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Virulent Aeromonas hydrophila causes severe motile Aeromonas septicemia in

warmwater fishes. In recent years, channel catfish farming in the U.S.A. and carp

farming in China have been affected by virulent A. hydrophila, and genome comparisons

revealed that these virulent A. hydrophila strains belong to the same clonal group.

Bacterial secretion systems are often important virulence factors; in the current study,

we investigated whether secretion systems contribute to the virulent phenotype of

these strains. Thus, we conducted comparative secretion system analysis using 55

A. hydrophila genomes, including virulent A. hydrophila strains from U.S.A. and China.

Interestingly, tight adherence (TaD) system is consistently encoded in all the vAh strains.

The majority of U.S.A. isolates do not possess a complete type VI secretion system, but

three core elements [tssD (hcp), tssH, and tssI (vgrG)] are encoded. On the other hand,

Chinese isolates have a complete type VI secretion system operon. None of the virulent

A. hydrophila isolates have a type III secretion system. Deletion of two genes encoding

type VI secretion system proteins (hcp1 and vgrG1) from virulent A. hydrophila isolate

ML09-119 reduced virulence 2.24-fold in catfish fingerlings compared to the parent strain

ML09-119. By determining the distribution of genes encoding secretion systems in A.

hydrophila strains, our study clarifies which systems may contribute to core A. hydrophila

functions and which may contribute to more specialized adaptations such as virulence.

Our study also clarifies the role of type VI secretion system in A. hydrophila virulence.

Keywords: Aeromonas hydrophila, comparative genomics, secretion systems, T6SS, Hcp, VgrG

INTRODUCTION

Aeromonas hydrophila is common in freshwater environments and causes disease in fish, reptiles,
amphibians, and humans (Janda and Abbott, 2010; Tomás, 2012). The U.S.A. and China
aquaculture industries have had significant losses due toA. hydrophila disease (Nielsen et al., 2001).
In the southeastern U.S.A., severe A. hydrophila outbreaks began impacting the catfish aquaculture
industry in 2009 and are caused by a clonal group of strains named virulent A. hydrophila (vAh)
(Hemstreet, 2010; Hossain et al., 2014).

Comparative genomics methods have helped identify taxonomically mislabeled A. hydrophila
genomes in Genbank (Beaz-Hidalgo et al., 2015). The same methods also revealed that the U.S.A.
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vAh clonal lineage is similar to a clonal lineage of A. hydrophila
that is responsible for significant economic losses in the Chinese
aquaculture industry (Griffin et al., 2013; Hossain et al., 2013;
Zhang et al., 2014; Pang et al., 2015). Both clonal groups are
categorized as sequence type ST251 (Rasmussen-Ivey et al.,
2016). It has been theorized that the U.S.A. vAh originated from
transport of carrier fish from Asia (Hossain et al., 2014).

Comparative genomics has revealed that the vAh clonal group
has unique characteristics. Some of the unique biochemical
pathways include sialic acid biosynthesis, myo-inositol
utilization, and L-fucose metabolism. They also have unique
O-antigen biosynthesis and characteristic mobilome elements
and secretion systems (Hossain et al., 2013; Pang et al., 2015).
Intriguingly, Asian vAh isolates encode all the core components
of type VI secretion system (T6SS), whereas most of the U.S.A.
vAh isolates carry remnants of the T6SS (Rasmussen et al., 2016).

Several virulence mechanisms of A. hydrophila including
secretion systems, motility, toxins, tissue-destructive enzymes,
iron acquisition, and S-layer have been studied (Tomás, 2012).
Secretion systems are used by bacteria to interact with the
environment, including host adaptation and competing against
other bacteria (Cianfanelli et al., 2016). A thorough investigation
of secretion systems distribution in A. hydrophila, including vAh,
other fish disease strains, and environmental strains, has not been
conducted. Hence, in this study, we analyzed 55 A. hydrophila
genomes from distinct geographical origins and hosts. We also
evaluated type 4 pili (T4P), tight adherence systems (Tad), and
flagella components due to their sequence similarity to secretion
systems. Potential host-pathogen interactions of the identified
secretion system proteins were evaluated.

In the current study, we conducted comparative genomics of
secretion systems encoded byA. hydrophila. Our analysis showed
that all the evaluated A. hydrophila genomes encode the whole
operon or remnants of T6SS. To clarify the function of T6SS
genes in vAh, we mutated two T6SS genes in strain ML09-119,
and we determined the virulence of mutant strains in catfish
fingerlings. Overall, the comparative genomics and mutational
analyses reported here clarify the distribution of various secretion
systems in A. hydrophila and provide functional information on
the role of T6SS components in vAh.

