kartzinel et al., 1976;
Pogarell et al., 2002), therefore, in this study, tests during the
“on” period were only conducted to see whether EMS could
provide additional benefits to tremor reduction as an adjunctive
treatment to current oral medications.

Parkinson’s Glove
In this study, we used the Parkinson’s glove to evaluate,
stimulate, and quantify parkinsonian tremors. A Parkinson’s
glove is a unique adjustable glove used to treat tremors, which
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integrates both a tremor detection module and an EMS module,
and is worn on the most tremulous hand (Figure 1). The
tremor detection module was a 3-axis gyroscope that measures
tremor signals from angular displacements of motion (Gallego
et al., 2010). A fast Fourier transform algorithm was calculated
and graphed for tremor amplitude and frequency. The EMS
module was designed to function identically to the approved
EMS standard, and received approval for electronic product
testing from the electrical and electronic products testing center
(PTEC) in Thailand. The EMS module provided continuous
stimulation with a square-wave pulse to the affected muscles
via two surface electrodes under either manual or automatic
control. The controller, with an embedded sensor, was placed
over the patient’s wrist. The control panel was developed using
an Android application on a mobile phone connected via a
Bluetooth connection to the Parkinson’s glove. Real-time tremor
signals and stimulation protocols were transferred automatically
and recorded in the internal memory of a mobile phone,
which could then be uploaded onto a Cloud system for further
analysis. Similar details for the Parkinson’s glove development
are shown in our previous study (Jitkritsadakul et al., 2017).
A patent application number of the Parkinson’s glove has
been filed to the Thai Intellectual Property Office (Application
number 1701000170).

Tremor Experiment
Tremor assessment was conducted in a quiet room. All
participants wore the Parkinson’s glove on their most tremulous
hand with two self-adhesive electrodes placed over the thenar
muscle as well as the first and second interosseous muscles.
Participants were instructed to sit comfortably in an armchair and
asked to close their eyes while counting backward to encourage
the resting tremor. After turning on the Parkinson’s glove, the
tremor detection module was used to quantify the intensity
of tremor signals throughout the session. Meanwhile, an EMS
module was used to stimulate the patient’s hand muscles to
reduce tremors. Stimulation was performed manually by the
attending physician to identify the most effective stimulation
protocol for tremor reduction. There are three main stimulation
parameters for an EMS: pulse amplitude, pulse width, and
frequency. As depicted in Figure 2, pulse amplitude is the
intensity of the stimulation, measured in milliampere (mA), pulse
width is the duration of each stimulus, measured in microseconds
(µs), and frequency is the number of stimuli delivered per
second, measured in hertz (Hz). In this study, each subject
only underwent the experimental procedure once, and the total
experiment time was approximately 30 min for each subject. We
divided the experiment into 3 sections as follows (Figure 3).

1. Before stimulation: The period when the tremor detection
module is turned on, but the EMS module is still turned
off. Tremor signals were measured continuously by the
tremor detection module to give baseline data. This section
usually took 5 min.

2. During stimulation: The period when the tremor detection
module and the EMS module were both turned on.
Two stimulation parameters, frequency (50 Hz) and pulse

FIGURE 2 | Stimulation parameters. There are main three stimulation
parameters determine for the size and intensity of each stimulus of an EMS
including pulse amplitude, pulse width, and frequency. Pulse amplitude is the
intensity of the stimulation, measured in milliampere (mA). Pulse width is the
duration of each stimulus, measured in microseconds. Frequency is the
number of stimuli delivered each second, measured in hertz (Hz).

width (150 µs), were kept constant while the attending
physician increased the stimulation intensity by slowly
raising the pulse amplitude by 1 mA approximately every
10 s (1 mA, 2 mA, 3mA,. . ., etc.) until the tremor was
reduced and the criteria for tremor reduction achieved. If
a maximum pulse amplitude was identified, the physician
then provided continuous stimulation at that pulse
amplitude for approximately further 30 s before turning
off the EMS. Criteria for significant tremor reduction in
this study were determined by direct observation, including
(1) a more than 50% tremor reduction from the clinical
rating scale (UPDRS tremor score), and/or (2) a more than
50% tremor reduction identified by real-time gyroscope
signals. For patients who did not meet these significant
tremor reduction criteria, the physician turned off the
stimulation if a visualized tetanic muscle contraction was
achieved without pain. Tremor signals were measured
continuously by the tremor detection module during the
whole stimulation period. This section usually took 10–
15 min.

3. After stimulation: The period when the EMS module was
turned off, but the tremor detection module remained on.
After turning off the EMS, tremor signals were measured
continuously by the tremor detection module until the
tremor signals returned to pre-stimulation levels. The
duration of tremor reduction from EMS initiation until
tremor re-emergence to pre-stimulation levels is termed the
tremor reset time (Jitkritsadakul et al., 2015). This section
usually took 10 min.

Safety profiles were assessed by recording the frequencies and
severity of reported adverse events during stimulation and in a
1-month follow-up period. Any new symptoms or worsening of
pre-existing symptoms was documented for each participant.

