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We tested whether self-organizing maps (SOMs) could be used to effectively integrate, visualize, and mine diverse ge-
nomics data types, including complex chromatin signatures. A fine-grained SOM was trained on 72 ChIP-seq histone
modifications and DNase-seq data sets from six biologically diverse cell lines studied by The ENCODE Project Consortium.
We mined the resulting SOM to identify chromatin signatures related to sequence-specific transcription factor occu-
pancy, sequence motif enrichment, and biological functions. To highlight clusters enriched for specific functions such as
transcriptional promoters or enhancers, we overlaid onto the map additional data sets not used during training, such as
ChIP-seq, RNA-seq, CAGE, and information on cis-acting regulatory modules from the literature. We used the SOM to
parse known transcriptional enhancers according to the cell-type-specific chromatin signature, and we further corrobo-
rated this pattern on the map by EP300 (also known as p300) occupancy. New candidate cell-type-specific enhancers were
identified for multiple ENCODE cell types in this way, along with new candidates for ubiquitous enhancer activity. An
interactive web interface was developed to allow users to visualize and custom-mine the ENCODE SOM. We conclude that
large SOMs trained on chromatin data from multiple cell types provide a powerful way to identify complex relationships
in genomic data at user-selected levels of granularity.

[Supplemental material is available for this article.]

Sequence-based functional genomics assays are generating vast

amounts of data that map the occupancy of specific transcription

factors, the chemical status (such as acetylation and methylation),

and positions of chromatin components such as core histones, the

loading of RNA polymerases, and domains of DNase I hypersen-

sitivity across the human genome at high resolution (Barski et al.

2007; Johnson et al. 2007; Mortazavi et al. 2008; Hesselberth et al.

2009; for review, see Pepke et al. 2009). Such measurements are

now being made for a myriad of cell types, states, and tissues by

individual laboratories and by large consortia such as ENCODE

and the Epigenome Roadmap (Bernstein et al. 2010; The ENCODE

Project Consortium 2012). This wealth of data contains rich, com-

plex, combinatoric information about the inputs and outputs of

gene regulatory networks (GRNs) that define each cell type and state.

However, it is not yet easy to extract and distill biologically mean-

ingful relationships, especially not on the multiple scales that range

from broad global relationships to fine-grained ones that affect small

groups of similarly behaving genes or subgenic regulatory elements.

Numerous prior studies have focused on understanding the

relationship between an increasingly complex histone modifica-

tion ‘‘code’’ and the activity state of DNA elements, such as tran-

scriptional enhancers, insulators, promoters, and more or less

vigorously transcribed regions for a given cell type or tissue (for

review, see Hon et al. 2009). Furthermore, apparent cross talk be-

tween context-dependent histone modifications suggests a com-

plex grammar (for review, see Lee et al. 2010). Pioneering analyses

focused on specific ad hoc combinations of modifications found in

the proximity of transcription start sites (TSS) or in selected distal

intergenic regions (Barski et al. 2007; Wang et al. 2008).

More recent approaches have been more general and agnos-

tic, dividing the entire genome systematically, either at regular

intervals or based on the data (i.e., ‘‘segmenting’’ the genome) and

then classifying the resulting genome segments (regions) into five

to 100 states of chromatin mark combinations (classes) by apply-

ing statistical or machine learning methods such as Hidden Markov
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Models (HMMs) or Dynamic Bayesian Networks (e.g., Ernst and

Kellis 2010; Hoffman et al. 2012). The resulting machine-derived

‘‘states’’ are then semi-manually annotated to relate them to func-

tions such as gene activation or repression. However, it is not clear

a priori if the limited numbers of states used in these analyses, partly

for ease of interpretation, fully or optimally capture the biological

richness in the data, especially for the much larger and more diverse

collections of data sets now being generated by projects such as the

ENCODE and NIH Roadmap Epigenomics Projects.

The self-organizing map (SOM) is an unsupervised machine-

learning method that was developed to cluster and visualize high-

dimensional data (for review, see Kohonen 2001). It projects high-

dimensional data onto a two-dimensional map composed of many

units, each of which can be regarded as a mini-cluster, defined by its

associated prototype vector of component weights. SOMs capture

similarity relationships present in the training data as map topology,

such that individual neighboring hex-units can subsequently be

clustered after training into ‘‘metaclusters’’ as appropriate. This is

analogous to the way biologists typically interact with RNA expres-

sion patterns and subpatterns in a classic two-way hierarchical clus-

tering (Eisen et al. 1998). Indeed, SOMs with modest map sizes of

less than 100 units have been used for more than a decade for clus-

tering gene expression data (Golub et al. 1999; Milone et al. 2010;

Newman and Cooper 2010; Spencer et al. 2011) or modest numbers

of other genomic data sets (Moorman et al. 2006; Suzuki et al. 2011).

While SOMs with small map sizes produce results that are generally

equivalent to K-means, SOMs with thousands of units on boundary-

less maps can show emergent behavior (Ultsch 1999). We reasoned

that large SOMs should be able to capture a greater variety of com-

bined chromatin mark patterns compared with methods that find

a relatively small number of chromatin states, and that the resulting

organization could be more readily visualized and ultimately mined

in an intuitive way. Specifically, we anticipated that a large SOM,

constructed from multiple genome-wide data types, collected across

biologically distinct ENCODE cell types, would begin to reveal pat-

terns of active, cell-type-specific transcriptional control elements

based on their associated chromatin signatures.

As a first test of these possibilities, the trained ENCODE

chromatin SOM presented here displayed distinct spatial organi-

zation that reveals how combinations of histone marks, DNase I

hypersensitivity, and RNA polymerase occupancy correlate with

gene features and activity, such as a relatively large supercluster of

transcription start sites (TSS) that are active in one or more cell

types, or a cluster of genes repressed in another cell type or types.

