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Abstract

The evolution of drug resistant Plasmodium parasites is a major challenge to effective malaria control. In theory, competitive
interactions between sensitive parasites and resistant parasites within infections are a major determinant of the rate at
which parasite evolution undermines drug efficacy. Competitive suppression of resistant parasites in untreated hosts slows
the spread of resistance; competitive release following treatment enhances it. Here we report that for the murine model
Plasmodium chabaudi, co-infection with drug-sensitive parasites can prevent the transmission of initially rare resistant
parasites to mosquitoes. Removal of drug-sensitive parasites following chemotherapy enabled resistant parasites to
transmit to mosquitoes as successfully as sensitive parasites in the absence of treatment. We also show that the genetic
composition of gametocyte populations in host venous blood accurately reflects the genetic composition of gametocytes
taken up by mosquitoes. Our data demonstrate that, at least for this mouse model, aggressive chemotherapy leads to very
effective transmission of highly resistant parasites that are present in an infection, the very parasites which undermine the
long term efficacy of front-line drugs.
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Introduction

Global deployment of antimalarial drugs in the latter half of the

20th century placed enormous selection pressure on human

malaria parasites to evolve resistance. In many parts of the world,

front-line drugs such as chloroquine and sulphadoxine-pyrimeth-

amine (SP) are now ineffective against Plasmodium falciparum, and

the available alternatives are increasingly threatened [1–3].

Indeed, the World Health Organization [4] considers the

evolution of drug resistance by malaria parasites to be inevitable,

and acknowledges that for as long as malaria is around, a drug-

discovery pipeline will be required to replace drugs as they fail [5].

The speed of this ‘drug treadmill’ is determined primarily by the

rate at which mutations conferring resistance arise and reach

transmissible densities in an infection, and by the rate at which

they spread in a population [6].

It has become apparent that malarial infections typically

comprise multiple parasite genotypes, particularly in areas of high

transmission (e.g. [7–18]). Within mixed infections, powerful

genotype-genotype crowding effects can occur, as shown both by

correlational epidemiologic evidence for human infections [9,19–

25] and by direct experimental investigation using the rodent

malaria Plasmodium chabaudi in laboratory mice [26–35]. Compe-

tition among clones can be a major brake on the rate of resistance

evolution because the onward transmission of resistant parasites

acquired by either transmission or by de novo mutation can be

stifled by competitors in the absence of drug treatment.

Conversely, removal of drug-sensitive competitors by chemother-

apy can greatly enhance the spread of parasites with high-level

resistance. Thus, clone interactions in the presence and absence of

drug treatment are major determinants of the useful lifespan of a

drug [6,36–42].

The development of evidence-based resistance management

strategies requires an understanding of these clone-clone interac-

tions within hosts [42]. Some analysis in human Plasmodium

infections is possible [25,43], but direct experimental investigations

require that chemotherapy be denied to some individuals with

malaria. Consequently, experimental work has focused on rodent

models. There, competitive release has been demonstrated for

resistant P. chabaudi parasites after prophylactic [28] and thera-

peutic [33–35] drug treatment. Competitive release can even lead

to facilitation, where resistant parasites attain higher densities

following the clearance of susceptible competitors than they would

have achieved in single clone infections [33].

These rodent malaria studies have assumed that relative and

absolute fitness (transmission success) of resistant parasites can be

inferred from their density in gametocyte populations in peripheral

blood sampled from the mouse tail vein. Transmission of human
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malaria to mosquitoes is generally positively related to gametocyte

density within the host [44–46], and Hill et al. [47] observed that

the extent of parasite multiplicity in infected people was reflected

in the parasite diversity in Anopheles mosquitoes. A limited body of

empirical evidence for P. chabaudi (e.g. [27,28,48]) and the lizard

malaria, P. mexicanum [49], shows that gametocyte densities of co-

infecting parasites in host blood correlate with transmission success

of individual clones to mosquitoes (or sandflies in the lizard-

malaria model). Here we determine whether this assumption holds

true following chemotherapy. Clones of P. falciparum that survive

drug treatment produce infectious gametocytes [13], but relative

infectivity of resistant and sensitive parasites remains to be

demonstrated. In P. chabaudi, drug treatment and competition

independently affect determinants of infectivity (e.g. [50–53]) and

there are situations where the clonal composition of parasite

populations in mice is not well correlated with the genetic

composition of parasites in mosquitoes fed on those hosts (e.g.