Data Collecting Process
The control panel for the Parkinson’s glove was developed
as an Android application for mobile phones using a
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FIGURE 3 | The temporal pattern of the experiment is illustrated, including the period of tremor detection and EMS, as well as tremor reduction outcomes. In this
study, we divided the experiment into 3 sections, including (1) before stimulation, (2) during stimulation, and (3) after stimulation. The red line denotes the intensity of
the gyroscope (x, y, and z), while the blue line refers to the pulse amplitude. Black dashed lines represent time boundaries. The duration of stimulation is indicated by
(A), while (B) shows the duration of tremor reduction during stimulation. The duration of continuing tremor reduction after withdrawal of EMS until the tremor
re-emerged to the pre-stimulation tremor level is shown by (C), while (D) indicates the tremor reset time and (E) represents Pulse amplitude.

Bluetooth connection so that the investigators could
control and save tremor signals and stimulation parameters
(Figure 1). Real-time tremor signals in every axis and
stimulation protocol were saved to the internal memory
of a mobile phone and automatically uploaded to a
Cloud system as.csv files for further analysis. Raw
motion signals from the gyroscope were calculated
using the root mean square of angular velocity for each
axis (RMSx, RMSy, RMSz) and tremor frequency for
each axis. After receiving the collected data, regression
analysis was used to determine the predictive factors
for the longest tremor reset time, and a supervised
machine learning approach used to identify the suitable
stimulation levels that will yield the longest tremor
reset time.

Data Analysis
The baseline characteristics and tremor parameters were
summarized using either means and standard deviations
(SD), or frequencies and percentages as appropriate. The
Wilcoxon–Mann–Whitney test was used to compare the efficacy
of stimulation based upon the tremor parameters between
the before-stimulation and during-stimulation measurements.
The Chi-square test was used for categorical data. Correlation
analysis was performed using Spearman’s correlation to
determine the relationship between stimulation parameters
and tremor reduction outcomes. The correlation coefficient (r)
was interpreted as the strength of correlation as either weak,
moderate, or high correlation (Taylor, 1990). Multiple linear
regression analysis was carried out to predict the factors that
lead to the longest tremor reset time. The multiple correlation
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coefficient is an index of how well a dependent variable can be
predicted from a linear combination of independent variables.
It ranges from 0 (zero multiple correlations) to 1 (perfect
multiple correlations) and the value of R2 is the coefficient
of determination. A p < 0.05 (two-tailed) was considered
statistically significant. Statistical analysis for this study was
based on the SPSS program version 23.0 software (SPSS
Inc., Chicago, IL).

Automatic Pulse Amplitude Prediction
Models
Normally, physicians use manually controlled variation of
stimulation to achieve an appropriate pulse amplitude setting for
EMS, based on tremor intensity. However, as tremor intensity
can fluctuate between individual PD patients, this method is
impractical in a real-life scenario. To overcome this challenge, it
is crucial to develop a machine learning model to automatically
predict the suitable pulse amplitude for individual patients. In
this study, the pulse amplitude level (target variable) is divided
into five stimulation classes suggested by physicians as shown in
Table 1, representing low to high stimulation levels.

Developments using standard machine learning require
several steps, including data preprocessing, model construction,
and model evaluation (Bizzego et al., 2019). The first step, data
pre-processing, was the capture of raw motion signals from the
gyroscope (Gx, Gy, Gz) along with pulse amplitude (It) and
timestamp (t). Then, these gyroscope signals were aggregated
using Root Mean Square (RMS) during an interval of 1 s resulting
in RMS of each axis (RMSx, RMSy, RMSz), so each observation
(row) represented a signal of 1 s interval using RMS, with the
main outcome for prediction stimulation level, categorized into
one of the five classes (low to high). We also investigated the
effect of the stimulation level at the previous timestep (t−1) since
stimulation adjustment is usually gradual; for example, the pulse
amplitude level “3” is normally changed to either “2” or “4,”
not suddenly jumped to “0” or “5.” Therefore, there were four
inputs in total (RMSx, RMSy, RMSz, It−1). During the training
phase, we applied a training strategy called “the teacher forcing
algorithm” (Williams and Zipser, 1989) by supplying observed
sequence values as inputs. In our case, we supplied the pulse
amplitude level from the previous step, adjusted by physicians
into the model. For the testing phase, the model was evaluated
on the data collected from the physician’s process. Thus, it is
a limitation of this study that the previous stimulation level

TABLE 1 | Categorized stimulation class into 5 classes based on pulse
amplitude levels.

