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The prevalence of overweight and obesity in children and adolescents is an

increasing public health problem. Pediatric overweight and obesity result from

multiple factors, including genetic background, diet, and lifestyle. In addition,

the gut microbiota and their metabolites play crucial roles in the progression of

overweight and obesity of children. Therefore, we reviewed the roles of gut

microbiota in overweight/obese children. The relationship between pediatric

overweight/obesity and gut metabolites, such as short-chain fatty acids,

medium-chain fatty acids, amino acids, amines, and bile acids, are also

summarized. Targeting gut microbiota and metabolites might be a promising

strategy for interventions aimed at reducing pediatric overweight/obesity.
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The epidemiological characteristics of pediatric
overweight/obesity

Currently, the epidemic of pediatric overweight/obesity is one of the most concerning

public health issues. In the past three decades, the prevalence of pediatric overweight/

obesity has dramatically increased (1). Overweight/obesity in childhood increases the risk

of diet-related noninfectious diseases, which are closely related to cardiovascular events

in adulthood (2). Pediatric overweight/obesity is also associated with metabolic diseases

(3) and depression (4).

In developed countries, the rates of pediatric overweight/obesity in boys and girls

were 23.8% and 22.6% while the rates were 12.9% and 13.4% in developing countries in

2013, respectively (5). In UK, 25.5% children aged 10-11 were obese while 15.4% were

overweight, but not obese and the rate of world-wide pediatric obesity is of concerning

(6). Epidemiological investigation indicates that the prevalence of overweight/obesity

among children and adolescents was 17.8% in the United States (7). It is also estimated

that the rate of pediatric overweight/obesity has increased in China from 5.3% in 1995 to

20.5% in 2014 (8), which is positively related to socioeconomic conditions (8, 9). In 2019,
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11.1% and 3.6% of Chinese children under six years of age were

overweight and obese, respectively, and 34.3% and 7.9% of

Chinese children aged 6-17 years were overweight and obese,

respectively (10), indicating that one-quarter of Chinese children

are overweight/obese (11). In addition, there are significant

regional and sex differences in the incidence of pediatric

overweight/obesity, with the rate in boys generally higher than

in girls. For eastern, southern, northern, central, and western

China, Children from southern and northern had the lowest and

highest prevalence of overweight and obesity, respectively (12).

Studies have demonstrated a strong correlation between

childhood and adult obesity. Compared to non-obese children,

obese children are five times more likely to be obese in adulthood

(13). Therefore, intervention and research on pediatric

overweight/obesity are of great importance.
The relationship between diets
and obesity

Excessive energy intake and conversion to lipid

accumulation in the body are the main causes of obesity.

Therefore, a sensible diet is a key to avoiding obesity. Dietary

factors, including high fat, high fructose, and other unhealthy

dietary patterns (14, 15), are important obesity-causing factors

in addition to genetic background, sleep, mental state, and

exercise habits (16). A study found that from childhood to

adolescence, the dietary quality decreases significantly in South

Carolina, especially the declines in fruit, vegetable and total dairy

intake followed by increasing protein intake (17). Another study

also found that weight gain is positively related to the intake of

potato chips, sugary beverages and red meats, and is inversely

related to the intake of vegetables, fruits, nuts, and yogurt (18).

In the past thirty years, the transition from a traditional low fat,

high carbohydrate diet to a high fat and low carbohydrate diet

has been associated with a dramatic increase in the risk of
Frontiers in Endocrinology 02
obesity, type 2 diabetes, cardiovascular diseases and colon cancer

in China (19). Furthermore, Obesity is also positively correlated

to fat intake, especially a diet rich in long-chain saturated fatty

acids, which promotes inflammation of multiple organs (20).

