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Simple Summary: Cell therapy has become a powerful method for regenerative medicine. However,
there has not been an ideal cell type and cell source for the treatment of neurological diseases such
as Parkinson’s disease and Alzheimer’s disease. This review aims to introduce the potentials of
different cells for treating neurological disorders by collecting the results from related clinical trials
and recent animal studies. It is an overview of some promising cells that may be clinically used for
neurological disorders. The characteristics of each cell type and the main mechanism of function are
also described.

Abstract: Neurological disorders are big public health challenges that are afflicting hundreds of
millions of people around the world. Although many conventional pharmacological therapies have
been tested in patients, their therapeutic efficacies to alleviate their symptoms and slow down the
course of the diseases are usually limited. Cell therapy has attracted the interest of many researchers
in the last several decades and has brought new hope for treating neurological disorders. Moreover,
numerous studies have shown promising results. However, none of the studies has led to a promising
therapy for patients with neurological disorders, despite the ongoing and completed clinical trials.
There are many factors that may affect the outcome of cell therapy for neurological disorders due
to the complexity of the nervous system, especially cell types for transplantation and the specific
disease for treatment. This paper provides a review of the various cell types from humans that may
be clinically used for neurological disorders, based on their characteristics and current progress in
related studies.
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1. Introduction

Neurological disorders are defined as diseases of the nervous system. There are more
than 600 neurological disorders that can be divided into four categories: (1) sudden onset
conditions, such as stroke; (2) intermittent conditions, such as epilepsy; (3) progressive
conditions, such as Parkinson’s disease (PD); (4) stable neurological conditions, such as
cerebral palsy. These diseases have become a big public health challenge and present
a tremendous burden to individuals, their families, and society. Some of the disorders
can be common and severe, including stroke, Huntington’s disease (HD), traumatic brain
injury (TBI), spinal cord injury (SCI), epilepsy, PD, Alzheimer’s disease (AD), Lyme disease,
cerebral palsy, ataxia, amyotrophic lateral sclerosis (ALS), hypoxic-ischemic encephalopa-
thy (HIE) and multiple sclerosis (MS). Currently, although there are many conventional
therapies that can alleviate their symptoms, such as levodopa or deep brain stimulation for
PD [1], cholinesterase inhibitors, or memantine for AD [2], these treatments have failed
to slow or reverse the progression of the diseases, in other words, these diseases are not
curable by the conventional therapies.

A common feature of many severe neurological disorders is the loss and/or dys-
function of massive neural cells, especially neurons. Therefore, regenerative medicine,

Biology 2021, 10, 1142. https://doi.org/10.3390/biology10111142 https://www.mdpi.com/journal/biology

https://www.mdpi.com/journal/biology
https://www.mdpi.com
https://orcid.org/0000-0002-6286-7385
https://doi.org/10.3390/biology10111142
https://doi.org/10.3390/biology10111142
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/biology10111142
https://www.mdpi.com/journal/biology
https://www.mdpi.com/article/10.3390/biology10111142?type=check_update&version=3


Biology 2021, 10, 1142 2 of 23

especially cell therapy, has become an intriguing field for researchers in the last several
decades. Cell therapy is thought to be an excellent therapy for many neurological disorders
acting by replacing dead cells or/and releasing protective factors to the damaged cells
or/and modulating the lesion’s microenvironment in the nervous system [3–5]. With
the rapidly expanding studies in this research area, cell therapy has shown its unique
potentials in treating neurological disorders. Currently, various types of cells have been
used in cell therapy studies, including embryonic stem cells (ESCs), induced pluripotent
stem cells (iPSCs), neural stem/progenitor cells (NSPCs), mesenchymal stromal/stem
cells (MSCs), and olfactory ensheathing cells (OECs), etc. However, despite the promising
results from numerous animal-based studies, the outcomes from clinical trials are normally
not as significant as from animal studies. This may be due to the difference between animal
models and the real disease of patients and the differences in nervous systems between
animals and humans.

The outcome of cell therapy can be affected by many factors, including cell source, cell
type, route of administration, and the target disease. The aim of this review is to summarize
the cells that may be clinically used for neurological disorders, especially for the diseases
mentioned above, and their characteristics and current progresses in related studies.

2. Cell Source: Autologous or Allogeneic?

The transplantable cells for patients can be divided into two sources: autologous and
allogeneic. Autologous cells are usually more favorable than allogeneic cells in regenerative
medicine as they avoid several issues that allogeneic cells may have, such as immune
rejection or the use of immunosuppressants, ethical issues, and finding suitable donors [6].
However, allogeneic transplants are necessary for the cells that are therapeutic but hard
to obtain from the patients themselves, such as ESCs [7], NSPCs [8], and fetal stem cells
(FSCs) that contain various stem cells from fetal blood and tissues (e.g., MSCs, NSPCs,
and hematopoietic stem cells) (see Table 1). Nowadays, cell reprogramming provides
a new opportunity to generate any type of autologous cells from another type of easily
obtainable somatic cells, such as iPSCs from urine [9] and induced neural stem cells from
fibroblasts [10]. However, the safety of these cells is highly related to the methods and
vectors used in induction protocols [11–13], and the safety and therapeutic effects need to
be well studied before taking into clinical application.

Table 1. Differences between autologous transplantation and allogeneic transplantation.

Cell Source
Additional

Invasive
Procedures

Immunogenicity Ethical
Issues

Cell
Availability Cell Type

Autologous
transplantation

Patients
themselves Yes No immune

rejection No
Limited by

autologous cell
culture

Limited,
depending on the

patient
him/herself

Allogeneic
transplantation Other donors No

Activated immune
response, immuno-

suppressants
required

Yes (when it
involves the use

of human
embryos)

Cryopreserved
stocks, suitable
for big amount

cell preservation

Various,
depending on the
donors (e.g., ESCs

and FSCs)

Interestingly, some cells, such as umbilical cord blood mononuclear cells and adipose-
derived mesenchymal stem cells (hADSCs), have been reported as immature immune cells;
namely, they will not cause immune rejection, even in the absence of immune suppres-
sion [14,15], which may make them suitable candidates as allogeneic transplants.