We show how additional ChIP-seq, RNA-seq, transcription factor

binding motifs, and other functional data can be placed on the

chromatin map to identify and interpret cell-type-specific regula-

tory elements and transcription start sites. We then hierarchically

cluster the SOM hex-units to explore global relationships of the

different data sets on the SOM. Gene Ontology (GO) analysis re-

veals distinct enrichments in individual, often neighboring, units

on the map related to cell-type-specific gene regulation. Finally, we

introduce an interactive web interface to facilitate further mining

of the ENCODE SOM and apply it to the analysis of cell-type-

specific EP300 (also known as p300)–enriched units.

Results

Chromatin SOM construction and overall organization

The workflow for building a chromatin-based SOM begins with

primary data mapping and genome segmentation and ends with

visualization and data mining (Fig. 1). Briefly, the first step is to

computationally break the genome into ‘‘segments’’ based on the

data. The goal of segmentation is to define, across the entire ge-

nome, DNA segments that share the presence and absence of

marks in the input data. To coordinate our results with other ENCODE

Project Consortium work (The ENCODE Project Consortium

2012), we used a specific genome segmentation generated on 84

preselected data sets of eight histone modifications, RNA poly-

merase II, and CTCF from ChIP-seq, ChIP input control, and three

open chromatin assays across six cell types using a ‘‘stacked’’ seg-

mentation generated with ChromHMM (Ernst and Kellis 2010).

We then constructed a training matrix consisting of the signal

density for 72 of these data sets for each of the 1.5 million indi-

vidual genome segments using only one of the DNase-seq assays

to represent open chromatin. The Methods and Supplemental

Figure S1 describe how the stacked segmentation differs from other

segmentations of the same data.

We used the resulting matrix of 1.5 million 72-dimensional

data vectors to train a SOM with map size of 30 rows of 45 columns

(1350 units), and selected the best out of 10 maps based on the

lowest quantization error (Methods) (Supplemental Fig. S2). The

size of the map was selected to allow us to recover at least a thou-

sand distinct states, if they were present in the data. In a uniformly

distributed untrained map, we would expect 1170 segments/unit

and 2.2 Mb/unit, on average. This map is a toroid, meaning that

the top units on the map are seamlessly connected to the bottom

units, and that the same applies to the leftmost and rightmost

units (Supplemental Fig. S3). We chose the toroid form because it

has no boundaries, which should prevent it from compressing

clusters into map corners. To display a toroid map in two dimen-

sions, we ‘‘slice it open,’’ and some clusters are therefore visually

split; that is, they ‘‘wrap around’’ the top edge to the bottom and

from the left edge to the right, as indicated by the arrows (Sup-

plemental Fig. S3). All assignments of segments to SOM hex-

units are available for this SOM as a single bed file (Supplemental

Table S1).

The distribution of DNA segments and nucleotides on the

untrained map was without pattern and relatively even, while the

trained map was much more uneven (Figs. 1, 2). This is expected

because the segments on the trained map have been organized into

clusters that contain differing segment numbers and nucleotide

densities. For example, many of the larger DNA segments had little

to no signal for any data set, and they were sequestered into a rel-

atively small fraction of the SOM; on this 30-by-45 map, 48 con-

tiguous units (3.5% of all units) captured 38% of the entire genome

sequence, and is shown as high nucleotide density and segment

count in Figure 2, A and B. The remainder of this map is dedicated

to more finely parsing segments that have some signal in at least

one of the training data sets. These overall organizational proper-

ties were not specific to this particular instance of the SOM nor to

the ENCODE chromatin data. The top-scoring ENCODE SOM was

very similar to the next nine best-scoring SOMs, each trained in-

dependently on the same input data, but from different random

initializations. Specifically, we found that, for all of the units and

regions of the SOM discussed below, segments within the same

unit were clustered on the other nine maps within the same unit or

adjoining units >80% of the time (Fig. 2C). We further analyzed the

effect of leaving individual data sets out by retraining SOMs with

72 combinations of 71 data sets each and repeating the repro-

ducibility analysis. We found that map reproducibility was robust

to the removal of any one of 29 data sets (listed in Supplemental

Table S2). While no single group of data sets was completely re-
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Figure 1. Training the self-organizing map and general overview of data analysis. The genome is first segmented based on the signal density of input
data sets. Any segmentation approach can be applied; in this case, the ChromHMM-derived segmentation in the primary publications by The ENCODE
Project Consortium was used. The signal density is calculated for each segment and each data set, resulting in an input matrix of M 3 N dimensions,
where M is the number of segments and N the number of data sets. The SOM is then initialized randomly from the input matrix, and trained. Additional
data sets, not used for training, can then be mapped to the SOM, and these mappings and the distribution of segments on the trained SOM can be mined
for interesting biological relationships.



dundant, we found that three groups of data sets (H3K9ac,

H3K36me3, and Control) were redundant in four out of six cell

types, whereas another group of data sets (RNA Pol II, DNase I, and

H3K4me3) was redundant in only one of six cell lines. Inter-

estingly, the removal of these apparently redundant data sets still

affected the reproducibility of a distinct subset of units, suggesting

that they still contributed to the organization of the SOM in re-

stricted regions of the map. These results argue that our SOM is

robust and stable, and that segments with similar signatures are

stably located near each other on the map, even though such

segments do not always fall into a single hex-unit on indepen-

dently trained SOMs. Local differences of the latter kind are ex-

pected for a nondeterministic method and can be discriminated

from major differences, as shown below.

The SOM displayed several distinctive, very-low-segment-

count ‘‘boundaries,’’ usually just one unit wide and with as few as

30 segments/unit (Fig. 2A,B). These are, in effect, boundary units

that separate clusters located on either side and that are charac-

terized by distinct mark profiles. For example, H3K4me3-enriched

segments are segregated from CTCF-associated ones in an adjacent

map region (Supplemental Fig. S4).