Pulse amplitude level (mA) Stimulation class (low to high)

0 0

1–5 1

6–10 2

11–15 3

> = 16 4

mA, milliampere; Greater stimulation class represents higher pulse amplitude level.

used for the model was based on observed data, not from the
model prediction so in the discussion section, we have provided
a suggestion of how to deploy our model in real-life scenarios.
Also, some data points needed to be removed due to manual pulse
amplitude adjustments, e.g., no pulse amplitude assigned during
the tremor period as shown in Figure 3. These data points are
removed because they are bad examples for the model and can
weaken model performance. In summary, the main outcome for
prediction was stimulation level, which was categorized into five
classes (low to high) as shown in Table 1. There were two feature
sets; (1) only gyroscope signals and (2) gyroscope signals with the
previous stimulation level.

The second development step concerns model construction.
A machine learning model was applied to learn from the
cleaned data using a multiclass classification that aimed to
predict the pulse amplitude class (of the five) of stimulation
required. Here we employed and compared five prediction
techniques: (1) logistic regression, (2) random forest, (3) support
vector machine (SVM) (Boser et al., 1992), (4) Neural Network
(NN), and (5) long-short-term-memory (LSTM) (Hochreiter and
Schmidhuber, 1997). Since this is a classification task, logistic
regression was chosen as our baseline technique. Random forest
is an ensemble of decision trees. It is developed to overcome
the instability that a single classification or regression tree
exhibits with minor perturbations of training data. Each tree is
constructed using perturbed training data by sampling both rows
(samples) and columns (variables); thus, it produces a variation
among the trees in the ensemble. The settings for random forest
were: the number of trees is 100, the number of sampled features
is a squared root of total features, and observations are sampled
using bootstrapping (sampling with replacement). SVM, one
of more popular machine learning algorithms designed for a
classification task, finds a separation hyperplane that maximizes
between two classes, as shown in Figure 4 (Larhmam, 2018). The
settings of SVM were: the kernel is radial basis function (RBF)
and regularized parameter (C) is 1. Neural Network is built up
with two hidden layers with 100 hidden units. Implementation of
linear regression, random forest, SVM, and NN are all based on
the scikit-learn library in Python.

For the deep learning approach, LSTM was chosen since it
is a recurrent neural network, commonly used for time–series
data. It takes information from both the previous steps (short-
term memory) and the long-term dependencies into account as
shown in Figure 5 (Olah, 2015). The model is uni-directional,
not bi-directional since we aim to predict the next time step;
thus, future data cannot be used. The settings of LSTM were:
there are two layers with 100 hidden units, follow by a dense
layer with softmax activation and Adam optimization applied
with the learning rate of 0.001. The implementation is based on
the Tensorflow/Keras library.

The third, and final, step of model development is the
evaluation. Here, all prediction models were applied and
compared based on threefold cross validation as shown in
Figure 6. Each fold contains a different set of patients, where
the results are averaged on all three testing sets rather than
just one set of testing data, so avoiding an overfitting result.
In our data set, there were 20 PD patients, so there were 7, 7,
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FIGURE 4 | A decision boundary for support vector machine (SVM) that tries
to maximize the boundary between two classes. Image shows a
maximum-margin hyperplane and margin for an SVM trained on two classes.
Samples on margins are called support vectors. x refers to each feature; there
are two features in this example (x1 and x2). Each circle refers to a datum
point, where blue and green refer to different classes. There are two learning
parameters from the model; w and b are weights and bias, respectively. The
margin between the two classes is 2/||w|| .

FIGURE 5 | The structure of long-short-term-memory (LSTM). The repeating
module in an LSTM contains four interacting layers. In this figure, an LSTM
model is expanded into 3-time steps (t–1, t, t+1). The middle box refers to the
model at the current time with an input xt. Since LSTM is a recurrent neural
network, it also obtains two outputs from the previous time step: the lower
arrow is the short-term memory output (ht−1) and the upper arrow is the
long-term memory.

and 6 patients in each fold, respectively. The data is separated
into threefold by patients in order to avoid information leaking
should data of the same patient be in both training and testing
datasets. Table 2 illustrates the data statistics collected from 20
PD patients showing the number of records for each fold along
with percentage of each stimulation class. However, each fold

may have a slight difference in class distribution since the data
is separated based on patients.

Evaluation measures, precision (P), recall (R or called
sensitivity), and F1 (the harmonic mean between precision and
recall) were calculated based on a confusion matrix that has True
Positive (tp), True Negative (tn), False Positive (fp), and False
Negative (fn) as the components. The calculation method of P, R,
and F1 is shown in the equation below. Since there are five classes,
the overall performance is an averaging of performance from
all classes called “Macro Averaging” (Macro-Precision, Macro-
Recall, and Macro-F1).

P=
tp

tp+fp
, R =

tp
tp+fn

, F1 = 2
RP

R+ P

To imitate this manual process of stimulation adjustment, it is
intended that stimulation levels are automatically calibrated by
the model based on the previous stimulation level predicted by
the model. The amount of pulse amplitude can be gradually
increased by 1 mA to reach the maximum level (0, 5, 10, 15,
20 mA for levels 0, 1, 2, 3, 4, respectively). For the stimulation
duration, EMS can be continued until RMSx and RMSy are
reduced by at least 2.5 times those recorded at the start, indicating
a significant tremor reduction.