MATERIALS AND METHODS

Genome Sequences and Annotation
The genome sequences (including complete sequences, draft
assemblies, and raw reads) of 55 A. hydrophila strains were
downloaded from the National Center for Biotechnology
Information (Table 1). Raw data were assembled using CLC
workbench 6.5.1 after trimming sequence reads, followed by
error correction and contig creation. All unannotated genomes
were annotated by RAST (Brettin et al., 2015). All selected
genomes had at least 95% average nucleotide identity (ANI).

Phylogenetic Tree Creation
A phylogenetic tree was built from the complete core genomes
of 55 A. hydrophila strains, which included 115,335 coding
sequences (2,097/genome) with 101,851,090 amino acid residues

(1,851,838/genome). The gene sets of the core genome were
aligned one by one using MUSCLE (Edgar, 2004), and
alignments were concatenated. This alignment was used to
compute a Kimura distance matrix, which was used as
input for the Neighbor-Joining algorithm as implemented in
PHYLP (Felsenstein, 1989). The resulting tree was verified by
bootstrapping with 250 iterations.

ANI and AAI Calculation
Average nucleotide identity and average amino acid identity
(AAI) values (Konstantinidis and Tiedje, 2005a,b; Konstantinidis
et al., 2006) were calculated using EDGAR (Konstantinidis
and Tiedje, 2005b). Briefly, the average amino acid identities
were based on all protein sequences encoded by genes in the
core genome (2,097 per genome). Percent identity values were
extracted from BLASTP (Altschul et al., 1990) results that are
stored in the EDGAR database, summed up, and averaged for
every pair of genomes. ANI using BLAST (ANIb) was based on
BLASTN results as described (Goris et al., 2007) using the same
cutoffs as JSpeciesWS (Richter and Rossello-Mora, 2009).

Identification of Secretion Systems
MacSyFinder was used with default features to identify secretion
systems from the A. hydrophila genomes. The “unordered”
type of dataset option was chosen because the majority of the
evaluated genomes were draft genomes. The topology of the
replicon was linear/circular, maximal E-value was 1.0, maximal
independent E-value was 0.001, andminimal profile coverage was
0.5. Both mandatory genes and accessory genes were identified
(Abby et al., 2014, 2016).

Bacterial Strains and Plasmids
Bacterial strains and plasmids used in this study are listed in
Table 2. Aeromonas hydrophila strain ML09-119 represents the
vAh clonal group impacting U.S.A. channel catfish aquaculture.
The strain was grown on brain heart infusion (BHI) agar
or broth (Difco, Sparks, MD, USA) and incubated at 37◦C.
Escherichia coli strain CC118 λpir was used for cloning, and
strain BW19851 was used for transferring suicide plasmid
pMEG-375 into A. hydrophila by conjugation. Escherichia coli
strains were cultured in Luria–Bertani (LB) agar and broth
(Difco) and incubated at 37◦C. The following antibiotics and
reagents (Sigma-Aldrich, Saint Louis, MN, USA) were used when
needed: ampicillin (100µg/ml), chloramphenicol (10–25µg/ml),
colistin (12.5µg/ml), sucrose (5%), and mannitol (0.35%).

In-frame Deletion of A. hydrophila Genes
Two chromosomal in-frame deletion mutants of type six
secretion system (T6SS) effector genes hcp1 (AHML_05970) and
vgrG1 (AHML_05975) were constructed by allelic exchange and
homologous recombination using suicide plasmid pMEG-375
containing the counter-selectable marker sacB (Dozois et al.,
2003). Recombinant DNA and mutant construction procedures
were completed as described previously (Abdelhamed et al.,
2013). Briefly, four primers (A, B, C, and D) were designed for
each gene using Primer3 (Untergasser et al., 2012) (Table 3).
Compatible restriction enzyme sites were embedded in A and

Frontiers in Microbiology | www.frontiersin.org 2 January 2019 | Volume 9 | Article 3216

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Tekedar et al. Aeromonas hydrophila Secretion Systems

TABLE 1 | A. hydrophila genomes used in comparative genomic analyses.