We next explored where transcription start sites (TSS) map

on the ENCODE SOM. No explicit information on annotated TSSs

was used in building this SOM. Our expectations were that active

TSSs would share a set of features present in the training data, in-

cluding high DNase I hypersensitivity, RNA polymerase II occu-

pancy (in varying intensities), H3K9ac, and H3K4me3 marks. This

predicts that active TSSs would generally cluster together some-

Figure 2. Map organization. (A) The segment count distribution over the map is uneven. While the average number of segments per unit is 1170,
individual units range from 30 to 9334 segments. Note the distinct 1-unit-wide boundaries that contain very few segments separating denser regions.
(B) The nucleotide distribution reflects the segment count, with the units with the most segments also containing the most nucleotides. These segments
are also larger, thus accounting for the large portion of the genome that has little to no signal. (C ) Reproducibility of clustering of two segments in the same
unit or adjoining units as described in the text. (D) TSS-centric organization of active proximal promoters. The unit densities of points �2 kb,�1 kb, 0 bp,
+1 kb, and +2 kb of GENCODE 7 TSS show the distinct organization of active promoters driven primarily by a common set of genes expressed in more than
one cell type.

ENCODE SOM
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where on the SOM. In contrast, inactive TSSs were expected to lack

these marks and, additionally, they might or might not show

a repressive mark signature. We therefore expected inactive TSSs to

occur elsewhere on the map, sequestered into one or a few clusters,

depending on whether they have no other data from the training

set or contain repressive mark data. A further expectation was that

the SOM would detect and subcluster segments according to the

intensity of their active-TSS signatures, since we had not reduced

the data to simple present–absent calls for signal, but had retained

all the quantitative information in the primary data. Finally, we

expected that the SOM would subcluster active TSSs according to

the cell type or combinations of types in which they were active.

All of the above expectations were met. A prominent region

of the map, having relatively low segment and nucleotide den-

sity, showed the highest fractional enrichment in the number

of GENCODE 7 (Harrow et al. 2012) TSS, with 27 units passing

a threshold of 0.8 TSS/segment (Fig. 2D). Note that each TSS in this

analysis was mapped as a single nucleotide, and was therefore

assigned to only one DNA segment, even if there were several

neighboring segments with very similar histone mark data. For this

reason, we do not expect every DNA segment with an active TSS

histone mark signature to score positive in this tally. As expected,

the prominent TSS domain in the lower-right quadrant of the SOM

corresponded with a domain of maximal DNase I hypersensitivity,

as illustrated by comparing this with H1-hESC DNase-seq data

(cf. Fig. 1 DNase I panels with Fig. 2D).

We next asked how DNA sequences located at varying dis-

tances from the nearest active TSS are organized on the map and

found that 35 units are enriched in segments within 2 kb of these

TSSs. We expected that near an active TSS, the chromatin signature

would be very similar to the TSS point nucleotide for many seg-

ments, but that some segments would now display ‘‘mixed’’ chro-

matin signatures that retain some qualities of a pure TSS and add

some characteristics of nearby chromatin. Such a ‘‘neighborhood’’

effect reflects properties of the original ChromHMM segmentation

process as well as the biology of the histone mark pattern in each

input cell type. As the distance from the TSS increases into the gene

body or into the upstream promoter region, the histone signatures

changed. On average, the distinct enrichments of single nucleo-

tides that are located at �2 kb, �1 kb, +1 kb, and +2 kb from the

TSSs in neighboring units demonstrates that the map has spatially

clustered active promoters and their immediate upstream and

downstream regions (Fig. 2D).

The prototype vectors for the units in the active-TSSs region

revealed that most DNA segments at the center of this region possess

signatures of expression in more than one cell type, although some

adjacent clusters are cell-type-specific. When examined for RNA

expression pattern and GO terms, the shared ones were house-

keeping and other genes common to the cell types in this study,

as expected. Investigating even more closely, we observed that in-

dividual units parse the levels of associated chromatin marks (e.g.,

high vs. medium vs. low H3K4me3) and the magnitude of the RNA

polymerase signal, in different data sets and cell types. As discussed

below, a user can drill even further down to select and extract DNA

segments from hex-units with particular signature characteristics

by using the SOM viewer and its associated DNA segment database.

Inspection of the SOM also reveals that multiple histone

modification marks, previously shown to be associated with active

transcription or active repression, drove the organization of the

majority of the map (e.g., H3K4 mono-, di-, and tri-methylation,

and H3K27me3 for activation and repression, respectively). This

emphasis was expected, as several histone marks associated with

active transcription tend to produce strong ChIP signals that are

localized over relatively short DNA regions. The information-rich

map regions typically show distinctive quantitative and qualita-

tive combinations of marks. Most component planes, such as the

ones shown for RNA polymerase II or H3K4me3 occupancy in the

cell line GM12878 (Supplemental Fig. S4), form a single, internally

connected cluster for their respective signal densities on the toroid.

However, several other marks such as H3K4me2 and H3K27me3

have more than one distinct cluster on the map. This pattern

suggests that they are found together with at least one other

different additional chromatin profiles(s), or that regions rich in

these marks are distinctive for individual cell types, or both (all

component weights are displayed in Supplemental Figs. S5–S10). We

return to dissecting the more complex patterns below.

Interactive SOM viewer for visualization and mining

We created an interactive JavaScript web-based SOM viewer with

an associated map segment database to facilitate these explora-

tions (http://woldlab.caltech.edu/ENCODESOM). It allows users

to visualize and compare units on the map with respect to any

input data set or to additional data types (see below), to find

properties of different regions of the map, such as Gene Ontology

enrichments, and to mine the segments in a given hex-unit or

cluster. The interface for version 1.0 consists of five tabs: Training

Data, TSS, GO, Other Data, and Clusters, which correspond to the

results in this manuscript. A tool for highlighting groups of hex-

units in one view and then seeing that outline on any subsequent

view aids in evaluating the relatedness of one distribution (RNA

polymerase II, for example) with another (TSS annotation or CAGE

tags). Users can click on individual units and find the associated

segments, genes, and GO-enriched genes. They can also select their

own set of units and flag them across the different views of the

data. This allows users, for example, to highlight a cluster of in-

terest in the Cluster tab and see the clustering reproducibility of

those highlighted units in the Other tab.