RESULTS

Patients Demographic and
Characteristics
The demographic and baseline clinical characteristics are
summarized in Table 3. All 20 PD patients were of the tremor
predominant subtype, which was confirmed by kinematic studies
for a classic type 1 Parkinsonian tremor according to the
consensus statement (Deuschl et al., 1998). From Table 4, the
reduction of the UPDRS score during stimulation, the reduction
of the UPDRS tremor score during stimulation and the UPDRS
tremor score for the most affected hand was greater than before
stimulation (p < 0.001, each) and a consistent reduction of RMS
in the x-, y-, and z-axis was achieved (p < 0.001, p = 0.001,
and p < 0.001, respectively). However, there was no statistical
difference in tremor frequency between the before-stimulation
and the during-stimulation measurements in all axes. Mean
maximum pulse amplitude was 9.45 (SD ± 4.29) mA (min–max:
3–17, average pulse amplitude was 6.25 (SD ± 2.84) and mean
stimulation period was 440.7 (SD ± 560.82) seconds (min–max:
42–2382). During EMS, the duration of tremor reduction during
stimulation lasted for 200.35 (SD ± 170.21) seconds (min–max:
42–596) and the duration of continuing tremor reduction after
the withdrawal of EMS until the tremor re-emerged to the pre-
stimulation level was 129.55 (SD ± 226.7) seconds (min–max:
0–1032). The tremor reset time was 329.90 (SD± 340.91) seconds
(min–max: 73–1628). None of the subjects reported any serious
adverse events, including numbness, burning sensation, or
fatigue occurring at the stimulation sites during the examination
or at the 1-month follow-up visit.
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FIGURE 6 | An illustration of threefold cross validation in order to avoid overfitting results. Gray box refers to testing data, where the remaining white boxes are
training data.

TABLE 2 | Data statistics of data collected from 20 PD patients.

Class 0 Class 1 Class 2 Class 3 Class 4 Total

Fold1 #records 3,191 1,280 573 406 87 5,537

7 PD’s %records 57.16 25.60 9.39 6.45 1.38 100

Fold2 #records 1,798 1,879 1,076 228 0 4,981

7 PD’s %records 34.68 43.33 18.54 3.44 0 100

Fold3 #records 3,303 775 2,558 796 9 7441

6 PD’s %records 43.34 20.65 21.37 14.21 0.41 100

Total #records 2,511 1,169 882 453 34 5,049

%records 49.73% 23.15% 17.47% 8.97% 0.67% 100%

Each row refers to an interval of 1 s. Only two patients with data in Class 4; thus, there are only twofolds with Class 4’s data.

Results of Correlation Analysis
Correlation analysis was performed to evaluate the relationship
between stimulation parameters and tremor reduction outcomes
according to Table 5. Significant correlations between tremor
reset time and the following stimulation parameters were
identified: max pulse amplitude (r = 0.567, p = 0.008), average
pulse amplitude (r = 0.495, p = 0.035), stimulation time
(r = 0.586, p = 0.007), and duration of tremor reduction during
stimulation (r = 0.773, p < 0.001). In addition, significant
correlations between tremor reset time and the following tremor
reduction outcomes were identified: delta UPDRS tremor limb
(r = 0.505, p = 0.023), delta RMSx (r = 0.456, p = 0.043), and
delta RMSy (r = 0.459, p = 0.042). Delta is the difference of
outcome between before and during stimulation. Furthermore,
significant correlations between average pulse amplitude and
the following stimulation parameters were identified: max pulse
amplitude (r = 0.787, p < 0.001), duration of continuing tremor
reduction after the withdrawal of EMS until the tremor re-
emerged to the pre-stimulation level (r = 0.474, p = 0.035),
and tremor reset time (r = 0.495, p = 0.027). In addition,
significant correlations between average pulse amplitude and
the following tremor reduction outcomes were identified:
delta RMSx (r = 0.686, p = 0.001), delta RMSy (r = 0.789,
p < 0.001), and delta RMSz (r = 0.746, p < 0.001). Finally,
significant correlations between stimulation and the following
stimulation parameters were identified: max pulse amplitude
(r = 0.552, p = 0.012), duration of tremor reduction during
stimulation (r = 0.866, p < 0.001), and tremor reset time
(r = 0.586, p = 0.007).

Results of the Multiple Linear Regression
Analysis
An additional multiple linear regression analysis with a stepwise
method was carried out to predict factors that would yield the
longest period of tremor reset time. After including multiple
parameters to the stepwise model, including; average pulse
amplitude, max pulse amplitude, stimulation time, LED, Hoehn
and Yahr stage, Age, disease duration, TMSE score, UPDRS III—
off period, UPDRS III tremor—off period, UPDRS III tremor
limb– off period, UPDRS III—on period, UPDRS III tremor—
on period, and UPDRS III tremor limb– on period. We found
the average pulse amplitude and the stimulation time were
predictive factors for the tremor reset time in a mathematic
model: D = −98.336+ 48.559 (E) + 0.282 (A); where “D”
represents tremor reset time (seconds), “E” represents the average
pulse amplitude (mA), and “A” represents stimulation time
(seconds). In this model, the multiple correlation coefficient was
0.712, while the coefficient of the determinant was 50.7%. Based
on the conclusions provided by the model, a higher average
pulse amplitude and a greater stimulation time results in a longer
tremor reset time.