No. Species Strain Location Source Level Accession References

1 A. hydrophila Arkansas 2010 USA Catfish Contig NZ_LYZH00000000.1 Tekedar et al., 2017

2 A. hydrophila ML09-119 USA Catfish Complete NC_021290.1 Tekedar et al., 2013

3 A. hydrophila ML09-122 USA Catfish Contig NZ_LRRY00000000.1 Tekedar et al., 2016b

4 A. hydrophila ML09-121 USA Catfish Contig NZ_LRRX00000000.1 Tekedar et al., 2016b

5 A. hydrophila AL10-121 USA Catfish Contig NZ_LRRW00000000.1 Tekedar et al., 2016b

6 A. hydrophila AL09-71 USA Catfish Complete NZ_CP007566.1 Pridgeon et al., 2014b

7 A. hydrophila pc104A USA Soil Complete NZ_CP007576.1 Pridgeon et al., 2014a

8 A. hydrophila S14-296 USA Catfish Contig SAMN05292365 Rasmussen-Ivey et al., 2016

9 A. hydrophila S14-606 USA Catfish Contig SAMN05292366 Rasmussen-Ivey et al., 2016

10 A. hydrophila S13-612 USA Catfish Contig SAMN05292362 Rasmussen-Ivey et al., 2016

11 A. hydrophila S13-700 USA Catfish Contig SAMN05292363 Rasmussen-Ivey et al., 2016

12 A. hydrophila Ahy_Idx7_1 USA Catfish Contig SAMN05292361 Rasmussen-Ivey et al., 2016

13 A. hydrophila ALG15-098 USA Catfish Contig SAMN05223361 Rasmussen-Ivey et al., 2016

14 A. hydrophila IPRS-15-28 USA Catfish Contig SAMN05223362 Rasmussen-Ivey et al., 2016

15 A. hydrophila ML10-51K USA Catfish Contig SAMN05223363 Rasmussen-Ivey et al., 2016

16 A. hydrophila S14-458 USA Catfish Contig SAMN05223364 Rasmussen-Ivey et al., 2016

17 A. hydrophila S15-130 USA Catfish Contig SAMN05223365 Rasmussen-Ivey et al., 2016

18 A. hydrophila S15-400 USA Catfish Contig SAMN05223367 Rasmussen-Ivey et al., 2016

19 A. hydrophila ZC1 USA Grass carp Contig SAMN02404465 Hossain et al., 2014

20 A. hydrophila AL09-79 USA Catfish Contig NZ_LRRV00000000.1 Tekedar et al., 2016b

21 A. hydrophila 2JBN101 China Crucian carp Contig NZ_LXME00000000.1 Zhang et al., 2013

22 A. hydrophila D4 China Wuchang bream Complete NZ_CP013965.1 Tran et al., 2015

23 A. hydrophila JBN2301 China Carp Complete NZ_CP013178.1 Yang et al., 2016

24 A. hydrophila S15-591 USA Catfish Contig SAMN05223368 Rasmussen-Ivey et al., 2016

25 A. hydrophila J-1 China Carp Complete NZ_CP006883.1 Pang et al., 2015

26 A. hydrophila NJ-35 China Carp Complete NZ_CP006870.1 Pang et al., 2015

27 A. hydrophila GYK1 China Chinese perch Complete NZ_CP016392.1 Pan et al., 2004

28 A. hydrophila SNUFPC-A8 S. Korea Salmon Contig NZ_AMQA00000000.1 Han et al., 2013

29 A. hydrophila NF1 USA Human clinical Contig NZ_JDWB00000000.1 Grim et al., 2014

30 A. hydrophila Ae34 Sri Lanka Carp Contig NZ_BAXY00000000.1 Jagoda et al., 2014

31 A. hydrophila M052 Malaysia Waterfall Contig NZ_MAKI00000000.1 N/A

32 A. hydrophila M053 Malaysia Waterfall Contig NZ_MAKJ00000000.1 N/A

33 A. hydrophila M062 Malaysia Waterfall Contig NZ_JSXE00000000.1 Chan et al., 2015

34 A. hydrophila AHNIH1 USA Human clinical Complete NZ_CP016380.1 Hughes et al., 2016

35 A. hydrophila AL06-06 USA Goldfish Complete NZ_CP010947.1 Tekedar et al., 2015

36 A. hydrophila ATCC 7966 USA Milk tin Complete NC_008570.1 Seshadri et al., 2006

37 A. hydrophila AL97-91 USA Tilapia Contig NZ_CM004591.1 Tekedar et al., 2017