[54]). Some authors have also suggested that variation in parasite

transmission among mosquitoes fed on the same host at the same

time might be in part due to aggregation of gametocytes in skin

capillaries prior to ingestion by the mosquitoes [55,56]. If so, the

actual uptake of gametocytes from host capillaries by mosquitoes

might differ from the gametocyte densities identified in tail-snip

venous blood samples, particularly at low gametocyte densities.

Here we test whether transmission consequences of drug

treatment as inferred from gametocyte densities do in fact play

out in transmission in a P. chabaudi – An. stephensi model system. We

deliberately initiated infections with a highly skewed ratio of

sensitive to resistant parasites because we knew from previous

work [57] that drug treatment would lead to substantial changes in

clone frequencies. We determined the densities of resistant and

sensitive parasites in the presence and absence of drug treatment at

two life stages in both hosts: in the asexual and gametocyte

populations in the mouse, and in the blood meal and oocysts in the

mosquito. Parasite dynamics of mixed-clone infections in the

vertebrate host were indeed reflected in the transmission success of

individual clones.

Methods

Ethics Statement
The study was carried out in strict accordance with the

recommendations in the guide for the Care and Use of Laboratory

Animals of the National Institutes of Health. The protocol was

approved by the Animal Care and Use Committee of the

Pennsylvania State University (Permit Number: 35790).

Parasites and Hosts
Two genetically distinct clones were used in the experiment:

The pyrimethamine-sensitive clone AJ5P (hereafter referred to as

clone S) and the pyrimethamine-resistant clone AS6P(pyr-1A)

(hereafter referred to as clone R). Both clones were isolated from

individual thicket rats and subsequently cloned as detailed by

Beale et al. [58]. Clone R was made resistant by a single high-dose

exposure to pyrimethamine [59].

Experimental murine hosts were 8 week old female C57Bl/6

laboratory mice (Charles River Laboratories). All mice were

maintained at 26uC with a 12L:12D photoperiod, fed Laboratory

Rodent Diet 5001 (LabDiet, PMI Nutrition International) and

received drinking water supplemented with 0.05% para-amino

benzoic acid to enhance parasite growth [60].

Experimental Design, Drug Treatment and Mosquito
Feeds

Twenty mice were each challenged with mixed infections of

clone R (102 parasites) and clone S (106 parasites). We used these

very unequal inocula to establish infections initially dominated by

sensitive parasites; previous work [31,57] had demonstrated that

these starting conditions generate substantial competitive suppres-

sion of resistant parasites in the absence of chemotherapy, and

substantial competitive release following drug treatment [31,33–

35]. Resistant parasites will often be rare in untreated infections in

nature when, for instance, there is a competitive disadvantage

associated with the costs of resistance [31,33,34,40] or when

resistance first arises de novo.

Inoculations were prepared from donor mice by diluting blood

in 0.1 ml of calf serum solution (50% heat-inactivated calf serum,

50% Ringer’s solution [27 mM KCl, 27 mM CaCl2, and

150 mM NaCl] and 20 units of heparin per millilitre) and were

introduced by intra-peritoneal (i.p.) injection. Ten mice were drug

treated and ten were sham treated. Drug treatment was initiated

on day six post-infection (PI), the time point at which pronounced

anaemia and weight loss become apparent (see [33,34]). Treat-

ment consisted of 8 mg/kg pyrimethamine dissolved in dimethyl

sulfoxide (DMSO), administered as a 50 ml i.p. injection on four

successive days. Sham-treated mice received contemporaneous i.p.

injections of 50 ml of DMSO without pyrimethamine.