Results of Automatic Pulse Amplitude
Prediction Models
We aimed to find the most effective algorithm to identify which
tremor patterns should be stimulated and which pulse amplitude
should be provided to obtain the longest tremor reset time.
Five machine learning techniques: Logistic Regression (LR),
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TABLE 3 | A demographic study of all patients participated in this study.

Items Description (N = 20) Min–Max

Age (year ± SD) 63.40 ± 9.91 51–85

Hoehn and Yahr (Score ± SD) 2.53 ± 0.85 1–4

LED (mg/day ± SD) 761.20 ± 329.69 300–1759

Disease duration (year ± SD) 8.45 ± 3.26 4–18

TMSE (Score ± SD) 26.55 ± 2.80 21–30

Tremor outcome: before stimulation

• Off UPDRS—III 30.90 ± 12.08 14–56

• Off UPDRS—III tremor 9.15 ± 3.63 2–16

• Off UPDRS—III tremor limb 3.65 ± 0.58 2–4

• On UPDRS—III 17.95 ± 7.52 6–33

• On UPDRS—III tremor 5.50 ± 2.31 1–9

• On UPDRS—III tremor limb 2.20 ± 0.52 1–3

• RMS angular velocity X axis 13.19 ± 19.46 0.36–66.46

• RMS angular velocity Y axis 16.04 ± 30.45 0.17–127.65

• RMS angular velocity Z axis 8.25 ± 12.80 0.09–46.59

• Frequency X axis 5.82 ± 1.76 2.32–10.43

• Frequency Y axis 5.29 ± 1.82 2.33–8.91

• Frequency Z axis 5.59 ± 1.60 2.71–8.24

Tremor outcome: during stimulation

• On UPDRS—III during stimulation 16.65 ± 7.53 5–32

• On UPDRS—III tremor during stimulation 4.20 ± 2.35 0–8

• On UPDRS—III tremor limb during stimulation 0.85 ± 0.49 0–2

• RMS angular velocity X axis 5.10 ± 11.11 0.18–50.70

• RMS angular velocity Y axis 6.29 ± 15.31 0.14–68.77

• RMS angular velocity Z axis 3.55 ± 9.39 0.11–43.04

• Frequency X axis 6.47 ± 1.35 3.10–8.96

• Frequency Y axis 5.68 ± 1.22 3.10–7.57

• Frequency Z axis 5.88 ± 1.87 2.32–11.22

Stimulation parameters

• Maximum pulse amplitude (mA ± SD) 9.45 ± 4.29 3–17

• Average pulse amplitude (mA ± SD) 6.25 ± 2.84 2.06–12.95

• Stimulation period (second ± SD) 440.70 ± 560.82 42–2382

• The duration of tremor reduction during stimulation (second ± SD) 200.35 ± 170.21 42–596

• The duration of continuing tremor reduction after the withdrawal of EMS until
the tremor re-emerged to the pre-stimulation level (second ± SD)

129.55 ± 226.71 0–1032

• Tremor reset time (second ± SD) 329.90 ± 340.91 73–1628

UPDRS, Unified Parkinson’s Disease Rating Scale; LED, Levodopa Equivalent Dosage; BMI, Body Mass Index; TMSE, Thai Mental Status Examination; EMS, Electrical
muscle stimulation.

TABLE 4 | Comparison of tremor parameters between the before-stimulation and during-stimulation measurements.

Items Before stimulation (Value ± SD) During stimulation (Value ± SD) p-value

On UPDRS III 17.95 ± 7.52 16.65 ± 7.53 < 0.001

On UPDRS III tremor section 5.50 ± 2.31 4.20 ± 2.35 < 0.001

On UPDRS III tremor limb 2.20 ± 0.52 0.85 ± 0.49 < 0.001

RMS angular velocity X axis 13.19 ± 19.46 5.10 ± 11.11 < 0.001

RMS angular velocity Y axis 16.04 ± 30.45 6.29 ± 15.31 0.001

RMS angular velocity Z axis 8.25 ± 12.80 3.55 ± 9.39 < 0.001

Frequency X axis 5.82 ± 1.76 6.47 ± 1.35 0.135

Frequency Y axis 5.29 ± 1.82 5.68 ± 1.22 0.354

Frequency Z axis 5.59 ± 1.60 5.88 ± 1.87 0.872

UPDRS, Unified Parkinson’s Disease Rating Scale; RMS, Root Mean Square. All statistical analysis was performed by Wilcoxon Signed Rank test.