3. Different Cell Types and the Current Progress
3.1. Embryonic Stem Cells (hESCs)

Human ESCs (hESCs) are pluripotent cells that are derived from human embryos and
are capable of self-renewing and differentiating into all types of human cells. The first
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cell line of hESCs was isolated by James Thomson in 1998 [16], which then brought a new
hope of developing new hESC lines for cell therapy. The therapeutic potential of ESCs
for neurological disorders was proved a long time ago [17,18]. However, several critical
issues of hESCs have limited the related studies and clinical applications: (1) ethical issues,
as the establishment of hESCs lines involves the exploitation and destruction of human
embryos; (2) immune rejection. As hESCs are allogeneic cells, they may cause immune
rejection after transplantation [19], or the patient may need a life-long administration of
immunosuppressants; (3) tumor formation. Due to the pluripotency of hESCs, they have
the potential to generate teratoma after transplantation [20,21]. Several methods have
been reported to reduce or eliminate the tumorigenicity of ESCs, such as pre-treating
ESCs with mitomycin [22], co-transplantation ESCs with MSCs [23]. Among these meth-
ods, pre-differentiating ESCs into target cells prior to transplantation is a favorable way.
hESCs are normally taken as a source of different cells in vitro. hESCs derivates, such as
hESCs-derived oligodendrocytes, hESCs-derived dopaminergic neurons, have shown their
therapeutic effects in animal studies for treating neurological disorders [24,25]. Although
several animal studies transplanting hESCs for neurological disorders (such as SCI [26])
have shown some therapeutic effects, hESCs are normally considered unlikely to be directly
grafted for cell therapy. Remarkably, however, Geeta Shroff has transplanted hESCs via
a similar cell delivery method into patients with Lyme disease, multiple sclerosis, spinal
cord injury, stroke, or cerebral palsy, and has proved the effectiveness and safety of the
cells (see Table 2), with some ethical concerns [27,28]. Moreover, it has been claimed that
these hESCs prepared at their institute are unlikely to cause immune rejection even without
immunosuppressants as they were harvested at the very initial stage of blastocyst when
the genesis was not activated [7]. To summarize, hESCs are more used as a source of other
transplantable cells rather than a direct transplantation candidate in cell therapy studies.
However, a certain line of hESCs may become a suitable candidate for cell therapy for
neurological disorders if the critical issues can be overcome in the future.

Table 2. Examples of hESC transplantation for neurological disorders in clinical trials (data from PubMed).

Disease Route of
Administration Cell Source Cell Amount

Number
of

Patients

Longest
Follow-Up Time

(after 1st
Transplantation)

Outcome/Conclusion Ref.

Lyme disease
Intramuscular,

intravenous, and other
supplemental routes

Human embryo N/A 59 8 weeks

43 patients showed significant
improvement, 12 patients

showed moderate
improvement, 4 patients

exhibited mild improvement in
their brain perfusion; no
deterioration was found

[29]

Lyme disease
and multiple

sclerosis

Intramuscular,
intravenous, and other
supplemental routes

Human embryo N/A 2 N/A

Patients showed remarkable
neurological functional and

histological improvement; no
adverse events were reported

[30]

Spinal cord
injury

Intramuscular,
intravenous, and other
supplemental routes

Human embryo
hundreds of

millions of cells
in total

5 5 years

All patients showed
neurological functional

improvement, 3/5 showed
improved American Spinal

Injury Association score
(ASIA); no adverse events

were reported

[31]

Spinal cord
injury

Intramuscular,
intravenous, and other
supplemental routes

Human embryo
hundreds of

millions of cells
in total

226 N/A

70% of patients improved by at
least one ASIA grade after
3 phases of treatment; no

adverse events were reported

[32]

Stroke
Intramuscular,

intravenous, and other
supplemental routes

Human embryo
hundreds of

millions of cells
in total

24 N/A

A large population of patients
saw significant improvement
regarding Nutech Functional
Score and European Stroke

Scale; no adverse events
were reported

[33]
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Table 2. Cont.

Disease Route of
Administration Cell Source Cell Amount

Number
of

Patients

Longest
Follow-Up Time

(after 1st
Transplantation)

Outcome/Conclusion Ref.

Multiplesclerosis
Intramuscular,

intravenous, and other
supplemental routes

Human embryo
hundreds of

millions of cells
in total

24 Around 1 year

Patients showed an
improvement in parameters

associated with MS when
evaluated with reverse nutech
functional score but not with

the expanded disability status
scale; no adverse events

were reported

[27]

Cerebral palsy
Intramuscular,

intravenous, and other
supplemental routes

Human embryo
hundreds of

millions of cells
in total

91 N/A

Most patients showed
significant improvement in

Gross Motor Function
Classification Scores Expanded
and Revised (GMFCS-E & R)

[34]

3.2. Induced Pluripotent Stem Cells (iPSCs)

The first human iPSCs (hiPSCs) line was generated by Takahashi et al. [35] after they
introduced four factors (Oct3/4, Sox2, Klf4, and c-Myc) into human fibroblasts. hiPSCs
share similarities with hESCs in many aspects such as proliferation, morphology, gene
expression, and differentiation. This iPSCs technique (also called cell reprogramming)
provides an opportunity to generate any type of patient-specific cells from other obtainable
cells, such as fibroblasts or urine cells. Therefore, there are no ethical issues from hiPSCs.
Moreover, autologous cells transplantation from patients themselves has no risk of immune
rejection and no need to use immunosuppressants. However, there is still the risk of tumor
formation [21]. iPSCs are classically generated by the integration of transcription factors
with a viral vector, which may cause tumorigenesis and/or unpredictable mutagenesis
in the genome. hiPSCs generated by non-integration methods, such as mRNA [36], plas-
mid [37], small molecules [38], are safer candidates for transplantation, although they are
normally with comparatively low reprogramming efficiency [39].

To date, although several animal studies grafting hiPSCs have shown their therapeutic
effects for neurological disorders, such as stroke and SCI [5,40] (see Table S1), similar to
hESCs, hiPSCs are also usually taken as a source of other transplantable cells in vitro.
Pre-differentiated hiPSCs, including hiPSCs-derived NSPCs, hiPSCs-derived neurons and
hiPSCs-derived MSCs have been shown effective for neurological disorders [41–43]. Espe-
cially, several clinical trials based on hiPSCs derivates have been launched for the treatment
of PD and SCI [44,45], and thus have deeply encouraged the use of hiPSCs in treating neuro-
logical disorders. However, it is noteworthy that hiPSCs-derived NSPCs may still have the
potential to generate tumors [46]. The safety issues, including tumorigenicity and aberrant
reprogramming of the cells, need to be clearly addressed before their clinical application.