To measure the transmission effects of treatment, Anopheles

stephensi mosquitoes were allowed to feed on experimental mice

over a week, starting two days after drug treatment finished. For

the transmission experiments, twelve of the twenty mice were

chosen at random among survivors (see results), six of whom had

been drug-treated. In this feeding experiment, each mouse was

used every second day, with half the mice allocated to even days

(days 12, 14, 16, 18 PI) and half to the alternate days (13, 15, 17,

19 PI) cross-factored with drug treatment in a fully balanced

experimental design. Thus, each mouse was offered to mosquitoes

on four separate occasions over 8 days.

Approximately thirty mosquitoes (2–5 days old) were introduced

into individual half-liter plastic cups via a slit in the mesh-covered

top. The cups had roughened internal surfaces to facilitate

mosquito resting and the mesh slit was plugged with cotton wool

to prevent escape. An additional pad of cotton wool soaked in 5%

glucose solution was placed on the surface of each cup’s mesh

cover to enable feeding ad. lib. and the cups were kept in the

incubator along with stock cages. Incubator conditions of 26uC,

70% relative humidity and a 12L:12D photoperiod were

maintained throughout the course of the experiment. Glucose

pads were removed from cups one hour before experimental blood

feeds. Mice were anaesthetised immediately prior to blood feeds

with a 0.05 ml i.p. injection of Ketamine (100 mg/kg)/Xylazine

(10 mg/kg). Once unconscious, individual mice were laid upon the

mesh covering of each cup and the mosquitoes allowed to blood

feed for 30 minutes. Mice were then returned to their cages to

recuperate, unfed mosquitoes were removed from cups and new

glucose pads provided.

Monitoring Infection Dynamics in Mice
Mice were sampled before noon on a daily basis between days

five and 19 PI. A thin blood smear was made, morbidity

monitored by recording mouse body mass (to the nearest 0.01 g)

and 2 ml of blood taken via a tail snip to determine red blood cell

(RBC) density using flow cytometry (Beckham Coulter). Additional

5 ml and 10 ml blood samples were collected for DNA and RNA

extraction, respectively. Blood samples for DNA extraction were

handled and extracted as detailed by Bell et al. [32]. Blood samples

Malaria Transmission following Drug Treatment
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for RNA extraction were added to a chilled lysis mixture of 10 ml

phosphate buffered saline (PBS: Ca2+/Mg2+ -free) and 20 ml

Nucleic Acid Purification Lysis Solution (Applied Biosystems), the

mixture immediately vortexed to allow complete lysis and the

lysate kept on ice prior to storage at 280uC. Total RNA was

extracted using the ‘‘RNA Blood-DNA’’ method, on the ABI

Prism 6100 Nucleic Acid Prepstation, with an elution volume of

100 ml. RNA was immediately converted to cDNA using the High-

Capacity cDNA Archive Kit (Applied Biosystems). Both RNA and

cDNA were stored at 280uC.

Parasite densities were determined using clone-specific PCR

primers and minor groove-binder (MGB) probes, targeting either

the P. chabaudi ama gene (for quantification of total parasite

densities [considered to equate to asexual parasite densities] from

DNA [32]) or the common gametocyte gene (CG1, for quantification

of gametocytes from cDNA; as [61]). Real-time quantitative PCRs

were performed on an ABI Prism 7500 Fast System with an initial

denaturation of 95uC for 2 min followed by 40 cycles of

denaturation at 95uC for 3 sec and annealing/extension at 60uC
for 30 sec. For the ama assay, 2 ml of DNA were included in a total

PCR reaction volume of 25 ml with 16PerfeCTaTM qPCR

FastMixTM (Quanta Biosciences), forward and reverse primers at

300 nM and TaqManH MGB probe (Applied Biosystems) at

200 nM. The CG1 cDNA assay incorporated 7 ml of cDNA (at a

1:10 dilution) in a total reaction volume of 25 ml with

16PerfeCTaTM qPCR FastMixTM (Quanta Biosciences), forward

and reverse primers at 900 nM and TaqManH MGB probe

(Applied Biosystems) at 250 nM. Absolute quantification was

based on a standard curve of serial dilutions of DNA and cDNA

standards of known asexual parasite and gametocyte densities,

respectively, determined beforehand by careful microscopy

(validated by [32,33,61–64]).