Children’s sugar intake, such as fructose, is of concern. Dietary

fructose promotes hepatic de novo lipogenesis (DNL) via acetate

from the gut microbiota (21–23). The World Health

Organization recommends that the average daily sugar intake

should not exceed 25 g (24, 25). Despite the decrease in the

consumption of sugary beverages in children, it is still a critical

source of energy intake (26) and is positively related to obesity

(27). Although the restriction of carbohydrate intake may benefit

short-term body weight control and improve the blood glucose

levels of overweight/obese patients, long-term carbohydrate

restriction may lead to a reduction in dietary fiber intake and

aggravate fatigue, making it difficult to maintain (28). Therefore,

further studies on the safety and effectiveness of carbohydrate

restriction in children and adolescents are warranted.
The relationship between
pediatric overweight/obesity
and gut microbiota

Gut microbiota is regarded as an essential factor regulating

the process of overweight/obesity as it participates in the energy

metabolism of the host and maintains homeostasis of the

internal environment. Firmicutes, Bacteroidetes, Proteobacteria,

and Actinobacteria are the most dominant bacterial phyla in the

human gut microbiota (29, 30). Moreover, low-abundance

Verrucomicrobia shows potential benefits on metabolism. With

the development of high-throughput sequencing, many studies

have shown that an imbalance in gut microbiota is closely related

to the progression of overweight/obesity in children (31)

(Table 1). Both simple and genetic obesity (such as Prader-
TABLE 1 Relationships between gut microbiota and pediatric overweight/obesity.

Phyla Species/families Pediatric overweight/obesity Reference

Firmicutes ↑ 32

Firmicutes Lactobacillus ↑ 33

Firmicutes Clostridium ↑ 34

Bacteroidetes ↓ 35, 36

Bacteroidetes Bacteroides fragilis ↑ 37

Verrucomicrobia ↓ 38, 39

Verrucomicrobia Akkermansia muciniphila ↓ 40

Proteobacteria ↑ 41, 42

Proteobacteria Enterobacteriaceae ↑ 43

Proteobacteria Escherichia coli ↑ 44

Actinobacteria ↓ 45, 46

Actinobacteria Bifidobacterium ↓ 47
fr
Symbol ↑ indicates that the gut microbiota of this phylum or species have a higher abundance in pediatric overweight/obesity and symbol ↓ indicates that the gut microbiota of this
phylum or species have a lower abundance in pediatric overweight/obesity.
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Willi Syndrome, PWS) can be relieved by adjusting the dietary

structure, partly targeting the gut microbiota (14). Improving the

imbalance of the gut microbiota may be an effective way to

intervene against overweight/obesity in children (48).
Firmicutes, bacteroidetes, and firmicutes:
Bacteroidetes ratio

Firmicutes and Bacteroidetes are the two most abundant phyla

in human gut microbiota. Firmicutes are gram-positive bacteria

with low GC content, including Clostridium, Lactobacillus, and

Coprococcus. Bacteroidetes mainly contain Bacteroides, Prevotella,

andDesulfuribacillus. It is generally believed that the abundance of

Firmicutes in overweight/obese adults increases, whereas the

abundance of Bacteroidetes decreases (48, 49), resulting in an

increase in Firmicutes: Bacteroidetes ratio. The same result was

observed in the gut microbiota of overweight/obese children (32).

Compared to normal-weight children, the abundance of

Firmicutes in overweight/obese children is positively correlated

with body mass index (BMI) (47, 50) whereas the abundance of

Bacteroidetes is negatively correlated with BMI (35, 36). Therefore,

Firmicutes: Bacteroidetes ratio is positively correlated with

overweight/obesity in children (31, 51).

Although Firmicutes: Bacteroidetes ratio is a common index

to measure the structure of the gut microbiota, heterogeneity still

exists between this ratio and overweight/obesity. Indiani et al.

found that the abundance of Bacteroidetes was increased in

overweight/obese children along with a decrease of Firmicutes

only in some cohorts (35). Another systematic review also

indicated that the Firmicutes: Bacteroidetes ratio was not

related to pediatric overweight/obesity (52), which might be

the result of potential heterogeneity in the roles of Firmicutes

and Bacteroidetes. Members of Firmicutes show a greater

variation in abundance than Bacteroidetes (31). Since the

structure of the gut microbiota in children is still under

development, the composition is unstable. Consequently,

changes in gut microbiota in overweight/obese children can

show an individualized trend (53). Compared to differences in

gut microbiota abundance at the phylum level, differences at the

genus level and specific metabolites may be more commonly and

directly associated with pediatric overweight/obesity (31).