38 A. hydrophila MN98-04 USA Tilapia Contig NZ_CM004592.1 Tekedar et al., 2017

39 A. hydrophila AH-1 Canada Moribund fish Contig NZ_LYXN00000000.1 Forn-Cuní et al., 2016

40 A. hydrophila RB-AH Malaysia Soil Contig NZ_JPEH00000000.1 Emond-Rheault et al., 2015

41 A. hydrophila NF2 USA Human clinical Contig NZ_JDWC00000000.1 Grim et al., 2014

42 A. hydrophila S14-230 USA Catfish Contig SAMN05292364 Rasmussen-Ivey et al., 2016

43 A. hydrophila 48_AHYD USA Human clinical Scaffold NZ_JVFM00000000.1 Roach et al., 2015

44 A. hydrophila 53_AHYD USA Human clinical Scaffold NZ_JVDL00000000.1 Roach et al., 2015

45 A. hydrophila 56_AHYD USA Human clinical Scaffold NZ_JVCD00000000.1 Roach et al., 2015

46 A. hydrophila 52_AHYD USA Human clinical Scaffold NZ_JVDW00000000.1 Roach et al., 2015

47 A. hydrophila 50_AHYD USA Human clinical Scaffold NZ_JVES00000000.1 Roach et al., 2015

48 A. hydrophila AH10 China Grass carp Complete NZ_CP011100.1 Xu et al., 2013

49 A. hydrophila TN-97-08 USA Bluegill Contig NZ_LNUR00000000.1 Tekedar et al., 2016a

50 A. hydrophila FDAARGOS_78 USA Human stool Contig JTBD01000000 N/A

(Continued)
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TABLE 1 | Continued

No. Species Strain Location Source Level Accession References

51 A. hydrophila 226 Malaysia Human urine Contig NZ_JEML00000000.1 Chan et al., 2011

52 A. hydrophila M013 Malaysia Waterfall Contig NZ_JRWS00000000.1 Tan et al., 2015a

53 A. hydrophila AD9 USA Wetland

sediment

Contig NZ_JFJO00000000.1 Lenneman and Barney, 2014

54 A. hydrophila M023 Malaysia Waterfall Contig NZ_JSWA00000000.1 Tan et al., 2015b

55 A. hydrophila Ranae CIP

107985

USA Fish/Ranae Scaffold NZ_CDDC00000000.1 Colston et al., 2014

N/A, Not available.

TABLE 2 | Bacterial strains and plasmids used in the present study.

Strain or

plasmid

Description References

A. hydrophila

ML09-119

Isolate from a disease outbreak on a

commercial catfish farm

Griffin et al.,

2013

vAh1hcp1 A. hydrophila ML09-119 derivative;

1hcp1

This study

vAh1vgrG1 A. hydrophila ML09-119; 1vgrG This study

E. coli

CC118λpir 1(ara-leu); araD; 1lacX74; galE;

galK; phoA20; thi-1; rpsE; rpoB;

argE(Am); recAl; λpirR6K

Herrero et al.,

1990

BW19851 RP4-2 (Km::Tn7, Tc::Mu-1),

DuidA3::pir+, recA1, endA1, thi-1,

hsdR17, creC510

Metcalf et al.,

1994

PLASMID

pMEG-375 8,142 bp, Ampr, Cmr, lacZ, R6K ori,

mob incP, sacR sacB

Dozois et al.,

2003

pAh1hcp1 10,173 bp, 1hcp1, pMEG-375 This study

pAh1vgrG1 10,160 bp, 1vgrG1, pMEG-375 This study

D primers (bold line in primers A and D) for cloning, and the
reverse complement of primer B was added to the 5′ end of
primer C (underlined letters in primers C) to allow fusion of PCR
fragments by overlap extension PCR (Horton et al., 1989). The
upstream (fragment AB) and downstream (fragment CD) of each
gene was amplified using two sets of primers. PCR fragments
AB and CD were annealed at the overlapping regions and were
amplified as a single fragment using primers A and D. The fusion
products were purified, digested, ligated into digested pMEG-
375, electroporated into E. coliCC118λpir, and spread on LB agar
plus ampicillin.