3.3. Neural Stem/Progenitor Cells (NSPCs)

NSPCs are multipotent cells that can self-renew and generate the main types of cells
making up the central nervous system (CNS), including neurons, oligodendrocytes, and
astrocytes. NSPCs have a lower risk of tumor formation compared to ESCs and iPSCs
as they are more specialized cells and have less self-renewing ability. Therefore, human
NSPCs (hNSPCs) are considered a favorable candidate for treating neurological disorders.
Although it has been shown that a subset of NSPCs is present in highly restricted regions
during adult life, their proliferation declines with aging [47,48], and it is nearly impossible
to isolate autologous hNSPCs for cell therapy. The common sources of hNSPCs for research
are human fetuses, hESCs, hiPSCs, or hMSCs. Like hESCs, hNSPCs directly isolated from
embryos or differentiated from hESCs also have ethical concerns and may cause immune
rejection, and hNSPCs from hiPSCs may have the same issues as hiPSCs as mentioned
above. hNSPCs can also be obtained by trans-differentiation from hMSCs under specific
experimental conditions [49]. In addition, hMSCs-derived hNSPCs are normally preferred



Biology 2021, 10, 1142 5 of 23

in clinical studies as they normally have fewer issues than those from hESCs or hiPSCs.
However, it is still important to generate a stable, efficient, and standardized protocol to
convert hMSCs to hNSPCs and study the similarity between hMSCs-derived hNSPCs and
bona fide hNSPCs.

Currently, hundreds of animal studies have used hNSPCs for treating various neu-
rological disorders, including stroke, SCI, TBI, PD, HD (see Table S2), which are far more
than hESCs or hiPSCs transplantation studies. Moreover, their effectiveness has been
proved and reported better than human MSCs in some conditions [50,51]. The grafted
hNSPCs can not only differentiate into neurons and glia cells and establish a graft-host
connection [52,53] but also produce trophic factors and modulate lesion microenvironment
to improve behavior recovery [54,55]. Intriguingly, even the injection of hNSPCs secre-
tome alone has been reported to support the functional recovery of 6-hydroxydopamine
(6-OHDA) PD rats [56]. Many methods have been applied to enhance the therapeutic
effects of hNSPCs, such as genetically modified hNSPCs by overexpressing a selected
trophic factor. Brain-derived neurotrophic factor (BDNF)-overexpressing hNSPCs, glial
cell line-derived neurotrophic factor (GDNF)-overexpressing hNSPCs, and insulin-like
growth factor 1 (IGF-1)-overexpressing hNSPCs have all been shown significant thera-
peutic effects on neurological disorders [57–59]. In addition, pre-treating hNSPCs with
a gamma-secretase inhibitor [60], metformin [61] or tumor necrosis factor α (TNFα) [62],
co-transplantation of hNSPCs with MSCs [63] or using biomaterial scaffolds as a carrier
for hNSPCs [64,65] have also been reported to improve their therapeutic potential for
neurological diseases. However, it is worth noting that the subtype of hNSPCs may also
influence their therapeutic effects for a specific disease. For example, the human fetal spinal
cord-derived NSPCs or spinal cord-type NSPCs from hiPSCs have been shown to improve
motor functions after SCI, but not human fetal brain-derived NSPCs or forebrain-type
NSPCs from hiPSCs [64,66].

To date, some clinical studies have been accomplished, and a few have shown ben-
eficial outcomes after hNSPCs transplantation for neurological disorders (see Table 3).
For allogeneic transplantation, focusing on specific hNSPC lines may help to keep the
consistency of the outcomes from bench to beside. Several clinical-grade hNSPC lines
have been applied in clinical trials, including NSI-566. NSI-566 cell line has been shown
to be safe and potential effective in ALS patients [67,68] and now is in a phase 3 trial
for treating ALS. Moreover, the NSI-566 cell line has also been reported to significantly
improve the behavioral and histological recovery of ischemic stroke patients [69]. On
the other hand, hNSPCs from autologous MSCs are a preferred candidate for clinical
therapies of neurological disorders and have been applied for treating cerebral palsy, MS
and TBI, in clinical trials [70–73]. However, most of the trials are in phase 1 or 2 stages,
which have proved the safety but not the statistical therapeutic effects of the cells. Further
studies need to be performed to better understand the therapeutic effects of the cells for
neurological disorders.

Induced neural stem/progenitor cells (iNSPCs), such as iPSCs, are generated from
other types of somatic cells (such as fibroblasts or urine cells) but bypass the pluripotency
stage. Generation of hiNSPCs is an attractive field and is more favorable than hiPSCs in
treating neural diseases, as they are easier to differentiate into terminal neural cells and
less tumorigenic. Currently, many hiNSPC lines have been generated through different
methods [74,75], and several lines have been tested in animal disease models, such as
SCI, glioblastoma, and stoke and have shown their significant therapeutic effects [76–79].
However, the safety and therapeutic potential of hiNSPC are highly related to the induction
protocol and need to be further studied. Therefore, it is essential to establish a safe, stable,
and efficient protocol to generate hiNSPC for cell therapy studies.
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Table 3. Examples of hNSPC transplantation for neurological disorders in clinical trials (data from PubMed).

Disease (Model) Route of
Administration Cell Source Cell Amount Number of

Patients

Longest
Follow-Up Time

(after 1st
Transplantation)

Outcome/Conclusion Ref.

Ischemic stroke Intracerebral
Human fetal

spinal cord, cell
line: NSI-566

1.2 × 107,
2.4 × 107, or

7.2 × 107
9 24 months

All patients showed significant
behavioral and

histological improvements
[69]

ALS Intraspinal Human
fetal brain 2.25–4.6 × 106 18 51 months

No serious adverse effects. Some
patients showed temporary

subjective clinical improvement
[80]

ALS Intraspinal Human
spinal cord 2 to 16 million 15 9 months

Intraspinal transplantation of
human spinal cord-derived

neural stem cells can be safely
accomplished at high doses

[81]

ALS Intraspinal
Human fetal

spinal cord, cell
line: NSI-566RSC

1.5 million 15 30 months

This NSPCs line can be safely
transplanted into both lumbar
and/or cervical human spinal

cord segments

[67]

moderate PD Intracerebral Human
fetal brain 2 million 7 4 years

No adverse effects; enhanced
midbrain dopaminergic activity;

minor neuropsychological
changes; 6/7 showed improved

motor function; 5/7 showed
better response to medication

[82]

Chronic
cervical SCI Intraspinal

Cells were
prepared and

released by
StemCells Inc.