Further research has shown that the abundance of

Firmicutes was closely related to inflammatory levels and

positively correlated to serum tumor necrosis factor a (TNF-

a) levels in obese children (50). The epigenetic effects of

Firmicutes are also concerning. During pregnancy, a high

Firmicutes abundance is associated with DNA methylation of

genes related to lipid metabolism, inflammatory response, and

obesity (54). Lactobacillus, a key genus of Firmicutes, is usually

considered a probiotic with a long history of application (55).

However, the link between Lactobacillus and pediatric

overweight/obesity remains paradoxical. The abundance of
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Lactobacillus is positively related to the risk of pediatric

overweight/obesity (33), and fecal Lactobacillus concentrations

in children are associated with serum C-reactive protein (51).

Lactobacillus colonization predicts a higher risk of overweight/

obesity in infants and children (56). Certain members of

Lactobacillus, such as Lactobacillus paracasei are protective

factors against obesity in children with an unhealthy diet (57,

58). Clostridium is positively associated with BMI in children

(34), and is more significant in young adults (59). Bacteroides

fragilis is significantly associated with a higher BMI z-score in

children, contributing to weight gain during childhood (37).
Verrucomicrobia and
Akkermansia muciniphila

The abundance of Verrucomicrobia is relatively low in the

human gut microbiota. However, recent research has shown that

the abundance of Verrucomicrobia was low in obese children

(38, 39, 60), and it has vital benefits. Hence, it is a potential

probiotic against metabolic inflammation and obesity (61). The

anaerobic bacterium Akkermansia muciniphila is the only

known member of Verrucomicrobia in human’s intestinal tract

(62). Overweight/obese children have lower Akkermansia

muciniphila abundance (40), which is also observed in obese

adults (63).

Akkermansia muciniphila is a pivotal species in the intestinal

mucous layer that produces acetate and propionate (62). The

decreased abundance of Akkermansia muciniphila may lead to

high intestinal permeability (60), and the protection of

interleukin-36 against obesity is partly realized by promoting

Akkermansia muciniphila levels (64). Akkermansia muciniphila

can prevent diet-induced obesity and demonstrate

hepatoprotective effects by downregulating the metabolism of

tyrosine, phenylalanine, tryptophan, and their intermediates, all

of which have adverse effects. In addition, Akkermansia

muciniphila weakens acetyl-CoA oxidation in the citric acid

cycle and promotes ketogenesis (63). Surprisingly, oral

vancomycin administration can lead to an increase in

Akkermansia muciniphila (65). Despite the relatively low

abundance of Verrucomicrobia and Akkermansia muciniphila,

multiple studies have indicated that their abundance is strongly

associated with pediatric and adult obesity.
Proteobacteria

Proteobacteria include purple photosynthetic bacteria and

their relatives. There is a high abundance of Proteobacteria in the

feces of obese children, and these bacteria have a significant

positive correlation with BMI levels (41, 42). Proteobacteria are

also relatively abundant among malnourished children and

contain many potentially pathogenic species that induce
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immature intestines or potentially high inflammatory burdens

(66). Of note, physical exercise significantly reduces the

abundance of Proteobacteria in obese children (67).

Proteobacteria mainly include Alphaproteobacteria,

Betaproteobacteria, Gammaproteobacteria, delta/epsilon

subdivisions, and Zetaproteobacteria , among which

Gammaproteobacteria participates in the metabolism of choline,

and it has a high abundance in overweight/obese children with

non-alcoholic fatty liver disease (NAFLD) (68, 69).

Enterobacteriaceae, a member of Gammaproteobacteria, is

commonly observed in overweight adolescents (43). The

abundance of Escherichia coli is also significantly higher in

obese children (44). Escherichia coli can produce alcohol as an

endotoxin that can impair hepatic metabolism (60). Endogenous

alcohol exaggerates the metabolic burden on the liver, which is of

great importance in obese children with non-alcoholic hepatitis

(NASH) (42). However, it has been shown that a decrease in

Escherichia coli is related to higher lipopolysaccharide (LPS)

levels (59).
Actinobacteria and Bifidobacterium

The abundance of Actinobacteria is negatively correlated

with children’s BMI (45, 46). Actinomycetales, an order of

Actinobacteria , is posit ively related to hemoglobin

concentration in anemic infants (70). Bifidobacterium is a

well-known probiotic of Actinobacteria, which can promote

the development and maturation of infant intestinal mucosa,

thereby lowering the incidence of diarrhea (71). Additionally,

Bifidobacterium inhibits the growth of adverse microbiota via

competitive colonization, demonstrating an antagonistic

relationship with Enterobacteria and Enterococci (72). The

abundance of Bifidobacterium is also high in the intestines of

vegetarians (45). Bifidobacterium carries genes encoding

bacterial bile salt hydrolase (BSH) (73), which increases the

excretion of bile acid and simultaneously inhibits the absorption

of cholesterol. Furthermore, Bifidobacterium also produces

short-chain fatty acids (SCFAs) (45).