By using the viewer to ask how data from the input data sets

are clustered and how those clusters relate to each other, one im-

mediately sees the overlaps of units high in DNase I hypersensi-

tivity, H3K9ac, H3K27ac, H3K4me2, and H3K4me3. Had we not

known prior to this study that these chromatin signatures are af-

filiated with active promoters, the SOM would have allowed us to

readily discover these relationships. Even knowing these general

relationships, the SOM allows us to mine for fine structure that

includes more complicated profiles of cell type specificity.

In contrast, we detected little overall change in H4K20me1

across the cell types and little affiliation of this mark with other

signals, which leads segments high in those marks to cluster in

a single location (upper-left quadrant of the map, Supplemental

Fig. S11). Finally, we saw that the RNA Pol II component plane

enrichments showed a gradient of RNA Pol II signal centered on

a single unit that has the highest signal, which emphasizes that the

SOM is clustering on the presence of the signal and also on its

intensity. Units immediately around it have lower RNA Pol II in-

tensity, and a user could then mine these, asking what additional

information (possibly other marks and/or cell-type patterns) are

distinguishing them from the single peak RNA Pol II unit.

Overlaying other ChIP-seq and functional data to find
additional relationships

The SOM can also be used to test predictions, mine associations,

and map relationships for data sets that were not used to train the
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SOM. We began by exploring evidence for cell-type-specific cis-

regulatory modules (CRMs) in the erythroid/monocyte lineage

(K562) and in embryonic stem cells (H1-hESC) (Fig. 3). The tran-

scription factors GATA2 and SPI1 (also known as PU.1) are im-

portant in erythroid differentiation, while POU5F1 (also known as

OCT4) and NANOG are critical for defining embryonic stem cells.

ENCODE ChIP-seq occupancy data for each factor was mapped

onto the SOM (Fig. 3E–J). Occupancy for each factor was con-

centrated in two cell-type-specific clusters, one in the upper-left

quadrant, and the other in the lower right (wrapping around to the

top right, due to the continuous structure of the map). We then

asked how these clusters relate to each other within each cell type,

across cell types, and with underlying histone-mark signatures.

In K562 and H1-hESC cells, the upper-left quadrant of the

SOM was prominent for the concentration of histone marks

H3K27ac and H3K4me1, which have been affiliated with active

enhancers and some promoters in previous studies. When H3K4me1

domains are outlined for K562 and H1-hESC (hexagon and tri-

angle, respectively), prominent cell-type specificity is shown by

the fact that they are largely separated (Fig. 3C,D). However, there

is also a small domain of overlap, reflecting a few units in which

similar chromatin signatures exist in both cell types.

We next asked how SOM domains of enhancer-associated

histone marks are related to transcription factor occupancy data.

We used well-studied factors that regulate hematopoetic target

genes (GATA2 and SPI1) in K562 cells, and factors that regulate

pluripotence target genes (NANOG and OCT4) in H1-hESC cells.

When we overlaid the H3K4me1 chromatin outlines onto these

individual factor ChIP-seq data views (Fig. 3E–H), the factors

clearly coclustered with the enhancer histone marks in a cell-type-

appropriate manner.

These transcription factors, plus PAX5 and SPI1 in the cell line

GM12878 (Supplemental Fig. S12), also display some concentra-

tion of ChIP-seq signal in the lower-right portion of the map,

where active TSS and their adjacent promoters are concentrated

(Fig. 2D) and where H3K4me3, a mark of active and poised pro-

moters, is strongly concentrated (Fig. 3A,B). This active TSS and

peri-TSS domain of the SOM had especially prominent signals for

SPI1 and NANOG, suggesting that these factors are associated by

direct binding at or near promoters, or that they are otherwise

physically engaged with promoter/TSS bound proteins (i.e., through

protein:protein interactions that are recovered in ChIP). It is no-

table that there is a much weaker concentration of GATA2 in this

SOM region. Taken at face value, this suggests that GATA2 is

mainly associated with nonpromoter CRMs rather than with

the peri-TSS domains, and that SPI1 has the opposite preference

in K562.

Another expectation is that functionally active transcrip-

tion factor occupancy will be marked with enhancer signatures

(H3K4me1, H3K4me2, H3K27AC, and DNase I hypersensitivity).

Active transcription factor occupancy is expected to be a subset

of all sites of occupancy that should overlap with independently

validated cis-regulatory modules (CRMs). We therefore asked where

known CRMs are located on the SOM by taking advantage of a

manually curated set of 118 erythroid CRMs. This set contains

both distant enhancers and promoters. The CRMs localized prom-

inently to the enhancer- and TSS-proximate zones of the map in

K562 cells (Fig. 3K), with those in the enhancer area showing clear

preference for the GATA2-enriched cluster of units (Fig. 3E). As

would be predicted, the erythroid CRM map units are also enriched

for K562-specific active enhancer histone marks and EP300 occu-

pancy (Fig. 3C,I) that do not overlap with H1-hESC-specific en-

hancer marks and EP300 (Fig. 3D,J). A single hex-unit containing

979 genomic segments was most prominent for known erythroid

CRMs, and we investigated it further (Fig. 3M,N). Remarkably, this

single unit contained 11% of all high-confidence EP300 ChIP-seq

peaks in the genome for K562 (P-value < 10�100), and these

overlapped strongly with segments also occupied by GATA2. The

contents of this unit can now be further mined and tested to learn

whether features lacking EP300 occupancy nevertheless contain

active enhancers.