Monitoring Transmission to Mosquitoes
Immediately post-blood feed, two fully engorged mosquitoes

were removed from each pot, anaesthetised with chloroform and

placed individually into 1.5 ml microfuge tubes containing 500 ml

of RNAlaterTM (Qiagen), with care taken to ensure that

mosquitoes were totally submerged. Tubes were stored at

280uC until RNA extraction. Mechanical disruption of mosqui-

toes was achieved with a TissueLyser (Qiagen) under the following

conditions. Upon thawing, mosquitoes were removed from the

RNAlaterTM and placed individually into collection microtubes

containing 600 ml of Buffer RLT from the RNeasyTM Protect Mini

Kit (Qiagen), 0.25 g of sterile 0.2 mm zirconium beads (OPS

Diagnostics, LLC) and 0.25 g of sterile 0.8 mm silica beads (OPS

Diagnostics, LLC). Mosquitoes were then ground for 2 mins at 30

Hertz, with the microtubes repositioned within the TissueLyser

every 30 s to ensure uniformity of disruption for all samples. RNA

was then extracted using the RNeasyTM Protect Mini Kit (Qiagen)

according to the manufacturer’s instructions and eluted in a

volume of 100 ml. The RNA was handled and stored as detailed

above for that obtained from mouse blood samples. Gametocyte

densities present within mosquito blood-meals were quantified as

described for mouse blood-derived cDNA.

Mosquitoes not sub-sampled for blood-meal analysis were kept

within the incubator and fed glucose ad lib. until dissection at 9

days post-blood feed. Mid-guts were examined for intensity of

infection (number of oocysts) using a compound microscope and

infected guts placed individually into 30 ml of chilled PBS within

1.5 ml microtubes. Tubes were maintained on ice prior to storage

at 280uC. DNA was extracted from individual mosquito mid-guts

using the E.Z.N.A MicroElute Genomic DNA kit (Omega Bio-

Tek) as per manufacturer’s instructions, eluted in a total volume of

20 ml and stored at 280uC. Clone densities present within oocysts

on mid-guts were determined as for DNA samples obtained from

mouse blood samples.

Statistical Analyses
To summarize asexual and gametocyte parasite densities

through time, the geometric mean densities were calculated for

clone R, clone S or both (total densities) for each mouse for the

entire infection course (d5 – d19 PI) and for feed days (either days

12, 14, 16, 18 or days 13, 15, 17 and 19 PI, dependent upon

mouse). General linear modeling (MINITAB v. 14) was used to

compare the effect of drugs (treated or untreated) on parasite

densities. The relationship between gametocyte density and the

probability of mosquito infectivity for the two clones was studied

using logistic regression. Logistic regression was performed in the

statistical software environment R (version 2.11.1 [65]), using a

generalized linear model with a binomial distribution and logit link

function. The predicted infectivity and 90% prediction interval

(i.e., 90% probability that future observations will fall within these

bounds) were estimated from the fit model. Since regression

parameters (a and b) were estimated on the logit scale, predicted

values were obtained using the logit transformation

q~ eazbN

1zeazbN ð1Þ

where a and b are parameters from the linear regression p = ax+b

on the logit scale.

Results

Mouse Morbidity
Four sham-treated mice had to be euthanized before the

commencement of mosquito feeds in accordance with animal care

guidelines. All drug-treated mice (n = 10) remained outwardly

healthy with significantly less weight loss (total weight loss:

F1,15 = 57.4, p,0.001) and anaemia (minimum RBC density:

F1,15 = 53.4, p,0.001) than non-drug treated mice (n = 6) during

the monitoring period (days 5–19 PI).