The abundance of Bifidobacterium is negatively correlated

with BMI in children. Studies have shown that the abundance of

Bifidobacterium in overweight/obese children is significantly

lower than that in children of normal weight, and it is

hypothesized to participate in fat accumulation and obesity

(47). During weight loss, Bifidobacterium abundance rebounds

(58). Bifidobacterium infantis metabolizes human milk

oligosaccharides (HMO) and suppresses HMO uptake by

pathogenic microbes. Increased levels of SCFAs stimulate the

immune response and regulate the function of pancreatic b cells

(74). Introducing Bifidobacterium, as a dietary supplement, is

one strategy that reduces pediatric obesity (75). Treatment with

Bifidobacterium breve BR03 and B632 significantly improves

insulin sensitivity in obese children and adolescents (76).
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Supplementation with Bifidobacterium pseudocatenulatum

CECT 7765 can improve the inflammatory response in obese

children with insulin resistance (IR) (77). Interestingly, other

probiotics, such as Lactobacillus casei, can also upregulate the

abundance of Bifidobacterium in obese children, exhibiting a

synergistic effect (78).
The relationship between
pediatric overweight/obesity
and gut metabolites

The effects of the gut microbiota are mainly mediated by the

absorption and distribution of their metabolites (79). The gut

microbiota can produce dozens of metabolites that enter the

bloodstream to have a systemic effect on the host (80). There are

new evidences to support the association between obesity and

these metabolites, including SCFAs, medium-chain fatty acids

(MCFAs) (Figure 1), amino acids, amines, and bile acids

(Figure 2). The gut microbiota and metabolites in obese people

can significantly change compared to those in people with

normal weight. A decrease in the abundance of Bacteroides

thetaiotaomicron, which is capable of metabolizing glutamate,

results in a higher risk of obesity, and the gut microbiota in obese

adolescents has a stronger ability to oxidize carbohydrates (81).

Therefore, it is possible to intervene in overweight/obesity by

targeting the gut microbiota and its metabolites (82). Changes in

the gut microbiota have been shown to be related to pediatric

obesity and NAFLD. Biosynthesis of SCFAs, amino acids, and

LPS is inversely correlated with IR, whereas peptidoglycan

biosynthesis pathways are positively correlated with IR (83).
Short-chain fatty acids

SCFAs are endpoint products of indigestible complex

carbohydrates, such as dietary fiber and resistant starch,

fermented by intestinal flora (84). These mainly include

organic acids whose carbon chains have less than six carbon

atoms, such as acetate, propionate, butyrate, isobutyrate, valerate

and isovalerate. Among them, acetate, propionate, and butyrate

have the highest concentrations, with an approximate

proportion of 3:1:1. SCFAs can regulate the function of

adipose tissue and be used as substrates for gluconeogenesis

and DNL in the liver (85). Plasma acetate, propionate, and

butyrate levels are associated with BMI and visceral fat in

adolescents (81). Increased levels of SCFAs may prevent

gastrointestinal dysfunction, obesity, and type 2 diabetes (86).

Acetate can combine with G-protein-coupled receptor 41

(GPR41) and G-protein-coupled receptor 43 (GPR43) to

regulate metabolism (87). In addition, acetate can be converted

into acetyl-CoA, which enters the tricarboxylic acid cycle and
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participates in energy metabolism. Acetate may also affect

metabolism by regulating AMP-activated protein kinase

(AMPK) phosphorylation, and increase fatty acid synthesis

through epigenetic mechanisms. Serum acetate levels are

negatively correlated with fasting insulin levels (88). The

concentration of acetate in the feces of obese children is low

and is normalized after dietary intervention (14) or treatment

with Lactobacillus casei, an acetate-producing bacterium (78). In

contrast, the concentration of propionate in feces is positively

correlated with the waistline of female adolescents, indicating an

adverse metabolic effect (89). In obese adolescents, the rate of

acetate in peripheral circulation is lower than that in lean

indiv idual s (90) . However, after intervention with

Bifidobacterium breve BR03 and B632, the concentration of fecal

acetate in obese children was lower than that in a placebo group.