15 to 40 million 16 1 year

Cell transplantation was safe,
feasible, and well

tolerated.Trends toward
improvement in motor function

and spasticity were seen

[83]

completethoracic
SCI Intraspinal

Human fetal
spinal cord, cell

line: NSI-566
N/A 4 27 months

No serious adverse events;
3/4 showed early signs of

potential efficacy
[68]

Chronic cervical
and thoracic SCI Intraspinal

Human fetal
brain, cell line:

HuCNS-SC
20 to 40 million 29 1 year

Cell transplantation was safe and
feasible using a manual

injection technique
[84]

Traumatic
cervical SCI Intraspinal Human fetal

telencephalon 1 × 108 34 1 year

No serious adverse effects,
5/19 of treated patients showed

functional recovery,
1/15 untreated patients showed

functional recovery

[85]

MS Intrathecal Autologous
MSCs 3 × 107 20 Around 1 year

No serious adverse effects,
improved median Expanded

Disability Status Scale (EDSS),
70% and 50% of the subjects

demonstrated improved muscle
strength and bladder
function, respectively

[73]

MS Intrathecal Autologous bone
marrow MSCs 0.08–17.6 million 6 8.9 years

No serious adverse events;
4/6 showed a measurable

clinical improvement
[71]

non-acute severe
TBI

Intravenous or
intrathecal

Autologous
MSCs 20 to 40 million 10 6 months

No serious adverse events,
7/10 patients presented different

degrees of improvement in
neurological function

[72]

Cerebral palsy subarachnoid
cavity

Autologous bone
marrow MSCs 1–2 × 107 60 6 months

No serious adverse events.
Treated group showed significant
motor function recovery but no

significant increases in the
language quotients

[70]

3.4. Neurons, Oligodendrocytes, and Astrocytes

Neurons, oligodendrocytes, and astrocytes are three main cell types that form the
CNS and originate from a common lineage of hNSPCs during development. These cells are
terminal cells from NSPCs differentiation and can also be obtained from human embryos,
hESCs, hiPSCs, or hMSCs in cell therapy studies. Transplantation of these pre-differentiated
cells can avoid unexpected or unwanted differentiation or tumor formation of stem cells
in vivo, especially in neurological disorders that are associated with the loss or dysfunc-
tion of specific types of neural cells, such as transplantation of dopaminergic neurons or
dopaminergic progenitors for PD. It has been reported that pre-differentiated GABAer-
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gic neurons from hNSPCs have shown greater repopulation of the damaged brain and
better neurogenic activity and functional recovery than hNSPCs in a stroke model after
transplantation, while hNSPCs have predominantly differentiated into astrocytes [86].

Because neurons are the main functional cells in the nervous system, they are usually
more attractive than glia cells for regenerative medicine in neuroscience research. Studies
have transplanted neurons or neuron progenitors into different disease models and have
shown their therapeutic outcomes (see Table S3). However, it is believed that more ma-
ture/differentiated donor cells have less survival capacity after transplantation [87–89].
Therefore, for a specific neuron type transplantation (for example, dopaminergic neurons),
an immature stage of the cells may lead to better outcomes than mature cells or progen-
itors [89–91]. In addition, as the pre-differentiated cells have less proliferation capacity,
they may need more cells for transplantation to reach a therapeutic level. Remarkably,
several clinical trials transplanting neurons or neuron-contained tissue have proved the
survival and potential therapeutic effects in patients (see Table 4). Moreover, direct repro-
gramming of human neurons from other somatic cells may also provide a suitable source
of therapeutic neurons for cell therapies [92,93].

Oligodendrocytes and astrocytes are glia cells that are thought of as supportive and
protective cells in the nervous system. A recent study has shown that the conditioned
medium from hiPSCs-derived glial progenitor cells could result in better therapeutic ef-
fects than that from hiPSCs-derived neuronal progenitor cells and show a higher content
of neurotrophins, indicating their potentials for cell therapy [94]. The main function of
oligodendrocytes is to form myelin sheaths to support and insulate axons. Therefore,
oligodendrocytes are highly related to diseases involving demyelination, such as MS and
ALS. It has been suggested that transplantation of human oligodendrocyte precursor cells
(hOPCs) could result in notable therapeutic outcomes in animals with MS or SCI [95–97],
whereas transplantation of mature oligodendrocytes has failed to remyelinate naked axons
in SCI [98,99]. Therefore, transplantation of hOPCs may be a potential therapy for demyeli-
nating diseases. On the other hand, astrocytes are the most numerous cell type in the brain,
playing various functions, including maintaining homeostasis, providing neurotrophic
support, and connecting neurons with the bloodstream [100]. The loss or dysfunction of
astrocytes is related to many neurological disorders, such as stroke, epilepsy, and MS [101].
Moreover, the astrocyte-formed glial scars are a reason that prevents neuroregeneration
after CNS injury [102]. However, a study has also reported functional recovery after graft-
ing hiPSCs-derived astrocytes with overexpressing the major glutamate transporter, GLT1,
in an SCI model, suggesting their pro-regenerative function [103]. Notably, it is reported
that the therapeutic effects of astrocytes are highly related to the subtypes of the cells.
Stephen et al. found that astrocytes generated from human glial precursor cells by expo-
sure to bone morphogenetic protein could promote significant functional recovery after
SCI, whereas astrocytes generated by exposing the cells to ciliary neurotrophic factor failed
to generate similar results [104]. Overall, the number of transplantation studies targeting
oligodendrocytes or astrocytes is much lower than neuron-based studies. However, with
better understanding of their functions in CNS, and more accessible sources of human
oligodendrocytes or astrocytes (e.g., from hiPSCs), transplantation of oligodendrocytes or
astrocytes may be a promising approach for treating specific neurological disorders.
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Table 4. Examples of neuron transplantation for neurological disorders in clinical trials (data from PubMed).