Parasite Performance Prior to Drug Treatment
Before drug treatment began on day 6 PI, there were no

significant differences in parasite densities within hosts of each

treatment group (Figures 1 and 2; resistant asexuals: F1,19 = 1.1,

p = 0.31; resistant gametocytes: F1,19 = 0.7, p = 0.42; susceptible

asexuals: F1,19 = 2.6, p = 0.13; susceptible gametocytes:

F1,19 = 0.03, p = 0.86). The 10,000-fold difference in the densities

of sensitive and resistant parasites we created at the beginning was

maintained through to the start of drug treatment at day 6 p.i.

(Figure 1– both panels; Figure 2), at which point there were only

179.5 (626.8 [s.e.m]) resistant asexual parasites and 3.6 (61.02)

resistant gametocytes per microliter of mouse blood.

Fate of Resistant Parasites in Treated and Untreated Mice
In the absence of drug treatment, the infection was dominated

by the susceptible parasites (Figure 1– top panel; Figure 2– panels

A–F). Indeed, in four of six untreated mice, resistant asexual

parasites were excluded from the infection (below stochastic

detection levels) by day 10 PI. Gametocytes from the resistant

clone were detected on only two days at most in untreated mice,

and never after day 7 PI. Thus, in the absence of drug treatment,

the resistant clone had negligible transmission potential.

At the start of drug treatment, resistant parasites constituted less

than 0.05% of the parasite and gametocyte populations. After

Malaria Transmission following Drug Treatment
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treatment, the population of resistant parasites rapidly expanded

(Figure 1– bottom panel, Figure 2– panels G–L), so that the

resistant clone became the numerically dominant two days after

the cessation of drug treatment (day 11 PI). A day later, the

resistant clone made up more than 95% of the parasite population

(Figure 3). Drug treatment completely cleared susceptible parasites

in only two of the six mice used for mosquito blood feeds (Figure 2–

panels I & L). In the other four mice, susceptible parasites were

undetectable for 2 to 8 days before they recrudesced to varying

degrees (Figure 2– panels G, H, J & K).

Total Parasite Burdens
In the absence of drug treatment, parasite populations were

almost exclusively clone S, whereas drug-treated populations were

dominated by the resistant clone (Figures 1 and 2). For mice used

in the mosquito feeds, drug treatment reduced total asexual

parasites densities across the monitoring period (sum of R & S

clones; geometric means across day 5–19 PI; F1,11 = 38.4,

P,0.001).

Total gametocyte densities were unaffected by drug treatment

(F1,11 = 0.58, P = 0.46): drug treatment simply replaced drug-

sensitive gametocytes with drug-resistant gametocytes (Figures 1

and 2).

Figure 1. Densities of asexual parasites (solid lines) and gametocytes (dotted lines) of drug-sensitive (clone S, black) and drug-
resistant (clone R, gray) parasites within sham-treated (top panel) and drug-treated (bottom panel) mice. Dashed and shaded boxes
show days of sham or drug treatment. Data are log-transformed geometric means (6 S.E) of a maximum of 10 mice (number of untreated mice [top
panel] reduced to six by day 12 due to morbidity-driven euthanasia).
doi:10.1371/journal.pone.0037172.g001
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Figure 2. Asexual and gametocyte densities of clone S and clone R within the 12 randomly selected mice used for mosquito blood
feeds (see methods), gametocyte densities within blood-meals (denoted by crosses), prevalence of mosquito infection (percentage
and numbers of infected mosquitoes at each feed) and identity of oocysts present on mid-guts 9 days post-blood feed (S: clone S

Malaria Transmission following Drug Treatment
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Transmission to Mosquitoes: Blood-meals and Oocysts
Gametocyte densities in mosquito blood-meals over time, and

the prevalence of infection in mosquitoes(% with oocysts on the

midgut) are shown in Figure 2. Direct quantitative comparisons

between gametocytes present in a micro-liter of mouse blood and

within a mosquito blood-meal taken from that mouse must take

into consideration that different RNA extraction protocols were

employed for each. Indeed, gametocytes were typically not

quantifiable within the blood-meal when the gametocyte density

in mouse blood was less than about 30 gametocytes/ml (Figure 2–

panels C, E–L).