Since Bifidobacterium breve is an acetate-producing strain, the

possibility of acetate being absorbed and utilized by other acetate-

dependent species needs to be considered (76).

Propionate is a metabolite partly from Clostridium, which is

positively related to pediatric overweight/obesity (91). The

concentration of propionate in feces is positively related to

fasting blood glucose and glycosylated hemoglobin levels (92),

and also related to an increased risk of type 2 diabetes (93).
Frontiers in Endocrinology 05
Compared to breastfed children, children who underwent no

exposure to human milk have higher concentrations of

propionate in feces (94). The serum propionate level is

positively associated with BMI in obese children (81), and the

fecal propionate concentration is also significantly increased in

overweight/obese children (95, 96), which is consistent with that

in overweight/obese adult (97). Moreover, concentrations of

lactate, as an substrate of propionate metabolism, (98) are

decreased in obese children, indicating that propionate

metabolism was activated by gut microbiota (99).

Butyrate is an effective regulator of energy metabolism and

immune functions (100). Faecalibacterium prausnitzii and

Roseburia hominis are important butyrate-producing strains

(101). The butyrate-producing ability of Faecalibacterium

prausnitzii is essential for gastrointestinal and metabolic health

(98). A decrease in butyrate-producing strains in obese children

has been observed (83), and fecal butyrate concentration is

negatively related to gut microbiota diversity, which also affects

intestinal permeability (102). In addition to GPR41/43, butyrate

can regulate metabolism through b-oxidation (103) and inhibit

class I/II histone deacetylases (HDACs) (104). Butyrate can also

promote the secretion of glucagon-like peptide-1 (GLP-1), thereby

enhancing insulin sensitivity (105).
FIGURE 1

The relationship and molecular signaling between gut microbiota and their metabolites with obesity.
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The concentration of SCFAs in obese children is low (106),

however, some studies have shown high levels of acetate,

propionate, butyrate, and isovalerate in obese children (31, 38,

99), which are positively correlated with BMI z-scores (31).

Despite the potential benefits of SCFAs, the overall function of

SCFAs in pediatric overweight/obesity remains unclear. SCFAs

can be double-edged swords: on the one hand, excess SCFAs are

an extra energy source, participating in the process of pediatric

overweight/obesity; while, on the other hand, SCFAs promote

insulin excretion via the GPR41/43 pathway (107).
Medium-chain fatty acids

The relationship between pediatric overweight/obesity and

MCFAs were verified by epidemiological evidences. MCFAs

seem to be a protective factor for pediatric overweight/obesity.

A study has shown that the concentration of caproic acid (C6:0)

in serum, which is also known as hexanoic acid, was significantly

decreased in obese children (108). Caproic acid is also

significantly decreased in patients suffering from Clostridium

difficile infection, which is positively related to pediatric

overweight/obesity (109). The capric acid (C10:0) level in

obese children is significantly lower than that in normal-

weight children (110). Compared to neonates with low
Frontiers in Endocrinology 06
adiposity, the dodecanoic acid (C12:0) level in neonates with

high adiposity is significantly lower (100).

It is difficult for MCFAs from food to reach the cecum

completely due to the presence of gut microbiota. Recently, an

animal experiment conducted by Gregor et al. (111) observed

MCFAs production by gut microbiota. MCFAs not only

metabolize quickly to produce energy in the colon but can also

enter the liver or adipose tissue. Gut microbiota, including

Erysipe lotrichaceae , Peptococcaceae , Anaerotruncus ,

Butyr ic i coccus , Lachnospiraceae , Peptococcus , and

Ruminococcaceae are positively correlated with the

concentrations of MCFAs in the cecum. In addition, studies

have shown that Caproiciproducens, Pseudoramibacter,

norank_f_Eubacteriaceae, and Oscillibacter catabolize lactate into

MCFAs (112).