Functional CRMs are also expected to contain conserved se-

quence motifs that are targets for direct DNA binding. We used

motifs curated from the literature for PAX5 and GATA2, along with

closely related ones derived from ChIP-seq data, as defined by The

ENCODE Project Consortium (The ENCODE Project Consortium

2012). We used phastCons conservation scores (Siepel et al. 2005)

to compile a set of conserved motifs for each factor. We then

mapped the locations of conserved instances of these motifs onto

the SOM. As many transcription factor motifs in eukaryotes are

short, they can occur within conserved domains for reasons other

than being part of CRMs (i.e., being located with the coding por-

tion of genes). Other instances of the motif are expected to be

conserved on account of functioning in cell types or states other

than this one. For these reasons, a dispersed map is expected.

Nevertheless, NANOG motifs (Fig. 3L) and GATA motifs exhibited

clear clustering, concentrated around the stem-cell-specific and

erythroid-specific enhancer clusters of units.

Although we are herein primarily concerned with analyzing

the ChromHMM-derived segmentation, we have also tested the

behavior of the SOM using a naı̈ve, 200-bp segmentation, as de-

scribed in the Methods. We found that the map shows anisotropy,

with enhancer-like and repressed regions more likely to cocluster,

but with significant differences in some of the promoter regions.

We conclude that the details of the segmentation do matter to

a certain extent and that the particulars of each segmentation will

interact differently in a way that depends on the data itself.

Taken together, these observations demonstrate the ability of

a multi-cell chromatin SOM to concentrate and reveal cell-type-

specific regulatory regions, and to allow users to visualize impor-

tant patterns and relationships between transcription factor

occupancy, candidate binding sites, chromatin signatures, and

curated functional elements. Other relationships not shown in

this set, but strongly visible in the data, include DNase I hyper-

sensitivity and RNA Pol II occupancy. The ENCODE SOM-viewer

allows users to explore these relationships by selecting views and

marking the boundaries of one or more areas of interest based on

more than 96 data sets.

SOM metaclusters capture regional and global properties
of histone mark combinations

In addition to fine-grained unit-level clustering of relatively small

numbers of segments into each unit done by the SOM itself, we can

further cluster the unit prototype vectors across the entire map

into metaclusters. We expect this level of analysis to be useful for

further probing global genome-scale organization captured by the

structure of the SOM. This clustering emphasizes more complex

combinatoric chromatin signatures and thus augments the way we

have already observed groups of units that cluster together based

on the component plane of one training set (e.g., H3K4me1).

The full phylogenetic ordering of all units (Fig. 4A) is fine-

grained, and it can be interpreted by a user visually in much the

same manner as a phylogenetic ordering of genes. We also per-
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formed an automated clustering to produce a nonsupervised set of

boundaries for metaclusters of SOM units that are more similar to

each other (based on their unit vector) than they are to other SOM

units (see Methods). As with phylogenetic clustering of a single

measurement, such as gene expression, we expect the phyloge-

netic ordering to be composed of graded similarity groups, rather

than homogeneous and starkly bounded clusters. This is what we

observed when we surveyed a stepped series of similarity thresh-

olds versus metacluster number. The internal data structure iden-

tified several natural discontinuities as a function of clustering

threshold, and we then selected three of these for full clusterings

(Supplemental Fig. S13) to provide users with choices. Prominent

driving relationships for the 126 cluster set that we found to be the

most useful in our mining are shown in Figure 4B. Finally, we show

the specific composition of each cluster for the 126-cluster in-

stance (Supplemental Fig. S14).

The metaclusters showed enrichment patterns that are either

cell-type-specific or common across multiple cell types. For ex-

ample, cluster 1 contains 12 units that have high H3K36me3, RNA

Pol II, and H4K20me1 in HUVEC cells (Fig. 4C,D). Different units

within cluster 1 differ from each other based on which additional

data sets are enriched in that unit. For example, two of the 12 units

also show an additional enrichment for H3K36me3 and RNA Pol II

in H1-hESC cells. The metaclustering captured features described

in earlier sections, such as the active TSS region, and the K562-

specific TSS with SPI1 region that corresponds to specific

metaclusters, respectively.

Overall, the marks generally associated with active transcrip-

tion, either at promoters or distant transcriptional enhancers, such

as H4K4me1/2/3, H3K9ac, H3K27ac, and DNase I hypersensitivity,

clustered in a cell-type-specific manner, whereas H3K36me3 and

H4K20me1 clustered together by data type (Fig. 4E). The repressive

mark H3K27me3 component planes also clustered together to

form an outgroup. The SOM shows that while there is a strong

common core of units shared by all six CTCF component planes,

they each have more specific enriched units at the periphery.

Whether these reflect cell-type-specific CTCF binding or have an

alternative explanation such as changed chromatin marks near

consistently CTCF-occupied sites is uncertain, and both could be

at work. Interestingly, CTCF and RNA Pol II both displayed some

clustering by cell type, and some that joined with other active

marks from the same cell type.

Some Gene Ontology terms have distinctive chromatin mark
signatures

We asked if any Gene Ontology (GO) functional terms are enriched

in individual SOM units. Two hundred and twenty-eight GO terms

displayed statistically significant enrichment following a Bonferroni

correction (P-value < 10�10) at the unit level (Supplemental Table

S3). As might be expected, these included enrichments in GO

terms that correspond to actively transcribed genes, or to actively

repressed genes (for example, neuron-specific genes in non-

neuronal cells). Most GO terms (164) were enriched in <1% of the

map (13 units or less), and some of these are very specific. For

example, ‘‘extracellular matrix’’ is enriched in five neighboring

units (Fig. 5), and further inspection suggested that this enrich-

ment is driven by genes that are much more highly expressed in

HUVEC than in other cells. The regional GO enrichments typically

correlated with metacluster boundaries of the SOM. In the case

of ‘‘extracellular matrix’’ (Fig. 5A), four of the five units are part of

cluster 1 (Fig. 4C). Another 30 GO terms were enriched in >5% of

the map units, and these were typified by broad categories relating

to the housekeeping functions of the cell such as ‘‘cell cycle.’’ These

GO terms are particularly associated with units that are high in

H3K36me3 in one or more cell lines. Thirty-four GO terms were

enriched in 1%–5% of the map, and these were typically much

more specific, developmental terms in units with particular his-

tone mark combinations. The enrichment in specific units for

‘‘GTPase activator activity,’’ for example, is driven by gene families

that show similar signal profiles across cell lines; the top two hex-

units correspond to segments that have a high ratio of H3K4me1

over H3K4me2 in HUVECs that are candidate HUVEC-specific

regulatory elements. Similarly, ‘‘sequence-specific transcription

factor activity’’ (Fig. 5B) is enriched primarily in units that have

cell-type-specific H3K27me3, whether in all cell types or in only

some, such as H1-hESC cells and HUVEC. The two units with the

most enrichment in Figure 5B have many additional associated

developmental GO terms (Fig. 5C) and differ based on the presence

of H3K27me3 signal in embryonic stem (ES) cells for segments in

both units, but only H3K27me3 signal in HUVEC cells for one unit.