Cell Type Disease
(Model)

Route of
Administration Cell Source Cell

Amount

Number
of

Patients

Longest
Follow-Up Time

(after 1st
Transplantation)

Outcome/Conclusion Ref.

sympathetic
neurons PD Intracerebral Autologous

sympathetic neurons N/A 4 36 months,

Clinical evaluations
showed that an increase

in the duration of
levodopa-induced “on”
phase, and the percent

time spent in “off”
phase exhibited a

30–40% reduction as
compared to the

pre-grafting values

[105]

Dopamine
neuron-

contained
tissue

PD Intracerebral Human embryonic
mesencephalic tissue N/A 40 1 year

human embryonic
dopamine neuron

transplants survive in
patients with severe

Parkinson’s disease and
result in some clinical
benefit in younger but
not in older patients

[106]

neuronal cells Stroke Intracerebral Human
teratocarcinoma N/A 12 18 months

No adverse cell-related
serologic or

imaging-defined effects.
The total European
Stroke Scale score

improved in six patients
(3 to 10 points), with a
mean improvement of

2.9 points in all patients

[107]

3.5. Mesenchymal Stromal/Stem Cells (MSCs)

MSCs are multipotent cells that can differentiate into various cell types, including bone
cells, muscle cells. In addition, it has been reported that MSCs can be transdifferentiated
into neural cells under specific conditions, indicating the potential of MSCs for treating
neurological diseases [49,108]. Human MSCs (hMSCs) can be easily obtained from many
sources, among which the most studied hMSCs are those from bone marrow, umbilical cord,
and adipose tissue. Although the detailed differences in their biological characteristics from
different sources, the easy acquisition and the common properties, such as the capacity
of self-renewing, multi-lineage differentiation, low tumorigenicity, low immunogenicity,
and immunoregulatory function, have made hMSCs a promising candidate for cell therapy.
Moreover, as mentioned above, hMSCs can also be a source of transplantable neural cells
in vitro in models of neurological disorders.

Due to these advantages, hMSCs are currently one of the favorite cell types in cell
therapy studies involving treating neurological diseases. Hundreds of animal studies have
proved their safety and therapeutic effects for various neurological disorders (see Table S4).
Moreover, even hMSC-conditioned medium or hMSCs-derived exosomes have been shown
to alleviate the symptoms of experimental stroke or SCI [109,110]. Notably, although it
has been reported that hMSCs can differentiate into neural cells in the injured area after
transplantation [111,112], other researchers have also found that hMSCs could result in
significant functional recovery without neural differentiation or even when hMSC is cleared
away at the end of the experiment, suggesting that the main mechanisms of their beneficial
functions are neurogenesis and angiogenesis promotion, anti-apoptosis, anti-inflammation,
and immunomodulation rather than cell replacement [113–117]. Furthermore, studies
have demonstrated that hMSCs can cross the blood-brain barrier (BBB) and home to
the injured site through intravenous administration, which is a more suitable route for
clinical use compared to direct local delivery to the affected tissue [118,119]. However,
it is noteworthy that negative outcomes from hMSCs transplantation have also been
shown in several studies, suggesting that administration of hMSCs alone may not be
enough to generate significant therapeutic outcomes in some cases [120,121]. Therefore,
several methods have been used to improve their therapeutic functions, such as pre-
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treatment [122], genetic modification [123], co-transplantation with hNSPCs [63], combined
with other treatments [124], and using biomaterial scaffolds as a carrier [125]. Interestingly,
the therapeutic effects of hMSCs may also be related to the source of the cells or the age of
the donor. Jumpei et al. have reported that human cranial bone-derived MSCs could result
in significant functional recovery in a rat model of stroke, but not human iliac bone-derived
MSCs [126]. Susumu et al. have reported that transplantation of hMSCs from young
donors could provide better functional recovery through multiple mechanisms than old
hMSCs [127].

To date, many clinical trials using umbilical cord-derived MSCs (UC-MSCs) or autolo-
gous bone marrow (BM-MSCs) or adipose-derived MSCs (hADSCs) for treating various
neurological disorders have been conducted and published (see Table 5). However, most
of the studies have only demonstrated the safety hMSCs administration. Although the
therapeutic effects have been seen in many clinical trials, the number of patients in each
trial is usually not sufficient for analyzing the efficacy. Therefore, it is necessary to take
hMSCs to the next step using more patients and proper controls to study their therapeutic
effects and the mode of action in specific neurological disorders.

Table 5. Examples of hMSCs transplantation for neurological disorders in clinical trials (data from PubMed).

Disease (Model) Route of
Administration Cell Source Cell Amount Number of

Patients

Longest
Follow-Up Time

(after 1st
Transplantation)

Outcome/Conclusion Ref.

Cerebellar ataxia Intrathecal
Bone marrow,

(cell line:
CS20BR08)

2 × 106/kg 1 10 months

No adverse events reported.
Improved K-SARA (Korean
version of the Scale for the
Assessment and Rating of

Ataxia) scores

[128]

ALS Intrathecal Autologous bone
marrow 30 × 106 8 14 months

No change in progression rate
in patients with an inherently

slow course, but some
decreased progression rate in
patients with an inherently

rapid course

[129]

SCI Intrathecal Umbilical cord 4 × 106/kg 143 12 months

No serious adverse events
reported. Significant

improvements in neurological
dysfunction and recovery of

quality of life

[130]

Acute
complete SCI Intraspinal Umbilical cord 40 million 40 12 months Promoted recovery of

neurological function [131]

Chronic SCI Intradural and
intravenous

Autologous bone
marrow 6.6–7.6 × 107 1 5 years

No complication or serious
adverse effects, improved

motoric function
[132]

Acute
complete SCI Intraspinal Umbilical cord 4 × 107 2 1 year

No obvious adverse symptoms
reported, the supraspinal

control of movements below
the injury was regained by

functional NeuroRegen
scaffolds implantation

with hMSCs

[133]

SCI Intrathecal Autologous
adipose 9 × 107 14 8 months

No serious adverse events.
Several patients showed mild

improvements in
neurological function

[134]

Cerebral palsy Intravenous Umbilical cord 4.5–5.5 × 107 39 13 months

hMSCs transplantation was
safe and effective at improving

the gross motor and
comprehensive function of
children with cerebral palsy

when combined with
rehabilitation

[135]

Cerebral palsy Intrathecal and
intravenous Umbilical cord 8 × 106/kg 1 18 months

No serious adverse effects
reported. hMSCs

transplantation improved
functional recovery, combined

with rehabilitation

[136]
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Table 5. Cont.

Disease (Model) Route of
Administration Cell Source Cell Amount Number of

Patients

Longest
Follow-Up Time

(after 1st
Transplantation)

Outcome/Conclusion Ref.