Zhao et al. found that caprylic acid (C8:0) downregulated the

serum levels of interleukin-1b (IL-1b) and interferon g (IFNg) and
increased the abundance of Lachnoclostridium, Roseburia, and

Prevotella_9, activating GPR43 and improving intestinal

permeability (113). Capric acid (C10:0) can upregulate GPR84

and peroxisome proliferator-activated receptor g (PPARg) (114).
Dodecanoic acid (C12:0), also known as lauric acid, can improve

insulin sensitivity (100). Although the difference between SCFAs

and MCFAs is only a few carbon atoms, they demonstrate

different immune regulatory mechanisms. SCFAs downregulate
FIGURE 2

Relationship between gut metabolites (amino acids, amines, and bile acids) and pediatric overweight/obesity.
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levels of IL-1b, IL-6, and TNFa via toll-like receptor 4 (TLR4),

whereas MCFAs may enhance the inflammatory response

through TLR2 (114).

Apart from immune regulation, MCFAs also inhibit various

intestinal pathogenic microorganisms. Both capric acid and

dodecanoic acid inhibit the growth of Listeria monocytogenes,

Clostridium perfringens, Escherichia coli, Salmonella enteritis,

and Campylobacter jejuni (115). Dodecanoic acid can also

inhibit the growth of Staphylococcus aureus (116).

MCFAs have potential therapeutic effects on genetic obesity

during the childhood. Dietary supplementation with MCFAs

can alleviate adipose accumulation in mice (117). More

importantly, patients with PWS diagnosed in early infancy

responded with the improvement of motor development and

nutritional conditions after dietary supplementation with

MCFAs (118).
Amino acids and amines

In addition to SCFAs and MCFAs, metabolites of the gut

microbiota include nitrogenous compounds produced from

amino acids. There are two main pathways of amino acid

metabolism: deamination to carboxylic acid and ammonia,

and decarboxylation to CO2 and amine. The most abundant

end products of catabolism are SCFAs (119). Other metabolites,

such as amino acids and amines, also affect host health.

Methionine and cysteine are sulfur-containing amino acids

that are catabolized into H2S and methyl mercaptan by Bacillus

and Bifidobacterium (119). Cysteine exhibits anti-diabetic

properties. Parasutterella sp. is one of the main consumers of

cysteine. The abundance of Parasutterella sp. is negatively

related to the serum concentration of cysteine, and is

significantly downregulated in weight-loss-obesity patients

(120). Methionine biosynthesis mediated by gut microbiota is

associated with atherosclerosis in obese children (121). The

ability to utilize sulfur-containing compounds is essential for

gut microbiota. Sulfatases and radical S-adenosyl-L-methionine

synthetase play vital roles in the colonization of microorganisms

in the intestinal tract (122).

The ability of intestinal flora to metabolize aromatic amino

acids (AAAs) and branched-chain amino acids (BCAAs) is

significantly increased in obese individuals (123). AAAs,

BCAAs, and their downstream metabolites produced by the

gut microbiota can interfere with glucose homeostasis and

contribute to IR (124).

The AAAs mainly include tryptophan, phenylalanine, and

tyrosine. They are essential to the intestinal tract and greatly

contribute to gut dysfunction. The abundance of tryptophan

derivative metabolites in plasma is significantly altered in obese

children (125). Indole is produced by gut microbiota-mediated

fermentation of tryptophan, which is an obesity-promoting

metabolite that targets the brain-gut axis (126). Harmful
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tryptophan metabolites, such as indole derivatives, are

produced partly by the tryptophanase of Bacteroides spp. and

Alistipes spp. (14). The serum concentrations of indole-3-lactate

and indole-3-acetate in obese children are increased (127).

Furthermore, obese children have higher levels of serum

phenylalanine, which is positive associations with the risk of

type 2 diabetes (128), whereas, Bacteroides plebeius is negatively

related to serum phenylalanine concentration in children (129).

Both tryptophan metabolism and phenylalanine metabolism

regulated by gut microbiota are significantly downregulated

after dietary intervention in both simple and genetic obese

children (14). The serum concentration of tyrosine is

significantly decreased in obese children with substantial

weight reduction (130). Furthermore, the potential probiotic

Akkermansia muciniphila can decrease serum levels of diverse

intermediates in tryptophan, phenylalanine, and tyrosine

metabolism in obese individuals (63).