This fine parsing by the SOM is nicely illustrated within the HOXD

cluster, where the anterior and posterior parts of the cluster are

split between these two units (Fig. 5D).

EP300 ChIP-seq overlay and cell-type-specific candidate
enhancer segments

We extended our analysis of ENCODE EP300 data sets from K562

by including GM12878, H1-hESC, and HepG2 cells to identify 45

cell-type-specific and common EP300-high units, accounting for

1.4% of the genome and 1.9% of the segments. We found that

each cell type had its own specific set of units with high EP300

occupancy, whereas only a few units showed EP300 signal in more

than two cell types (Fig. 6). These common EP300 units correspond

to the common TSS region, whereas the cell-type-specific clusters

are primarily more than 2 kb from the TSSs (Fig. 2D). We showed

earlier (Fig. 3) that we found K562 EP300 ChIP-seq signal in

Figure 3. Organization of genomic functional elements on the SOM. A triangle, hexagon, and ellipse are superimposed to allow comparison between
maps. (A,B) H3K4me3 signal density in K562 and H1-hESC. (C ) The hexagon encompasses the K562 units high in H3K4me1. (D) The triangle and hexagon
capture the two disjoint regions that are high in H3K4me1 in H1-hESC. (E) GATA2 signal, which was not used in the training, is high in a subset of the
H3K4me10high units in C. (F) Similarly, POU5F1 is primarily found overlapping the H3K4me1 high units. (G,H) In contrast to GATA2 and POU5F1, SPI1
and NANOG are found primarily in units that are high in H3K4me3 (to the lower right of the ellipse) with less signal found at H3K4me1 high units. (I,J)
EP300 signal (also not used in the training) is found either primarily at enhancers in K562, but promoters in H1-hESC. (K) More than one-third of known
erythroid CRMs cluster into a single unit with coordinates (8, 6). (L) Conserved NANOG motifs (motif derived from NANOG ChIP-seq data). ChIP-seq
occupancy and motif occurrences were defined by the uniform ENCODE ChIP-seq binding site and motif calling pipelines. Conservation was assessed
using the 46-way vertebrate phastCons scores for hg19 downloaded from the UCSC Genome Browser. The scores for each unit in the motif maps were
normalized for the total number of base pairs in the unit to avoid the map being dominated by units with very high number of base pairs in them. (M) Ten
percent of EP300 ChIP-seq calls and 3.2% of GATA2 calls in K562 fall within the top erythroid-CRM enriched unit (8, 6). (N) Sixty-six percent of the EP300
peaks in unit (8, 6) overlap a GATA2 peak.

ENCODE SOM

Genome Research 2143
www.genome.org



Figure 4. Metaclustering of the SOM. (A) Hierarchical clustering of the ranked unit weights (rows) and components (columns) shows both the large-
scale and fine structure of the SOM unit ranked weights (yellow, high enrichment rank; blue, low enrichment rank). (B) Metaclustering of the SOM into
;120 clusters based on a consistency threshold of 2.6. (C ) Twelve units make up metacluster 1. (D) Ranked component weights of metacluster 1. All
12 units share enrichment in HUVEC RNA Pol II, H3K36me3, and H4K20me1. Individual units show additional distinct enrichments, which distinguish
them from one another. (E) Clustering of the component columns of Figure 5A, showing the relationships of the data sets to one another.



a cluster of units in the upper-left quadrant of the map that did not

correspond to TSSs, but that did overlap with validated erythroid

CRMs. These units are high in H3K4me1 and H3K27ac that are

specific to each cell type. We then asked whether the segments

within these units show functional enrichment. For example,

three of the GM12878-specific units are enriched with the GO

term ‘‘immune response.’’ We can easily extend the analysis of the

SOM by pooling segments from multiple units and analyzing them

using tools such as GREAT (McLean et al. 2010) that associate cis-

regulatory regions with genes for enrichment in many functional

annotations besides GO. Applying GREAT to pooled segments

from the cell-specific enriched EP300 units returned a wealth of

enriched functional annotations that are predictably associated

with the cell-type tissue of origin (Fig. 6). We illustrate this by

showing enrichments in Pathway annotations for each cell type.

Whereas the units with EP300 signal in more than two cell types

are enriched in housekeeping pathways, the GM12878 units show

the most enrichment in ‘‘immune system’’ and ‘‘interferon sig-

naling,’’ which nicely captures the biology of the cells. This func-

tional enrichment of neighboring units on the map suggests

richness of the SOM.