Cerebral palsy Intravenous Umbilical cord 80 × 107 1 5 years

hMSCs transplantation with
basic rehabilitation improved
the motor and comprehensive

function. No serious
adverse events

[137]

TBI
Intrathecal,

intramuscular,
and intravenous

Wharton’s jelly 18 × l06 /kg 1 12 months

No important negative effects
were reported. The patients’
speech, cognitive, memory,

and fine motor skills
were improved

[138]

Chronic ischemic
stroke Intracerebral Bone marrow,

cell line: SB623 2.5–10 × 106 18 24 months

All experienced at least
1 treatment-emergent adverse
event. 7 experienced 9 serious

adverse events, which resolved
without sequelae. Improved

clinical outcomes

[139]

Chronic stroke Intravenous Autologous
bone marrow 5.3 × 105–2.9 × 106/kg 9 60 weeks

No adverse event reported.
Improved neurological

functions and
clinical outcomes

[140]

Stroke Intravenous Autologous
bone marrow 0.6 to1.6 × 108 12 12 months

No significant adverse effects
were found. Improved
neurological function

[141]

HIE
Intrathecal,

intramuscular,
and intravenous

Wharton’s jelly 12 × 106/kg 1 12 months Improved
neurological recovery [142]

HIE Intravenous Umbilical cord 1 × 108 22 180 days

No significant adverse effects
were found. Markedly
improved recovery of
neurological function,

cognition ability, emotional
reaction, and

extrapyramidal function

[143]

MS Intravenous Umbilical cord 14 × 107 20 1 year
No serious adverse events

reported. Improved
functional recovery

[144]

MS Intravenous Autologous
bone marrow 1–2 × 106/kg 24 6 months

No serious adverse effects
reported. No substantial
evidence of inhibition of

disease activity, tissue repair,
or recovery of function

[145]

MS Intravenous Umbilical cord 12 × 106/kg 23 12 months
No significant adverse effects

were found. Improved
neurological function

[119]

Drug-resistant
epilepsy Intrathecal Autologous

bone marrow 7.4–16 × 107 4 2 years

CD271+ hMSCs, combined
with autologous bone marrow
nucleated cells transplantation,

showed no serious adverse
events but considerable

neurological and
cognitive improvement

[146]

PD Intracerebral Autologous
bone marrow N/A 7 36 months

No significant adverse effects
were found. Several patients

showed improved
neurological function

[147]

3.6. Dental Pulp Stem Cells (DPSCs) and Stem Cells from Human Exfoliated Deciduous
Teeth (SHED)

DPSCs and SHED are derived from the dental pulp of adult permanent teeth and
baby deciduous teeth, respectively. They are ectoderm-derived stem cells originating
from neural crest cells and possess similar characteristics as MSCs, including the capacity
of self-renew and multi-lineage differentiation and expression of MSC-related markers.
However, it is still controversial to define DPSCs and SHED as MSCs, mainly due to
their different potency of differentiating into specific lineages [148]. Because of their
easy accessibility by routine dental procedures and their MSC-like properties, DPSCs and
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SHED have gained more attention in the last decade in the field of regenerative medicine,
including treating neurological diseases. Moreover, they can maintain their stemness and
multipotency for many years by cryopreservation, therefore, providing an opportunity for
cell banking [149,150].

Remarkably, it has been reported that, compared to BM-MSCs or hADSCs, DPSCs
have a higher growth rate, stronger neurogenesis, and better neuro-supportive and neuro-
protective properties in neurological injuries and pathologies [148], indicating they may
have better therapeutic effects for neurological disorders. DPSCs have been used to
treat many neurological disorders in animal studies and have led to significant beneficial
outcomes (see Table S5), mainly through the secretion of neurotrophic factors and anti-
inflammatory functions [151]. It has been reported that the expression of neurotrophic
factors in DPSCs is higher than that of hADSCs and BM-MSCs [152]. The conditioned
medium from DPSCs can also improve several neuropathological conditions, including
ALS [151,153]. On the other hand, the therapeutic effects of SHED for neurological disorders
have also been studied in some animal studies, which have shown improved results (see
Table S5). It is suggested that SHED are in a more immature state than DPSCs with
higher expression of pluripotent markers and a higher proliferation rate, while DPSCs
show higher expression of neuroectodermal markers [154,155]. Similarly, the conditioned
medium of SHED has also been proved to be therapeutic for animal model of stroke, PD,
and TBI etc [156–158].

Overall, DPSCs and SHED are also promising candidates for treating neurological
disorders and may be beyond hADSCs and BM-MSCs. However, due to the limited
volume of the pulp tissue, it usually takes months to obtain enough cells for therapy
from the primary isolation, although they have a high proliferation rate [148]. Moreover,
the heterogeneity of DPSCs and SHED may affect their therapeutic potentials [159,160].
Moreover, most of the available evidence of their therapeutic function for neurological
disorders was acquired using nonhuman xenotransplants. It is still a long way to study
their therapeutic and side effects in humans.

3.7. Muse Cells

Muse cells (multilineage-differentiating stress enduring cells) are non-cancerous
pluripotent stem cells that were first discovered by Yasumasa et al. in 2010 [161]. Muse
cells are sporadically present in the connective tissue of nearly all organs, such as bone
marrow and umbilical cord, and can even be collected from commercial cell lines, including
human fibroblasts and bone marrow MSCs [161–163]. Interestingly, it has been reported
that Muse cells are the primary source of hiPSCs in human fibroblasts, but not the non-
Muse cells [164,165]. Moreover, as Muse cells are present in cultured MSCs, it is thought
that Muse cells are more therapeutic in clinical MSCs therapies regarding tissue regenera-
tion [166]. The characteristics of Muse cells, including non-tumorigenicity, pluripotency,
and easy collection, have made Muse cells a promising candidate for cell therapy.

Several animal studies have shown the safety and effectiveness of human Muse cells
for treating neurological disorders, such as stroke, intracerebral hemorrhage, encephalopa-
thy, ALS, and SCI (see Table S6). Moreover, Muse cells can engraft and integrate into
the damaged regions and differentiate into neuronal cells, and finally, lead to functional
and morphological recovery after intravenous administration [167–170]. However, Muse
cells are still a novel type of stem cells that have not been well studied as other stem cells.
With more related studies, we will obtain a better understanding of Muse cells and their
potentials for treating neurological disorders.