BCAAs include leucine, isoleucine, and valine. The

proportion of isoleucine in total protein intake is positively

correlated with BMI (21), so dietary restriction of BCAAs may

help prevent childhood obesity and IR (131). Plasma BCAAs

levels are significantly higher in obese children and adolescents,

and are consistent in children from multiple ethnic backgrounds

(132–136), which can predict the risk of IR and metabolic

syndrome independently (133, 134). Metabolic analysis based

on BCAAs can predict hepatic steatosis grading in high-risk

children and adolescents (137). Valine metabolites are associated

with increased intestinal permeability and bacterial overgrowth

in the small intestine in children (138). The transporter gene of

BCAAs is negatively correlated with serum levels of BCAAs in

adolescents, suggesting that the gut microbiota may reduce the

level of BCAAs in the peripheral circulation. In contrast,

Faecalibacterium prausnitzii regulates IR through BCAAs

metabolism (139).

Trimethylamine N-oxide (TMAO) is a hazardous metabolite

that originates from trimethylamine, which is produced in the

liver. The urine concentration of TMAO is significantly higher in

children with simple and genetic obesity (14). 5-amino valeric

acid betaine (5-AVAB), also known as d-Valerobetaine, is a

precursor of TMAO produced by Escherichia coli, Salmonella

typhimurium, and Bifidobacterium longum (140). 5-AVAB

affects the carnitine shuttle system of mitochondria, lowering

the ability of hepatocytes to oxidize fatty acids, and resulting in

lipid accumulation. Obese individuals have higher plasma 5-

AVAB concentrations, which are also positively related to

hepatic steatosis in children with NAFLD (141).
Bile acids

Cholesterol is oxidized to primary bile acid in hepatocytes

through classical and alternative pathways to produce cholic acid

(CA) and chenodeoxycholic acid (CDCA), respectively. CA and
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CDCA combine with glycine and taurine to generate glycocholic

acid (GCA), taurocholic acid (TCA), glycochenodeoxycholic

acid (GCDCA), and taurochenodeoxycholic acid (TCDCA),

respectively. Primary bile acids enter the intestinal tract via the

biliary system. Glycine and taurine are dissociated under the

catalysis of gut microbiota BSH, and a series of secondary bile

acids are formed, such as lithocholic acid (LCA), hyocholic acid

(HCA), hyodeoxycholic acid (HDCA), deoxycholic acid (DCA),

and ursodeoxycholic acid (UDCA). Bile acids are released into

the small intestine to promote the intake of lipids and fat-soluble

vitamins. The imbalance in the composition and spectrum of

bile acids is related to obesity. Therefore, the regulation of bile

acids may be a potential strategy to intervene against

obesity (142).

Most of the secondary bile acids produced by intestinal

microflora can enter the liver through the portal vein, and

only a few of them are excreted through feces. Therefore,

secondary bile acids can regulate hepatic steatosis and

NAFLD, which is highly associated with obesity. A sex-specific

study in mice exposed to high fructose showed that both primary

and secondary bile acids decreased in female mice, but there was

no similar trend in male mice (143). In overweight children with

NAFLD, serum total bile acids, especially glycine-binding bile

acids such as GCDCA, GCA, glycodeoxycholic acid (GDCA),

and glycoursodeoxycholic acid (GUDCA), are lower than those

in cohorts with normal BMI (144). Compared to obese children

without NAFLD, obese children with NAFLD have higher levels

of serum total bile acids and glycine-bound bile acids (145).