The resulting plasmids were purified from E. coli CC118λpir
and transferred into A. hydrophila ML09-119 by conjugation
using E. coli BW19851. Transconjugants were selected on plates
containing chloramphenicol and colistin; chloramphenicol
was used to select the integration of pMEG-375 in A.
hydrophila chromosome while colistin was used as counter-
selection against E. coli. PCR analysis confirmed that the
vector had integrated correctly into the chromosomal DNA.
After sucrose treatment, transconjugants that were colistin

resistant and chloramphenicol sensitive were selected, and
the deletion was confirmed by colony PCR using A and
D primers. Mutant validation was done by sequencing of
AD fragments amplified from chloramphenicol sensitive
mutants using hcp1Seq and vgrG1Seq primers (Table 2).
The A. hydrophila mutants were designated vAh1hcp1 and
vAh1vgrG1.

Virulence of vAh Mutants in Catfish
Fingerlings
All fish experiments were conducted in accordance with a
protocol approved by the Institutional Animal Care and
Use Committee at Mississippi State University. Virulence of
vAh1hcp1 and vAh1vgrG1 was compared to A. hydrophila wild-
type (WT) strain ML09-119 by immersion route of exposure as
described (Abdelhamed et al., 2016). Briefly, 120 6-month-old
specific-pathogen-free (SPF) channel catfish fingerlings (18.10 ±
0.56 cm, 50.90± 3.76 g) were stocked into twelve 40-liter flow-
through tanks (10 fish/tank) and acclimated for a week. Tanks
were assigned randomly to four treatment groups: vAh1hcp1,
vAh1vgrG1, vAh WT, and BHI (sham). Each group included
three replicate tanks. Water temperature was maintained at
32◦C (±2) throughout the experiments. Fish were fed twice
a day with a commercial catfish feed. On the challenge day,
the water levels in each tank were decreased to 10 L, and
100mL of overnight culture was added directly to each tank
(1.02 × 1010 CFU/mL water). Negative control tanks were
exposed to 100mL of sterile BHI broth. During immersion,
water was well aerated. After 6 h, water flow was restored,
and fish were maintained as usual. Fish mortalities were
recorded daily for a total of 21 days, and percent mortality
was calculated for each group. Protection against vAh WT
challenge was determined in fingerlings that survived infection
by the vAh1hcp1 and vAh1vgrG1 mutants. Briefly, at 21
days post-infection, catfish fingerlings were re-challenged by
vAh WT by immersion (2.21 × 1010 CFU/ml water), and
mortalities were recorded daily for 14 days. At the end of
the experiments, mean percent survival was calculated for each
treatment.

Statistical Analysis
Mean percent mortality data were arcsine transformed, and
analysis of variance (ANOVA) was applied using PROC GLM in
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TABLE 3 | Primers used to generate and verify in-frame deletion of vAh genes.

Primer ID Sequence 5′-3′ RE

hcp1 hcp1F01 A AAATCTAGATCCTATGTGCCTGAGTGTGC XbaI

hcp1R1000 B AATGACACTCGACCAAACCA

hcp1F1000 C TGGTTTGGTCGAGTGTCATTGAGGCCTAACGCTCGATCT

hcp1R01 D AAAGAGCTCAGGTCGGTTTCCCGGTACT SacI

hcp1Seq GCTGGCTCTCCATGCATATT

vgrG1 vgrG1F01 A AAATCTAGAAAGGTAAAACCCAGGGCAAT XbaI

vgrG1R1000 B TGTGCTGTCTGCCATGAAG

vgrG1F1000 C CTTCATGGCAGACAGCACACGACTGATTGAGGTTTCCGTA

vgrG1R01 D AAAGAGCTCCAGGCTGGTGTCTCGATTTT SacI

vgrG1Seq GCAAAGCACAACAGAGGCTA

Bold letters at the 5′ end of the primer sequence represent restriction enzymes (RE) site added. AAA nucleotides were added to the end of each primer containing a RE site. Underlined

bases in primer C indicate reverse complemented primer B sequence.

SAS for Windows v9.4 (SAS Institute, Inc., Cary, NC) to assess
significance. An alpha level of 0.05 was used in all analyses.

Host-Pathogen Interaction Network
Protein-protein interactions between A. hydrophila secretion
system proteins and catfish proteins (accession: PRJNA281269)
were determined using the Host-Pathogen Interaction Database
(Ammari et al., 2016). For pathogen sequences, default upload
options were: database search: bacterial pathogens, matrix:
Blosum62, E-value: 0.00001, pathogen percent identity: 30, and
query coverage filter: 50%. For host sequences, selected animal
protein options were: for the database search matrix: Blosum62,
E-value cutoff: 0.00001, percent identity and query coverage filter:
70% (Ammari et al., 2016).