3.8. Olfactory Ensheathing Cells (OECs)

OECs, also known as olfactory ensheathing glia, are terminally differentiated and
self-renewable cells that are found in both the peripheral nervous system (PNS) and CNS,
supporting the regeneration of the olfactory system throughout life. OECs can be isolated
from the olfactory bulb (OB-OECs) through intracranial surgery or from olfactory mucosa
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(OM-OECs) through a simple, non-invasive nasal biopsy, which is preferred for autologous
transplantation. Based on these properties, human OECs (hOECs) are considered a suitable
candidate for CNS transplantation, particularly for SCI treatment. Numerous animal
studies have shown that hOECs could promote the recovery from SCI through various
mechanisms, including neuroprotection, promoting axonal growth/sprouting, improving
angiogenesis, and restriction of glial scar [171,172]. Notably, OECs from different sites
may act through different mechanisms. It has been reported that OM-OECs could regulate
extracellular matrix and improve angiogenesis, while OB-OECs intend to improve axonal
regeneration [172]. In addition to the animal studies, hOECs have also been used in clinical
trials for SCI since the early 2000s (see Table 6). Although with a relatively small size of
patients and variable outcomes in different patients, hOECs transplantation has led to
different levels of functional recovery in most cases, indicating their therapeutic roles for
SCI. Moreover, hOECs have also been used for treating ALS and cerebral palsy patients
and have resulted in functional improvements, suggesting their therapeutic potentials are
not only for SCI but also for other neurological disorders [173,174].

However, several bottlenecks are impeding the therapeutic effects of hOECs. hOECs
isolated from the olfactory bulb or olfactory mucosa usually contain contamination cells
such as fibroblasts that may affect their effects and need to be purified [175–177]. Moreover,
the difficulty to quickly expand, poor survival after suspension injection, limited migra-
tion, and phagocytosis are also considered the major hampers of hOECs treatments [175].
Although various methods have been used to optimize OECs transplantation, it is still far
from being a mature treatment for neurological disorders, including SCI [175].

Table 6. Examples of OECs transplantation for neurological disorders in clinical trials (data from PubMed).

Disease Route of
Administration Cell Source Cell Amount Number of

Patients

Longest
Follow-Up Time

(after 1st
Transplantation)

Outcome/Conclusion
(Targeting Behavioral and

Histological Change)
Ref.

SCI Intraspinal Autologous
olfactory bulb 5 × 105 1 19 months

Improved neurological and
histopathological recovery, no

adverse effects were seen
[178]

SCI Intraspinal Human fetal
olfactory bulbs 1 × 106 7 6 months

No serious adverse effects
were seen. All treated patients

showed functional
improvement, 4/5 showed

improvement in
electrophysiological tests

[177]

SCI Intraspinal Human fetal
olfactory bulbs 2–5 × 106 15 8 weeks

No serious adverse effects
were seen. 12/15 showed
obvious spinal function

improvement, and 3/15 had
slight improvement

[179]

SCI Intraspinal Autologous
nasal mucosa 1.8–21.2 × 106 6 1 year

no adverse findings related to
olfactory mucosa biopsy or
transplantation. All treated
patients showed improved
functional recovery, 2/3 of

treated patients showed
improved American Spinal

Injury Association class

[176]

SCI Intraspinal Human fetal
olfactory bulbs 2 × 106 6 24 months

No clinical complications were
observed. All patients showed

improved neurofunctional
recovery

[180]

SCI Intraspinal Autologous
olfactory mucosa Not mentioned 8 24 months

No clinical complications were
observed. All patients showed

improved neurofunctional
recovery, 3/8 showed returned

substantial sensation and
motor activity in various

muscles, 2/8 showed restored
bladder function

[181]
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Table 6. Cont.

Disease Route of
Administration Cell Source Cell Amount Number of

Patients

Longest
Follow-Up Time

(after 1st
Transplantation)

Outcome/Conclusion
(Targeting Behavioral and

Histological Change)
Ref.

SCI Intraspinal Human fetal
olfactory bulbs 5 × 105 11 1.5 years

All patients had no
complications or deterioration

of neurological conditions.
Sensation and spasticity
improved moderately.
Locomotion recovery

was minimal

[182]

SCI Intraspinal olfactory bulbs 5 × 105 108 5.3 years

No serious adverse effects
were seen. Improve

neurological functions.
Sufficient rehabilitation most

likely played a critical role

[183]

SCI Intraspinal olfactory bulbs 5 × 105 171 12 weeks

OECs transplantation can
improve the neurological

function of spinal cord of SCI
patients regardless of their ages

[184]

ALS
Intracranial

and/or
intraspinal

Human fetal
olfactory bulbs

1–2 ×
106/treatment,
1–5 treatments

507 N/A
multiple doses of cellular

therapy serve a positive role in
the treatment of ALS

[173]

Cerebral palsy Intracranial Human fetal
olfactory bulbs 2 × 106 14 6 months

OECs transplantation is
effective for functional

improvement in children and
adolescents with cerebral palsy,

yet without obvious
side effects

[174]

3.9. Hematopoietic Stem Cells (HSCs)

HSCs are multipotent cells that generate all types of blood cells and can be found
in peripheral blood, bone marrow (which provides an opportunity for autologous trans-
plantation), and umbilical cord blood. Human HSCs (hHSCs) are one of the earliest cell
types that have been used for clinical transplantation for the treatment of certain can-
cerous diseases, with acceptable safety [185]. Due to their ability to generate new blood
and immune cells, hHSCs, especially autologous hHSCs, have also been used to treat
autoimmune diseases of the nervous system, including MS, in the last two decades [186].
Currently, thousands of MS patients have been treated with autologous hHSCs, and many
of them have shown significant therapeutic outcomes. However, in comparison to other
stem cells, hHSCs only work as a supportive blood product following chemotherapy to
speed hematopoietic recovery rather than a single treatment for these diseases. Actually,
“autologous hematopoietic stem cell transplantation (AHSCT)” has become a clinical term
that contains several procedures, including (1) mobilization—releasing hHSCs from the
bone marrow into peripheral blood, (2) harvesting—collecting hHSCs from the blood of
the patient, (3) conditioning regimen—administration of cytotoxic chemotherapy, and (4)
infusion—returning hHSCs to the patient by infusion into the veins. Overall, with more
clinical experience, AHSCT has become a promising supportive strategy for treating MS.
The current status of using AHSCT for MS is well reviewed in a published paper [187].