Discussion
Rapidly growing bodies of functional genomics data require

methods to integrate and mine large numbers of data sets of mul-

tiple kinds. We constructed a self-organized map (SOM) of ENCODE

chromatin data from 72 ChIP-seq and DNase-seq data sets from six

ENCODE cell lines. Subsequent analyses and mining were facili-

tated by an interactive web-based SOM-viewer (http://woldlab.

caltech.edu/ENCODESOM), which allows users to extend the

analysis and extract groups of DNA segments that have charac-

teristics of interest for further computational or wet-bench analy-

sis. While most prior studies of global chromatin data have focused

on a specific cell type or tissue, the ENCODE collection allowed us

to explore relationships among multiple cell types in a single co-

herent analysis. By projecting high-dimensional chromatin data

onto the two-dimensional SOM, we identified clusters of units

Figure 5. Specific patterns of GO enrichment over the SOM. (A) Specific GO terms such as ‘‘extracellular matrix’’ are highly enriched in portions of the
map because of activity in one or more cell types. (B) Other GO terms are enriched because of their pattern of repression over the map. (C ) The map has
overall highly uneven distribution of GO enrichments away from the regions with the highest nucleotide density. (D) An example of the different patterns
of H3K27me3 distribution across cell lines captured by neighboring units in the map in the HOXD cluster.
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with chromatin mark combinations corresponding to promoter

activity and transcriptional enhancer activity. These were further

parsed into smaller clusters that were either cell-type-specific or

more ubiquitous. By overlaying data for specific transcription

factor binding, enhancer activity, and transcription start sites onto

the SOM, we show that the user can discover relationships and

mine corresponding genome segments of interest. This was dem-

onstrated for known and candidate erythroid CRMs (Fig. 3). To our

knowledge, this is the first use of self-organizing maps for multi-

cell data integration and mining. Although we used a specific,

‘‘stacked’’ genome segmentation generated by ChromHMM, the

overall approach can be applied to any segmentation. As discussed

below, we expect that the choice of segmentation strategy and the

mixture and quality of data sets used in training will affect the

resulting SOM.

We mined the SOM to address specific classes of questions.

First, individual training data sets revealed clusters that are cell-

type-specific or shared for individual marks. The same was true for

certain shared sets of marks. Second, units of the SOM were hier-

archically clustered based on their prototype vectors, to investigate

how multiple mark densities interact with each other. Third, ad-

ditional data not used in training were projected onto the SOM to

map their enrichment in one or more areas, and to relate the un-

derlying chromatin characteristics to map units and clusters where

other specific data features are concentrated. In this way, we

investigated how individual sequence-specific regulatory factor

occupancy for GATA2, SPI1, OCT4, and NANOG, their DNA

binding motifs, and the EP300 coactivator are related to each other

and to underlying chromatin signatures. Fourth, we mined the

SOM for specific functional classes using transcription start sites

(TSSs) as the best-defined test case, followed by a curated set of

CRMs. The SOM segregated TSSs that are commonly expressed in

multiple cell types from the TSSs with cell-type-specific activity

into subclusters. Finally, we found that some individual GO terms

are preferentially affiliated with different chromatin signatures.

To facilitate exploration of the ENCODE SOM by users, we pro-

vide a web interface SOM viewer that allows users to explore all

the data sets mapped here and to mine out the DNA segment

coordinates in any hex-cell or group of cells. We expect this web

interface to be the primary means by which users interact with

the SOM results.

At the highest level, most observations agreed with conclu-

sions of previous studies using other methods to integrate chro-

matin data such as hidden Markov models, which were applied to

these ENCODE data (The ENCODE Project Consortium 2012). The

SOM, however, provided an additional level of granularity that

is not accommodated by a relatively small number of states. The

SOM also lent itself well to visualizing relationships between the

chromatin data and additional data of any type that can be mapped

to specific points or intervals on the genome (and hence to the

DNA segments in the map). The fine structure of the SOM allowed

us to identify distinct combinations of marks and mark intensities

shared by only a small number of genomic regions, and did so

without any a priori decision about the number of states. For ex-

ample, the SOM easily separated the variety of different types of

TSS into a major cluster of active TSSs versus inactive ones. The

active TSSs were internally more finely parsed, based on levels of

H3K4me3, as well as distinct cell-type-specific units.

A summary analysis of new candidate transcriptional en-

hancers is shown in Figure 6. This aggregate analysis is the same

one performed for K562 cells (Fig. 3) and uses EP300 signal from

each cell type to further concentrate and focus on units active in

individual cell types, as well as units that correspond to activity in

multiple cell types. Just two units displayed activity in all partici-

pating cell types, while a surrounding set of units is variously

multitype. Analysis of these units by GREAT showed that those

active in all cell types are enriched for well-known housekeeping

functions such as protein synthesis. The cell-type-specific units

were enriched according to cell type (B lymphocyte, hepatocyte,

embryonic stem cell), just as K562 showed erythroid and mono-

cyte categories.

While much of the map organization was driven by histone

marks associated with active promoters and enhancers, we point

out that this is partly the result of the histone marks used in the

ENCODE study for genome segmentation and SOM training. Our

input histone marks to the ENCODE SOM clearly favored a fine

parsing of active regions over passive ones, and important re-

pressive marks such as H3K9me3 were not included. This makes

the ability of this SOM to parse differences in H3K27me3 in differ-

ent cell lines quite remarkable. Overall, the ENCODE integration

efforts showed that a relatively small number of HMM-derived

states can capture the broad landscape of active and repressed re-

gions in the ENCODE cell lines (The ENCODE Project Consortium

2012), while the SOM detailed here does this and also gives the

biologist access to a wealth of increased resolution and specificity

that we coupled with visualization and mining tools. We antici-

Figure 6. EP300 enrichment highlights cell-type-specific enrichments.
ChIP-seq signals of the transcriptional coactivator EP300 in four ENCODE
cell types were overlaid on the SOM. While some of the signal is common
to multiple/all cell types (orange/brown), each EP300 ChIP-seq data set
highlights a different set of adjoining units on the map that is specifically
enriched based on the cell type. These cell-type-specific units are also high
in H3K4me1 and H3K27ac, which suggest that they hold cell-type-spe-
cific enhancers. Segments from each of the colored clusters were pooled
and analyzed for functional enrichment with GREAT such as pathways
(top three terms per cluster shown). While the units common to multiple
cell types are enriched in genes involved in housekeeping pathways, those
in the cell-type-specific regions are enriched in pathways that are known
to be relevant to the biology of those cells.
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pate that this kind of analysis will be even more useful as the

number of cell types and diversity of chromatin marks increase in

future studies, making the challenge of combinatoric signatures

and their functional correlates greater. In a similar way, as tran-

scription factor location data for many more factors accumulates,

the SOM approach and tools developed here will enable end users

to better identify and stratify the functionally important and in-

teresting minority of occupied sites that are active in various sub-

sets of cell types.