In the absence of drug treatment, no clone R gametocytes were

detectable in mouse blood at the time of mosquito feeds and so,

unsurprisingly, no resistant gametocytes were identified in

mosquito blood-meals (Figures 3A & 3B) and none of the oocysts

which subsequently developed contained resistant parasites

(Figure 2– panels A, B, C, D, E, F). Drug treatment reversed

this, with resistant parasites dominating in treated mice at the time

of mosquito blood feeds (98.8%), in the blood meals of mosquitoes

feeding on those mice (98.0%), and in the oocysts which

subsequently developed (98.6% of 139 oocysts, 99.6% of the

genomes [ = sporozoites]) (Figures 3A, 3B & 2– panels G, H, I, J,

K, L).

Drug treatment did not have an impact on infectiousness of the

mice (Fig 3C; F1,11 = 2.1, p = 0.18), with similar proportions of

mosquitoes becoming infected from non-drug-treated (19.4%, 6

S.E: 4.4; range of 5.3 to 32.3%) and drug-treated mice (12%, 6

S.E: 2.6; range of 5.8 to 20%).

genotype; R: clone R genotype; R+S: both clone genotypes). Panels A-F, non-drug-treated mice (D2); panels G–L, drug-treated mice (D+); nf:
no blood feed performed due to mouse morbidity. Dotted and grey blocks show period of sham or drug treatment.
doi:10.1371/journal.pone.0037172.g002

Figure 3. Transmission parameters. A. Frequency of gametocytes of the resistant clone present in the blood of sham-treated (diamonds) and
drug-treated (squares) mice used for mosquito blood feeds. Shaded area indicates timing of treatment. Each data point represents the mean (61
S.E.M) from six mice. B. Percentage of clone R gametocytes in mouse blood at time of mosquito blood feeds (dark bars) and in mosquito blood-meals
fed on those mice (gray bars), for non-drug-treated and drug-treated mice. There were no gametocytes from the resistant clone in untreated mice. C.
Prevalence of infection with each clone in mosquitoes fed on each of the six treated and six sham-treated mice. Plotted points are the mean (6 SEM)
for each mouse across all four feed days, with c.30 mosquitoes per feed. Diamonds, S alleles; squares, R alleles. (2 of 83 infections corresponding to
either S or S+R alleles are not included).
doi:10.1371/journal.pone.0037172.g003
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Relationship Between Gametocyte Densities in Mouse
Blood and Prevalence of Infection in Mosquitoes

The densities of R gametocytes in mouse blood on feed days

and in the blood-meals of mosquitoes that fed on that mouse were

highly correlated across more than 4 orders of magnitude, with a

regression slope nearing 1 and an intercept not distinguishable

from zero (Figure 4; F = 109.1, p,0.001, slope = 0.90260.09,

intercept = 0.1660.26). This means that any clumping of game-

tocytes in host capillary beds [55,56] is not affecting the efficiency

of transmission of gametocytes to mosquitoes.

In the absence of drug treatment, only clone S was transmitted

to mosquitoes. Successful formation of oocysts was observed only

when gametocyte densities exceeded 102.5/ml of mouse blood

(Figure 5). Prevalence of infection rose sharply with increasing

gametocyte densities, withevery mouse exceeding this threshold

infectious to mosquitoes. Following drug treatment, successful

transmission was almostentirely due to resistant parasites, although

one mosquito harboured a single oocyst with just the clone S

genotype (Figure 2– panel G) and another mosquito bore an

oocyst that had apparently resulted from cross-fertilization

(contained both clone genotypes; Figure 2– panel J). Transmission

of the resistant clone after drug treatment occasionally occurred at

lower gametocyte densities than was observed for sensitive clone

transmission, but also sometimes failed at densities greater than

103.5 per micro-liter mouse blood (Figure 5). Interestingly, the two

oocysts with clone S alleles that established from drug-treated mice

did so when densities of sensitive gametocytes in the blood were

lower than apparently necessary for transmission in the absence of

drug treatment (Figure 5).