4. Discussion

Cell therapy for neurological disorders has attracted more and more attention from
researchers due to its unique and promising therapeutic potentials through the capabilities
of cell replacement, neuroprotection, and promotion of intrinsic neuro-restoration. In this
paper, we have introduced some promising cell types and their applications in treating
neurological disorders both in animal studies and clinical trials. As we have summarized
(see Table 7), each type of cell has its unique properties and may have different therapeutic
functions in treating different diseases. However, it is worth mentioning that, although
we have listed some common neurological disorders, the potential targets of the cells are
not limited to what we have mentioned above. For example, MSCs have also been shown
to be therapeutic for autism and meningitis, etc. [188,189]. An ideal cell type is not only



Biology 2021, 10, 1142 14 of 23

about its therapeutic effects but also about its accessibility and cost and the time to obtain
sufficient quantities. Therefore, it is hard to identify the best cell candidate for neurological
disorders at the current stage without enough comparative data.

Table 7. Characteristics of cell candidates for neurological disorders through direct transplantation.

Cell Type Stemness Advantage Disadvantage
Examples of Targeted

Neurological Disorders
in Animal Studies

Examples of Targeted
Neurological Disorders

in Clinical Trials

hESCs Pluripotent Unlimited proliferation
Ethical issues; risk of

immune rejection, risk of
tumor formation

SCI Lyme disease, MS, SCI,
stroke, cerebral palsy

hiPSCs Pluripotent
No ethical issues; applicable

for autologous transplantation;
high accessibility

Risk of tumor formation,
unpredictable mutagenesis SCI, stroke N/A

hNSPCs Multipotent
Neural lineage differentiation;
low risk of tumor formation;

multiple sources

Comparatively low
proliferation

SCI, HD, stroke, PD, AD,
ataxia, TBI, ALS

Stroke, ALS, PD, SCI, MS,
TBI, cerebral palsy

Neurons Terminal cells No risk of tumor formation; no
unexpected differentiation

Poor survival after
transplantation SCI, ALS, PD, AD PD, stroke

Oligodendrocytes Terminal cells No risk of tumor formation; no
unexpected differentiation

Poor survival after
transplantation MS, SCI N/A

Astrocytes Terminal cells No risk of tumor formation; no
unexpected differentiation

Effects highly depend on the
subtype of the cells; not

much studied
SCI N/A

hMSCs Multipotent

Applicable for autologous
transplantation; high

accessibility; low risk of
tumor formation

Limited neural
differentiation; effects may

be not as suitable as hNSPCs

SCI, PD, stroke, TBI, ALS,
ataxia, MS, AD, epilepsy

SCI, PD, stroke, TBI, ALS,
ataxia, MS, epilepsy,
cerebral palsy, HIE

DPSCs Multipotent

Applicable for autologous
transplantation; high

accessibility; low risk of
tumor formation

Limited neural
differentiation; high

heterogeneity; low number
of cells from pulp tissue

SCI, HD, ataxia, stroke, PD N/A

SHED Multipotent High accessibility; low risk of
tumor formation

Limited neural
differentiation; high

heterogeneity; low number
of cells from pulp tissue

SCI, stroke N/A

Muse cells Pluripotent

Applicable for autologous
transplantation;

high accessibility;
non-tumorigenicity

Not much studied SCI, stroke, HIE, ALS N/A

hOECs Terminal cells

Applicable for autologous
transplantation;

high accessibility;
non-tumorigenicity; no

unexpected differentiation

Hard to purify; poor
survival after

transplantation; limited
migration and phagocytosis;

SCI SCI, ALS, cerebral palsy

hHSCs Multipotent
Applicable for autologous

transplantation;
high accessibility

Some risk of serious
adverse effects N/A MS

Abbreviation: SCI = spinal cord injury; MS = multiple sclerosis; HD = Huntington’s disease; TBI = traumatic brain injury; PD = Parkinson’s
disease; AD = Alzheimer’s disease; ALS = amyotrophic lateral sclerosis; HIE = hypoxic-ischemic encephalopathy; N/A = not applicable.

Aside from cell type, cell source, and the target disease, the outcome of cell therapy
can also be highly influenced by other factors, including the route and cell quantity of
cell administration. Intracerebral and intraspinal administration can bring more cells to
the target position but may cause unexpected adverse effects due to the procedure, while
intravenous or intranasal injections are safer but may lead to a loss of the cells. In addition,
a successful cell therapy usually needs millions of cells for transplantation to humans;
however, the cells are not “the more, the better” as more cells may result in negative
outcomes, for example, reducing the safety of the cell therapy. Therefore, a proper delivery
approach and a safe and therapeutic range of the quantity of the cells need to be found
for specific diseases in future studies. Luckily, despite being at the pre-clinical stage of
development, several methods have been proven to improve the therapeutic effects of the
cells, such as genetic modification, pre-conditioning, and co-transplantation. With more
studies conducted, it is possible to develop more effective cell therapies for patients with
neurological disorders.
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However, it is noteworthy that although animal studies usually show significant
improvement after cell transplantation, the outcomes from clinical trials are normally not
as suitable as from animal studies due to the differences between clinical diseases and
animal models, such as the far greater heterogeneity between human patients than that of
purpose-bred animals. Therefore, some success in animal studies may not be transferred to
human studies, indicating the need to build up more clinically related animal models.

5. Conclusions

In this paper, we have introduced some promising cells that may be clinically thera-
peutic for the treatment of neurological disorders, based on their characteristics and the
results from related clinical trials and recent animal studies. Overall, with more knowledge
about these cells, it can be foreseen that cell therapy will have a crucial place in the future
clinical management of neurological disorders, although there is still much work that
remains to be done.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/biology10111142/s1, Table S1: Examples of hiPSC transplantation for neurological disorders in
animal studies since 2016 (data from PubMed). Table S2: Examples of hNSPC transplantation for
neurological disorders in animal studies since 2016 (data from PubMed). Table S3: Examples of
human neuron, oligodendrocyte, and astrocyte transplantation for neurological disorders in animal
studies since 2016 (data from PubMed). Table S4: Examples of hMSC transplantation for neurological
disorders in animal studies since 2016 (data from PubMed). Table S5: Examples of DPSC and SHED
transplantation for neurological disorders in animal studies since 2016 (data from PubMed). Table S6:
Examples of human Muse cell transplantation for neurological disorders in animal studies since 2016
(data from PubMed).
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