RESULTS

Genome Features
The 55 genome sequences included in the current study are
A. hydrophila isolates from different geographical locations
and hosts (Table 1). Of these, our group sequenced vAh
strains ML09-119, ML09-121, ML09-122, AL09-79, AL10-121,
and Arkansas 2010. We also sequenced A. hydrophila strains
AL06-06, AL97-91, MN98-04, and TN97-08. Additionally,
we assembled and annotated 12 draft vAh strain genome
sequences released in 2016 (strains Ahy_Idx71, ALG15-098,
IPRS15-28, ML10-51K, S13-612, S13-700, S14-296, S14-458,
S14-606, S15-130, S15-400, and S15-591) and one non-
vAh strain genome (S14-230) for inclusion in our analysis.
Genome size of the 55 strains ranged from ∼4.67 to
5.28Mb, and G+C ratio of the genomes ranged from 60.47
to 61.60.

Average Nucleotide Identities (ANI) and
Phylogenetic Tree Creation
A phylogenetic tree based on the complete core genome of 55
A. hydrophila strains shows the 27 vAh strains forming a highly
conserved branch separated clearly from the other strains. The
separation of the vAh cluster from the rest of the tree showed

100% branch conservation. These findings were confirmed by
ANI as well as Average AAI (Supplementary File 1). ANI and
AAI values within the cluster of 27 strains were above 99.88%
(ANI) and 99.89% (AAI), respectively (Figure 1).

Secretion Systems in Aeromonas

hydrophila Genomes
In our in silico secretion systems analysis, we identified that most
of the U.S.A. and Chinese vAh isolates tend to encode more T1SS
core components, for instance ATP-binding cassette (abc) and
mfp genes, compared to environmental isolates. Additionally, the
genome of human strain FDAARGOS_78 encodes more abc and
outer membrane factor (omf ) genes than the other 54 genomes
(Figure 2).

All of the evaluated A. hydrophila genomes encode a T2SS
system except one: strain S15-591. However, this strain does not
have a completed genome sequence; it is a draft assembly with a
large number of contigs. Therefore, it is possible that the genes
may not have been detected due to the large number of gaps in
the genome (Figure 2).

All the vAh strains in the current study encode mandatory
and accessory genes of type 4 pilus (T4P). By contrast, non-vAh
strains from different origins and locations lacked the pilQ gene.
One non-vAh strain (Ranae CIP 107985, which was isolated from
a frog) encodes all the T4P elements (Figure 2).

Intriguingly, only one gene (tadZ) from the Tad system is
present in all the evaluated A. hydrophila genomes. On the other
hand, all the vAh strains as well as two non-vAh strains (ATCC
7966 and AHNIH1) encode this system (Figure 2).

The majority of vAh strains from the U.S.A. (except
strain S14-230) and Chinese isolates do not carry all of
the mandatory T3SS genes in their genomes (Figure 2). The
mandatory T3SS gene cluster is composed of sctU, sctJ, sctN,
sctS, sctR, sctQ, sctV, sctU, and sctT. Interestingly, only the
sctN gene is present in all of the evaluated A. hydrophila
genomes. Only two of the eight human isolates encode T3SS
except for the sctC gene. A. hydrophila ATCC 7966 does
not encode T3SS, but it has two copies of the sctN gene.
By contrast, most of the environmental isolates carry T3SS.
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FIGURE 1 | Average nucleotide identities (ANI) of A. hydrophila genomes and phylogenetic tree based on core genome. Note that branch lengths of the phylogenetic

tree were reduced to fit the image.

Interestingly, A. hydrophila strains that encode more T1SS
components tend to have fewer or no genes encoding T3SS
(Figure 2).

Some T3SS genes are similar to flagella genes. Therefore,
we used MacSyfinder to discriminate between T3SS and flagella
genes. Of the 55 A. hydrophila genomes we evaluated, all carry
the mandatory flagella genes (Figure 2).

All of the evaluated A. hydrophila genomes encode either
the entire operon or remnants of the T6SSi. Most of the
U.S.A. vAh isolates have only three T6SSi genes: hcp1 tssH,
and vgrG. By contrast, almost all the China isolates encode
the entire T6SSi. The exception was strain GYK1 from China,
which has the same three T6SSi genes as the U.S.A. vAh
isolates. Additionally, fish isolate Ae34 from Sri Lanka, four
non-vAh isolates from the U.S.A. (AL06-06, MN98-04, AL97-
91, and Ranae CIP 107985), and one fish isolate (AH-1)
from Canada do not encode the entire T6SSi elements but
have the same three genes as the U.S.A. vAh strains. Three
of the Malaysian isolates (M023, RB-AH, and 226) encode
the same three elements from T6SSi, whereas four Malaysian
isolates (M013, M052, M053, and M054) encode the entire
T6SSi.