Frontiers in Aging Neuroscience | www.frontiersin.org 9 September 2021 | Volume 13 | Article 727654

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-727654 September 7, 2021 Time: 16:16 # 10

Phokaewvarangkul et al. Electrical Muscle Stimulation in Parkinson’s Disease

TABLE 5 | Correlation of stimulation parameters and tremor reduction outcomes.

Parameters Stimulation parameters Tremor reduction outcome

Parameters r Outcome r

Tremor reset
time

Max pulse amplitude 0.567* (p = 0.008) Delta UPDRS
tremor limb

0.505* (p = 0.023)

Average pulse amplitude 0.495* (p = 0.035) Delta RMS X 0.456* (p = 0.043)

Stimulation time 0.586* (p = 0.007) Delta RMS Y 0.459* (p = 0.042)

The duration of tremor reduction during
stimulation

0.733* (p < 0.001)

Average pulse
amplitude

Max pulse amplitude 0.787* (p < 0.001) Delta RMSX 0.686* (p = 0.001)

The duration of continuing tremor reduction
after the withdrawal of EMS until the tremor
re-emerged to the pre-stimulation level

0.474* (p = 0.035) Delta RMSy 0.789* (p < 0.001)

Tremor reset time 0.495* (p = 0.027) Delta RMSz 0.746* (p < 0.001)

Stimulation
time

Max pulse amplitude 0.552* (p = 0.012)

The duration of tremor reduction during
stimulation

0.866* (p < 0.001)

Tremor reset time 0.586* (p = 0.007)

All correlation analysis was performed by Spearman Rho’s correlation; Statistically significant was determined with *p < 0.05; delta: the difference of outcome between
before and during stimulation; RMSx, RMS Gyroscope axis X; RMSy, RMS Gyroscope axis Y; RMSz, RMS Gyroscope axis Z.

TABLE 6 | Choices of parameters used in the grid search for RF, SVM, and NN on both feature sets.

Parameters Range of parameters The best parameters

Feature Set: Only gyroscope
signals

Feature Set: Gyroscope signals
with previous stimulation

RF (RandomForestClassifier)

The number of trees (n_estimators) [50, 100, 200, 300, 400, 500] 200 100

The bootstrap option (bootstrap) [True, False] True True

The criterion (criterion) [“gini,” “entropy”] “gini” “gini”

The minimum number of samples
(min_samples_leaf)

[2, 5, 10, 20, 30] 5 2

SVM (SVC)

C (C) [0.5, 1, 2] 2 1

Kernel (kernel) [“linear,” “poly,” “rbf,” “sigmoid”] “rbf” “rbf”

NN (MLPClassifier)

The size of hidden layers
(hidden_layer_sizes)

[(50), (100), (200), (50, 50),
(100, 100), (200, 200)]

(100, 100) (100, 100)

The activation function (activation) [“tanh,” “relu”] “relu” “relu”

The optimizer (solver) [“lbfgs,” “sgd,” “adam”] “adam” “adam”

TABLE 7 | Performance in terms of “macro-F1” comparison between Logistic Regression, Random Forest, NN, and SVM with two feature sets.

Model Only gyroscope (Value ± SD) Gyroscope with previous stimulus (Value ± SD) Improvement (%)

Logistic regression 0.211 ± 0.121 0.317 ± 0.144 50.47%

Random forest 0.261 ± 0.110 0.734 ± 0.274 180.85%

SVM 0.261 ± 0.128 0.436 ± 0.183 67.25%

NN 0.296 ± 0.096 0.683 ± 0.264 130.56%

LSTM 0.295 ± 0.090 0.736 ± 0.282 149.51%

The last column shows a percentage of improvement by adding the previous stimulation level (It−1). Boldface refers to the most effective in each category in the first two
column. SVM, support vector machine; NN, Neural Network; LSTM, long-short-term-memory.

Random Forest (RF), SVM, NN, and LSTM, were evaluated
based on threefold cross validation. There were two feature
sets in the experiment: (1) only gyroscope signals (3 inputs:

RMSx, RMSy, RMSz) and (2) gyroscope signals with the previous
stimulation level (4 inputs: RMSx, RMSy, RMSz, It−1); thus, the
same procedures were employed similarly on both feature sets.
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TABLE 8 | Performance in terms of “accuracy” comparison between Logistic Regression, Random Forest, NN, and SVM with two feature sets.

Model Only gyroscope (Value ± SD) Gyroscope with previous stimulus (Value ± SD) Improvement (%)

Logistic regression 0.292 ± 0.285 0.472 ± 0.363 61.62%

Random forest 0.431 ± 0.292 0.846 ± 0.292 68.18%

SVM 0.404 ± 0.297 0.680 ± 0.295 96.39%

NN 0.513 ± 0.252 0.840 ± 0.254 63.84%

LSTM 0.497 ± 0.212 0.865 ± 0.259 73.87%

The last column shows a percentage of improvement by adding the previous stimulation level (It−1). Boldface refers to the most effective in each category on the first two
columns. SVM, support vector machine; NN, Neural Network; LSTM, long-short-term-memory.