The relationship between gametocyte density and probability of

mosquito infection is steeper in untreated mixed infections with

clone S transmission than drug-treated infections with clone R

transmission (Figure 5; clone: x2(1, N = 45) = 195, p,0.001, clone x

gametocyte density: x2(1, N = 45) = 163, p,0.001). The flatter slope of

the latter can be partly explained by three time points from three

different mice (feeds from one mouse on day 16 and two mice on

day 18) when R gametocyte densities over the transmission

threshold did not result in infections (Figure 5). However,

removing these three data points still revealed a significant slope

difference (clone x gametocyte density: x2(1, N = 42) = 87, p,0.001).

The gametocyte density-infectivity relation is given by

q~ eazbN

1zeazbN ð2Þ

where q is the probability a mosquito becomes infected, N is the

log10 gametocyte density and parameters a = 26.37 (61.28 SE)

and b = 1.42 (60.37 SE) for clone R and a = 212.69 (63.03 SE)

and b = 3.60 (60.90 SE) for clone S. These infectivity functions

have a higher threshold density than those for P. falciparum

(Figure 5, [34,66,67]). The parameterized density-infection

function can be used to estimate infection thresholds. For example,

if we consider a minimum infection probability of 5%, then we

predict that clone R will require densities in the range of 101.2 to

103.7 gametocytes per ml of blood, and a range of 102.2–103.2 for

clone S to transmit the infection.

Discussion

As observed in previous studies [28,33,34], we found that

removal of drug-sensitive parasites by drug treatment led to

profound expansion the population of resistant parasites. We now

show experimentally that this release dramatically affects trans-

mission to mosquitoes, as was assumed in those earlier studies. In

sham-treated mice, resistant parasites were suppressed to such an

extent that transmissible gametocytes were undetectable in

peripheral mouse blood from day 10 post-infection, and in the

blood-meals of mosquitoes subsequently fed on these mice.

Moreover, resistant parasites did not contribute to any oocysts

generated by those infections. In contrast, the clearance of

sensitive parasites by chemotherapy led to resistant gametocyte

densities rising from barely detectable to approximately 90% of

transmissible parasites 48 hours after the cessation of treatment

(Figure 3A). Consequently, nearly all of the parasites (sporozoites)

Figure 4. Relationship between clone R gametocyte densities in mice at the time of a blood feed and in mosquito blood-meals fed
on those mice.
doi:10.1371/journal.pone.0037172.g004
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in oocysts established on mosquito mid-guts (99.6%) were from the

resistant genotype (Figure 2, panels G, H, I, J, K, L).

The density of resistant parasites within the gametocyte

population in mouse blood correlated closely with densities

recorded in mosquito blood-meals (Figure 4). This indicates that

counts obtained from tail-snip venous blood are an accurate

representation of those acquired by the mosquito: there is no

evidence that any gametocytes clumping in host capillaries resulted

in a difference in the genetic composition of the gametocyte

populations taken up by individual mosquitoes.

The gametocyte density-infectivity relation curves (Figure 5)

differed between clones, with a steeper increase in infectivity per

gametocyte density for clone S (Figure 5). This difference could be

due to a genetic difference between the clones, which may or may

not be related to resistance per se. Alternatively, the shallower slope

could be a result of drug treatment (the clone R data are all from

treated mice, and the clone S from untreated mice), or it might

reflect differences in the infectivity of gametocytes originating from

primary (clone R) or secondary (clone S) parasite peaks.

Experiments analogous to those performed here could be used

to investigate further the impact of parasite genetics, drug

treatment and immunity on these dose-response curves.

Gametocyte density-infectivity relationships are expected to be

s-shaped, with a density threshold below which negligible

transmission can occur, an initially accelerating curve as the

probability of gametes of both sexes finding each other in a

mosquito blood meal increases, then an approximately linear

phase during which an increasing number of gametocytes

increases the likelihood of establishing an infection within the

mosquito, and then finally saturation at some upper-bound

prevalence. This prevalence at saturation can be lower than

100% if, for example, there are refractory mosquitoes in the

population (e.g. [67]). Extrapolating from the model fitted to our

P. chabaudi data, saturation is expected to occur at densities over

104 gametocytes/ml, densities that are rarely attained in this host-

parasite system.