Only one gene encoding a T9SS-like protein (sprA) was
identified in the A. hydrophila genomes. This gene is encoded by
all the evaluated A. hydrophila genomes.

Construction and Virulence of Mutant
Strains
In the present study, we successfully introduced in-frame
deletions in two genes encoding T6SS effectors: hcp1 and vgrG1
(Table 4). The 1hcp1 mutation has a deletion of 537 bp out of
564 bp (95.21%), and 1vgrG1 has a deletion of 2,739 bp out of
2,781 bp (98.49%).

Results of the immersion challenge in catfish fingerlings
indicated that the mortality rate was significantly lower
(p < 0.05) in vAh1hcp1 and vAh1vgrG1 compared with
parent vAh strain ML09-119 (33.33 and 33.33% mortality vs.
60% mortality) (Figure 3A). Fingerlings surviving infection
with vAh1hcp1 and vAh1vgrG1 had 91.67 and 100.00%
percent survival, respectively, compared to 60.00% survival
in the sham-infected control group (Figure 3B). In both
experimental infections, all mortalities occurred within 72 h
post-infection.
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FIGURE 2 | Core and accessory proteins of secretion systems, T4P, Tad, and flagella encoded in A. hydrophila genomes. Numbers and color represent the number of

copies of each listed gene. The strains are listed in the same order as Table 1 and Figure 1 (the first 27 strains are vAh strains). tssD is also known as hcp and tssI is

also known as vgrG. A.G. indicates Accessory genes.

TABLE 4 | The sizes of upstream (USF), downstream (DSF), and in-frame fused fragments (FF), deleted region (DR), and undeleted region (UD) by base pair (bp).

Gene name Gene symbols Locus tag New locus tag USF (AB) DSF (CD) FF (AD) DR UD

Hcp-like protein hcp1(tssD) AHML_05970 AHML_RS05995 1,074 957 2,031 537 27

Rhs element Vgr protein vgrG1 (tssI) AHML_05975 AHML_RS06000 990 1,038 2,028 2,739 42

Host-Pathogen Interaction
Using HPIDB, we predicted the interaction of identified A.
hydophila secretion system components with host channel catfish
(Ictalurus punctatus) proteins. We identified 333 catfish proteins
that potentially interact with 30 different components of the A.
hydrophila secretion systems (Supplementary File 2).

DISCUSSION

In this study, our goal was to compare the distribution of
secretion systems in A. hydrophila genomes using comparative
genomics. We found that some of the secretion systems
commonly involved in pathogenesis of Gram-negative bacterial
infections are not consistently present in the U.S.A. vAh isolates.
However, there are three secretion systems (T1SS, T2SS, and
T4P) present in all A. hydrophila strains we analyzed, and one

system (Tad) that is present almost specifically in vAh strains. We
determined that genes hcp1 (tssD) and vgrG1 (tssI) contribute to
vAh virulence in catfish despite the absence of a complete T6SS.

Phylogenetic ANI analysis based on the complete core genome
of the 55 strains in our study confirmed their classification as
A. hydrophila, and it showed that the 27 vAh strains formed a
highly conserved branch that is clearly separated from the other
A. hydrophila strains. Also, ANI analysis showed that the U.S.A.
vAh isolates and Chinese epidemic isolates were derived from the
same monophyletic clade.

Aeromonas hydrophila secretes a wide range of extracellular
enzymes and toxins. Type I secretion systems are capable
of secreting exotoxins and enzymes by a one-step process
from cytoplasm to outer membrane. T1SS consists of three
main components: ATP-binding cassette (ABC) transporters,
membrane fusion protein (MFP), and outer membrane factor

Frontiers in Microbiology | www.frontiersin.org 7 January 2019 | Volume 9 | Article 3216

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Tekedar et al. Aeromonas hydrophila Secretion Systems

FIGURE 3 | Virulence of vAh T6SS mutants in channel catfish fingerlings. (A)

Percent mortalities in catfish fingerlings experimentally infected with vAh T6SS

mutants and vAh wild type (WT) strain ML09-119. (B) Percent survival in

catfish fingerlings surviving infection with T6SS mutants and re-challenged

with vAh WT at 21 d post-infection. Data are the mean ± SE of three replicate

tanks. Significant differences between challenged and non-vaccinated

treatments are indicated with asterisks (p < 0.05).