Secondary bile acids have complex and unelucidated

biological functions. Studies have illustrated that secondary

bile acids regulated by high fat diet has adverse metabolic

effects (146). DCA tends to increase in diet-related or genetic

childhood obesity (147). Contrary to previous study in obese

adults (148), levels of postprandial bile acids are significantly

lower in obese adolescents. Serum levels of non-12-OH bile

acids, including CDCA and LCA, and intermediates in bile acids

synthesis are lower in adolescents with obesity (149). UDCA is a

drug used for the treatment of NAFLD, while low DCA is

considered to be characteristic of a healthy metabolic spectrum

of bile acids (73). UDCA supplementation can control diet-

induced obesity in prenatally malnourished mice (150). In obese

mice, the abundance of Lactobacillaceae and Lachnospiraceae

producing secondary bile acids is higher and leads to higher

levels of LCA and DCA (151). The proportion of non-12-OH

bile acids, including HCA, HDCA, glycohyodeoxycholic acid

(GHDCA), UDCA, GUDCA, and CDCA, in total bile acid, is

significantly lower in people with high BMI, indicating that non-

12-OH bile acids may contribute to the process of obesity. In

addition, the ratio of CA and DCA is significantly higher, and

the ratio of CDCA and UDCA is significantly lower in the

population with high BMI, while fecal total bile acid is not

significantly different in those with high BMI group compared

with healthy people (152).
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The roles of gut microbiota in
early life

The gut microbiota of obese patients differs from that in

healthy people. Abnormalities in the gut microbiota and their

metabolites are involved in the occurrence of obesity. An early

difference in fecal microbiota in children may predict the

occurrence of overweight, as this has a profound impact on

the function of the digestive system (153). However, a single

acquired factor or genetic factor is not sufficient to fully explain

the changes in gut microbiota and metabolites in overweight/

obese children. The adaptive changes in the structure of gut

microbiota in early life are also related to long-term health

problems, such as mucosal immune development and height

retardation (154). Factors such as mode of delivery, diet, and

breastfeeding can cause changes in the gut microbiota, which in

turn can increase the risk of pediatric overweight/obesity (155).

Therefore, gut microbiota in the early stages of life should play

an important role in overweight and obese children.

Maternal gut microbiota has a long-lasting effect on the gut

microbiota and metabolites of offspring. One of the key

determinants is that Bacteroides abundance is reduced and

delays colonization (156), which results in lower microbial genes

associated with amino acids and nucleic acids metabolism, and

higher genes associated with fatty acid metabolism and amino acid

degradation (157). In addition, despite the low abundance of fungi

in the gut microbiota, fungal host phenotypes can be transferred

from parents to offspring, and fungal diversity and species

composition in offspring may develop towards the fungal

community of parents (158).

Breastfeeding is independently associated with infant gut

microbiota diversity, which benefits the infant’s immune system

by specifically providing nutrients to the microbes to form

healthier immune-microbe relationships (159). For instance,

deficiency of Bifidobacterium and its HMO-utilizing gene is

related to systemic inflammation and immune dysregulation in

early life. Feces from Bifidobacterium infantis EVC001-

supplemented infants are rich in indole lactate and indole-3-

lactate, which upregulate Galectin1 expression during Th2 and

Th17 cell polarization (160). Supplementation with Lactobacillus

rhamnosus HN001 in mothers during pregnancy or

breastfeeding can reduce eczema and allergy rates in babies

(161). Maternal obesity may also affect the ability of offspring gut

microbiota to metabolize BCAAs (135).

Summary and outlook

While the structural characteristics of gut microbiota in obese

children have been described in detail, there is still variation in the

abundance of some bacteria. Changes in metabolic function caused

by these variations need to be considered. Although probiotics are

generally believed to be beneficial to the metabolism of children,
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current studies have not reached a consensus. An Iranian study

found that probiotics could improve liver function in children with

obesity. However, other studies have found that probiotics seem to

increase obesity in Hispanic adolescents (162). Therefore, it is

necessary to screen for probiotics in the treatment of

childhood obesity.

Numerous mechanisms that associate intestinal flora with

the risk of obesity and metabolic disorders are based on the

findings of rodent models, but the structure of intestinal flora in

rodents is quite different from that in humans (163). On the

other hand, at present, research on gut microbiota and

metabolites is still mainly focused on obese adults, while the

research on obese children is relatively deficient. Due to the large

differences in the structure of the gut microbiota between adults

and children, future cohort studies on gut microbiota and

metabolites in obese children are required.
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106. Barczyńska R, Litwin M, Sliżewska K, Szalecki M, Berdowska A,
Bandurska K, et al. Bacterial microbiota and fatty acids in the faeces of
overweight and obese children. Pol J Microbiol (2018) 67:339–45.
doi: 10.21307/pjm-2018-041

107. Murugesan S, Nirmalkar K, Hoyo-Vadillo C, Garcıá-Espitia M, Ramıŕez-
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