TABLE 9 | Accuracy per class of the most suitable model in this study (LSTM).

Class 0 1 2 3 4

Accuracy 99.76% 87.43% 73.92% 74.17% 0.0%

The most suitable model with the highest accuracy is the combination of LSTM
analysis using gyroscope data and the previous stimulation level.

To obtain the best parameters, the grid search was employed
on the traditional machine learning algorithms (RF, SVM, and
NN) on both feature sets, except for LR. For LR, we did not
perform the grid search with this model since there are only
four maximum inputs (RMSx, RMSy, RMSz, It−1), so we decided
to use all of them to avoid underfitting the model. Table 6
shows parameters’ choices employed by the grid search for
RF, SVM, and NN on both feature sets. For LSTM, we have
compared different network’s settings manually and chosen the
best one, e.g., the number of hidden units, the number of
layers, etc. The chosen model of LSTM on both feature sets
composed of two layers with 100 hidden units followed by a
dense layer with softmax activation. The optimizer was “adam”
with the learning rate of 0.001 and the categorical cross-entropy
loss. In addition, a feature normalization (StandardScaler in the
scikit-learn library) was performed as a data preprocessing for
SVM, NN, and LSTM.

Tables 7, 8 show the results in terms of F1 and accuracy,
respectively. The results demonstrated that LSTM was the most
effective model with F1 = 0.736 and accuracy = 0.865. The success
of LSTM is probably found in its time dependency mechanism,
so is designed to capture the variation of patient’s movement
patterns over time. Also, the use of previous stimulation
levels (It−1) played an important role in improving model
performance, almost doubling performance on all models and
in the most suitable model, LSTM, it improved the performance
149.51% on F1 and 73.87% on accuracy. Table 9 shows an
accuracy per class for the most suitable model. It achieved more
than 80% accuracy on most classes, however, it could not capture
the data in Class 4 due to a scarcity issue for this class, giving only
0.67% as shown in Table 2.

DISCUSSION

In this study, we evaluated the efficacy of EMS in the
suppression of classic parkinsonian tremor in 20 PD patients
using a Parkinson’s glove. The results of tremor reduction were

significant and consistent with prior findings (Gallego et al.,
2013; Dosen et al., 2015). However, no previous studies have
reported quantitative measurements of tremor attenuation after
stimulation to allow further comparisons (Jitkritsadakul et al.,
2015, 2017). Here, we quantified the duration of the tremor from
initiation of EMS to the point after EMS withdrawal when tremor
returned to pre-stimulation levels. We found that the mean
maximum pulse amplitude applied was 9.45 (SD± 4.29) mA and
the mean stimulation period was 440.7 (SD ± 560.82) seconds
and the mean total tremor reset time was 329.90 (SD ± 340.91)
seconds. The multiple linear regression model showed that a
longest tremor reset time could be obtained by increasing pulse
amplitude and increasing the stimulation time. These findings
further improve our knowledge on the peripheral mechanism of
tremor and the effect of stimulation in the suppression of resting
tremor. EMS may act as strong stimuli that can transiently modify
tremors, even if the tremor originally occurred from a central
origin (Rack and Ross, 1986; Britton et al., 1993; Hallett, 1998;
Deuschl et al., 2001).

The Tremor Reset Mechanism
Tremor in PD is generated by the interaction between central
and peripheral mechanism (Supplementary Figure 2; Hallett,
1998; Deuschl et al., 2000, 2001; McAuley and Marsden, 2000).
Early findings on resting tremors in PD suggest they can
be reset by an alteration in mechanical conditions at the
periphery, including externally imposed movement at a joint
or electrical stimulation of nerves and muscles (Mones and
Weiss, 1969; Bathien et al., 1980; Lee and Stein, 1981; Britton
et al., 1992, 1993). The potential resetting of parkinsonian
tremors by modulation of peripheral reflex mechanisms using
a short-duration, supramaximal peripheral nerve stimulation
was first explored by Mones and Weiss (1969). A spontaneous
tremor in the extensor digitorum muscle changed dramatically
after the ipsilateral stimulation of median or ulnar nerves
with a single 0.5 ms duration, square wave, and supramaximal
stimulation and the interval of the post-stimulation tremor bursts
decreased when compared with control values. In addition,
there was a change in the predicted tremor pattern of the
post-stimulation tremor bursts, which were out of phase with
the pre-stimulation tremor bursts (Mones and Weiss, 1969).
The shortened interval increased gradually on subsequent
spontaneous tremor bursts and returned to the control interval
value in 750–1,000 ms after nerve stimulation (Mones and
Weiss, 1969). Therefore, the pattern of parkinsonian tremor
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appeared to be “reset” by the peripheral nerve stimulation. After
recording the spontaneous tremor of the extensor indicis muscle
after a single 1 ms duration square wave and supramaximal
stimulation of the radial nerve, the interval of the next post-
stimulation tremor burst was slightly delayed, especially if
the stimulation occurred late in the tremor cycle (Bathien
et al., 1980). This findings needed to be investigated further
to see if there is potential for longer periods of supramaximal
stimulation to produce a greater interval for subsequent post-
stimulation tremors. Our previous study proposed that resting
tremor appeared to be reset after increasing the duration of
stimulation (Jitkritsadakul et al., 2015, 2017). After applying
EMS using a 10–30-s duration square-wave stimulation, some
patients had continuing tremor reduction where a longer
duration of stimulation produced a greater duration of reset time
(Jitkritsadakul et al., 2015, 2017). The temporary suppression
of parkinsonian tremors from EMS may occur via the stretch
reflex in muscle fibers (Jitkritsadakul et al., 2015) or by the
inhibitory effect of the muscle contraction with Ib fiber rather
than Ia fiber (Bathien et al., 1980). Alternatively, EMS may
be able to modulate Renshaw cells (Pratt and Jordan, 1987;
Alvarez et al., 2013), which create a negative feedback mechanism
in the spinal cord and possibly led to tremor suppression
(Jitkritsadakul et al., 2015).