The WHO recommends that once more than 10% of patients

are failing to respond to treatment with a particular drug, that

drug be withdrawn from front-line use by national authorities [4].

One way to prevent the spread of parasites with resistance levels

high enough to render a drug insufficiently efficacious for clinical

use is to preemptively kill sensitive or semi-resistant parasites with

drugs, since dead parasites cannot mutate to the drug-threatening

high-level resistance. This is the resistance management justifica-

tion for designing treatment regimens aimed at removing all

parasites as fast as possible from a patient [4]. This strategy can be

an important weapon in the fight against drug resistance, but our

data clearly demonstrate the unavoidable downside of this strategy

[42]: it confers exceedingly strong evolutionary advantages on any

high-level resistance that is already present in an infection. The

resistant clone used in this experiment has previously been shown

to be unaffected by the doses of pyrimethamine used here [33–35]

and so it has the high-level resistance that resistance management

strategies are trying to prevent from spreading. In our experi-

ments, co-infection with the sensitive clone prevented the resistant

clone from transmitting to mosquitoes. Chemotherapy eliminated

Figure 5. Relationship between gametocyte densities in mice at the time of a blood feed and the subsequent prevalence of
infection in mosquitoes fed on those mice for untreated infections with transmission of clone S (red points) and for drug-treated
infections with transmission of clone R (black points). The thick red and black lines show the predicted probability of mosquito infection
based on logistic regression (eq 1), and the shaded areas show the 90% prediction intervals (note that these are not confidence intervals, see text for
details). Two oocysts consisting of clone S were observed in drug treated infections (open red triangles), these were not included in the model (see
text). Blue lines are gametocyte density-infectivity functions (of the form q =aNb/[1+ cNb]) estimated from P. falciparum data compiled by Carter and
Graves [66] and Barnes & White [67]: q1 (dot-dashed blue line;a= 0.03, b= 0.6, a/c= 0.85) and q2 (solid blue line; a= 1?1025, b= 2, a/c= 1) as
presented by Huijben et al. [34].
doi:10.1371/journal.pone.0037172.g005
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the sensitive parasites and handed essentially all the transmission

to the resistant parasites. Clearly, mice are not men (as discussed in

this context by Wargo et al. [33]), but it seems plausible that

competitive suppression will also occur in human infections. If so,

the process of competitive release will be a major determinant of

the rate of spread of high-level resistance in a population [38].

Note that it affects both the probability a patient will transmit

resistant parasites acquired from others as well as the probability

that any de novo mutations to high level resistance are able to reach

transmissible frequencies and escape from a patient in the first

place. Such processes may occur not only following therapeutic

drug use, but also following prophylactic chemotherapy such as

intermittent preventative therapy (IPT) in pregnant women,

infants or children [25,42] and will likely be dependent on the

ecological factors such as frequencies at the time of treatment and

the presence of other clones at the time of infection [30,35,57].

Thus, chemotherapy is a double-edged sword for resistance

management [42]. It can, by killing parasites, control the

probability that de novo mutants will occur in a patient in the first

place, but only at the cost of imposing very strong selection for any

that are already there. Chemotherapeutic regimens designed to

remove all parasites as fast as possible can confer substantial

benefits (e.g. clinical gains, or minimizing the number of parasites

which are alive to mutate), but they will have the highly

undesirable consequence of maximally spreading any high-level

resistant parasite that is present. A better understanding of clone-

clone interactions, and of the effect of different drugs and

treatment regimens on those interactions, may help identify new

ways to improve patient health while limiting the transmission

advantages chemotherapy confers on resistance parasites. Mean-

while, treated patients should be urged to use bednets in the period

after treatment to reduce the chances they will spread resistant

parasites to others.
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