Methods

Rationale for training matrix design
The joint analysis of multiple cell types presents additional chal-
lenges beyond the analysis of multiple data sets in a single cell line.
If each cell line is analyzed separately, one is left with the difficult
task of trying to reconcile the states found for each with different
definitions, before proceeding to analyze state changes between
cell lines. Alternatively, one can ‘‘concatenate’’ the data from
multiple cell lines (Ernst et al. 2011). Concatenation has the great
advantage that the states defined will be consistent across cell
lines, but this approach still requires intensive post-processing to
extract the segments that change states across cell lines; assuming
that a concatenated HMM had seven states in six cell lines, any
given genomic segment could be in one of 76 = 117,649 combi-
nations of states. Another solution, which we implement here, is
to train on all data jointly as a ‘‘stack’’ to learn a single set of states
with a single set of genomic boundaries. In this case, one is then
left only with the problem of how to interpret the states, whose
definitions are virtually certain to involve nonintuitive, complex
combinations of marks in one or more cell types and requires
additional methods to mine the results in a systematic and in-
tuitive way.

‘‘Stacked’’ training matrix implementation

To train the SOM, we first built a training matrix composed of
signal densities of all 72 data sets (columns) over all segments
(rows). The segments were taken from a ChromHMM segmenta-
tion of a ‘‘stacked’’ training set of 84 data sets (ChIP-seq for eight
histone modifications, RNA Pol II, and CTCF; and three open
chromatin data sets for each of six cell lines) using 25 states. We set
aside two of the open chromatin data sets to avoid overtraining on
open chromatin, and only used the UW DNase-seq data to repre-
sent open chromatin as the three experiments are effectively re-
dundant. We converted uniformly processed signal densities of the
remaining 72 data sets used for the SOM training into RPKM (reads
per kilobase per million reads) for every segment on each training
data set using the ERANGE 3.3 getDensity.py script. The training
matrix was built using the ERANGE 3.3 buildMatrix.sh script, with
a maximum threshold of 100 RPKM and the rescale option.

Training the SOM

The self-organizing maps were trained and analyzed using ERANGE
v3.3. For every SOM instance, we shuffled the training set, ran-
domly initialized the toroid map of hexagonal units from the
training set, and incrementally trained a SOM with map size 30 by
45 using 5 million iterations, which is equivalent to going through
the entire data set 3.3 times, starting with an update bubble radius
of 15 and a learning rate of 0.2, both of which decreased expo-
nentially over the course of training. Each segment was assigned to
its best matching unit based on the Euclidean distance. We selected
for analysis the best of 10 trials based on the lowest quantization

error, which is defined as the average Euclidean distance of all
segments to the prototype vector of their assigned unit. The other
nine instances were used to evaluate the reproducibility of the map
by analyzing the fraction of segments from each unit of our best
map that resided in the same unit or adjoining units in the other
nine map instances.

While we decided to use the entire training matrix for training
for the SOM discussed in the main text, the software supports
training on the training set and scoring on a distinct test set. In
particular, we trained 10 SOMs with half of the segments from the
200-bp naı̈ve segmentation (i.e., half of 1.5 million segments) for
25 million iterations, selected the best one based on the scoring of
the other half of the segments, and rescored the best SOM with the
ChromHMM segmentation to provide directly comparable geno-
mic coordinates.

There are no theoretical limits to the number of data sets,
segments, or map size that could be analyzed with the SOM.
However, the ERANGE implementation of the SOM was designed
for compatibility with the rest of the package rather than for
scalability or performance and will be significantly slower on
much larger data sets or number of training iterations. The final
training run for the main ENCODE SOM above took a couple of
hours, while the naı̈ve segmentation run took 1 d. The per-unit
gene-level analysis took significantly longer.

Gene-level analysis

We recovered the identity of the nearest gene within 20 kb of each
segment within a unit using the NCBI gene annotation, which is
conservative and means that in lower gene-density areas of the
genome, many segments were not affiliated with any gene. We
then analyzed every unit for Gene Ontology (GO) enrichment as
previously described (Mortazavi et al. 2006), adjusting for mul-
tiple-hypotheses testing by applying a Bonferroni correction
for both the number of tested Gene Ontology terms and the
map size.

Metaclustering methods

The unit prototype vectors were automatically aggregated into the
larger clusters using standard hierarchical clustering, subject to
the constraint that only adjacent clusters on the SOM could be
aggregated. A centered correlation distance and centroid linkage
were used. Prior to the hierarchical clustering, the prototype vector
values along each dimension were replaced with rank values nor-
malized to range between�1 and 1. Heat map visualizations of the
hierarchical clustering were rendered using Java Treeview (Saldanha
2004). The clustering itself and the SOM visualizations of it were
done using custom C++ and Python code (available at http://
woldlab.caltech.edu/;spepke/somclustering/).

Partitionings of the hierarchical clustering at varying levels
of detail were generated using the branch length inconsistency
criterion implemented in SciPy (depth = 6). The inconsistency of
a branch is the ratio of its length to the average length of branches
to clusters less then a specified depth below it. For a specified
threshold value t, the hierarchical clustering is cut at branches that
exhibit an inconsistency coefficient greater than t. Partitioning of
the unit vectors was performed over a broad range of values of t
up to that for which no branch’s inconsistency criterion exceeded
t, i.e., only one cluster resulted. Sharp drops in the number of
clusters as a function of the threshold value occur and are typ-
ically followed by plateaus that show little or no change in
cluster number. Such behavior suggests partitionings that are
relatively robust with respect to the threshold value (see Sup-
plemental Fig. S13).
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