The Parkinson’s glove is an innovative device with the
potential to become an alternative treatment option for patients
with medically refractory tremor. This current study is the
first that we are aware of that has described the effect of
EMS on tremor reduction, and propose a model for calculating
tremor reset times. We also identified a machine learning
model to predict the pulse amplitude required to achieve the
greatest tremor reset time. Using the machine learning model
will allow physicians employing this device to identify the
most suitable tremor paradigm to suppress and the optimal
stimulation protocols to use. However, our study contains certain
limitations. Firstly, as this open-label, quasi-experimental study
was conducted in a small single group of patients collected from
a single PD center in Thailand, it may retain selection and
sampling bias that comes with a single group study. However, our
study is the ability to recruit the homogeneous PD population
with the homogeneous data by selecting a group of PD patients
with Class I parkinsonian tremor as confirmed by quantitative
tremor analysis, therefore, the characteristic of PD tremor in
this study was homogeneous and well represented. Secondly,
due to the IRB granted us to permission this treatment as an
adjunctive treatment during “on” period when patients were
optimized on oral medications, therefore, during stimulation
section was conducted during “on” period only. Therefore,
this study gave the potential benefit of EMS as an adjunctive
treatment for the specific class I parkinsonian tremor. However,
for future direction, EMS should be further explored as a possible
therapeutic intervention for the different state of tremors in
PD (such as “off” period) or the potential usage in other
tremor syndromes. Thirdly, the data set that was used to train
the model to identify significant tremor reduction was judged
by the criteria of significant tremor reduction only. As the
impact of EMS on tremor reduction was a transient effect and

could not be explained by pre-existing severity of disease or
tremor, there are no results to confirm the benefit of EMS in
a long-term study. Fourthly, as a longer duration of electrical
stimulation is more painful than a shorter duration (Walsh
et al., 1998; Tamura et al., 2013), we kept the maximum pulse
stimulation below the patients’ pain thresholds, delivered as
short periods of stimulation to avoid potential side effects of
EMS, and, therefore, it is not clear if longer durations of
stimulation would support tremor reduction in a long term.
Though, the issue of tolerance was not investigated in this
study, it has been documented in PD patients with thalamic
stimulation (Hariz et al., 1999). Finally, using collected data from
the physician’s process, we demonstrated that the model could
predict a suitable stimulation level based on the current tremor
states and the previous stimulation level. However, as the testing
phase was conducted using the previous stimulation levels from
the collected data, not from the model prediction, the model
will require further development before it can be deployed in a
real-life patient scenario.

Going forward, it is our aim to use this model to automatically
stimulate PD patients to achieve optimal tremor suppression. In
the manual process, a physician provides a suitable stimulation
level based on the previous pulse amplitude level until a patient
shows a significant tremor reduction. To imitate this process, the
model is being developed so that the stimulation level will be
automatically based on the previous stimulation level predicted
by the model. Then, in future work, we can evaluate whether or
not the model can achieve tremor reset times similar to that of
manual stimulation.

CONCLUSION

Our study provides evidence of the efficacy of EMS in transient
tremor reduction among PD patients with medically intractable
rest tremor, providing calculations for a model to predict the
tremor reset time and evaluation of the best machine-learning
model for automatic prediction of the suitable pulse amplitude
for stimulation. Greater pulse amplitude and stimulation periods
may result in longer tremor reset times. From the machine
learning model evaluation, LSTM was identified as the most
effective model for the prediction of stimulation levels, and, in
future, could be used to automatically adjust stimulation levels,
replicating the manual process periods of tremor reset time.
Our study also provides more insight into the role of peripheral
mechanisms in the origin of parkinsonian tremor. Targeting
peripheral mechanisms with strong stimuli may not be able to
stop, but could modulate tremor amplitude, even if it is mainly
driven from a central origin. The efficacy of EMS should be
explored in other tremor syndromes.
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