(OMF) (Green and Mecsas, 2016). All of the evaluated A.
hydrophila genomes carry core components of the T1SS.
However, most of the vAh isolates and some of the other
isolates encode additional copies of some genes encoding core
components of the T1SS. A domain search analysis (data not
shown) for all the evaluated 55 genomes revealed that the vast
majority of the vAh isolates encode RTX toxins, which are
cytotoxins that potentially cause host cell rounding and apoptotic
death. In Vibrio, RTX toxin is secreted by T1SS (Boardman and
Satchell, 2004). Presence of T1SS increases virulence of Vibrio
cholerae (Dolores et al., 2015) and Serratia marcescens (Létoffé
et al., 1996).

Not surprisingly, all the evaluated A. hydrophila genomes
possess a T2SS. This system is capable of secreting enzymes such
as proteases, phosphatases, and lipases (Korotkov et al., 2012;
Green and Mecsas, 2016); in A. hydrophila, it is also well known
for exporting cytotoxic enterotoxin (Act), which has hemolytic
and cytotoxic activities (Chopra et al., 2000; Galindo et al., 2004;
Korotkov et al., 2012). T2SS is a large, trans-envelope apparatus
encoded by a set of 12-16 core genes. It is located in the outer
membrane, and it transports folded proteins from periplasm into
the extracellular environment. T2SS differs from T1SS, which
releases proteins to the outer medium, and T3SS, T4SS, and
T6SS, which are contact-dependent (Hayes et al., 2010). T2SS

secretes specific toxins, effectors, and large proteins that could
not be secreted to the host or competitor bacteria otherwise
(Rondelet and Condemine, 2013; Rosenzweig and Chopra, 2013).
T2SS has sequence similarity with the type 4 pilus (T4P)
system, which is responsible for motility, signaling, and adhesion
(Nivaskumar and Francetic, 2014). T4P has not been studied
extensively in A. hydrophila. T4P and T2SS show a high degree
of similarity in their components, and one of the genes encoding
a T2SS component, gspO, is located in the T4P-encoding locus
(Nivaskumar and Francetic, 2014). Our secretion system analysis
assigned the A. hydrophila gspO gene as pilD, which is one of
the accessory genes of T4P. A. hydrophila gspC gene is listed as
a missing mandatory gene in Figure 2, but it is present as an
accessory gene (Figure 2). In E. coli, T2SS and T4P are important
for persistent infection (Kulkarni et al., 2009).

The tight adherence (Tad) system contributes to biofilm
formation, colonization, and virulence of several pathogens
(Tomich et al., 2007). The Tad system is similar to T2SS systems
(Peabody et al., 2003; Tomich et al., 2007). Intriguingly, our
results showed that a complete Tad secretion system is available
in vAh strains, whereas the majority of the other evaluated A.
hydrophila genomes do not encode a Tad system except for two
strains, one of which is human clinical isolate (strain AHNIH1),
and the other is frommilk (strain ATCC 7966). Interestingly, only
one gene (tadZ) from this system is available in all the evaluated
A. hydrophila genomes. TadZ is encoded by one of the mandatory
genes of the Tad system and plays a major role in mediating polar
localization of the Tad secretion system (Perez-Cheeks et al.,
2012).

Many Gram-negative pathogens use type III secretion
systems, which delivers effector proteins directly into host cells.
Many components of this system are homologous to flagellum
proteins. T3SS is an important contributor to pathogenesis of
some A. hydrophila strains (Vilches et al., 2004; Yu et al., 2004);
however, our comparative genomics analysis showed that 27
vAh strains lack genes encoding T3SS (except for the sctN gene,
which encodes a highly conserved ATPase that contributes to
energy metabolism and provides recognition capability for T3SS
effectors and other virulence factors) (Zarivach et al., 2007).
Most of the non-vAh isolates in our study encode T3SS, but the
majority of these are environmental isolates from outside the
U.S.A. On the other hand, U.S.A. environmental isolates (soil
and wetland sediment) do not encode a T3SS, and they also
lack Tad systems. Our results showing absence of T3SS in vAh
strains are consistent with a previous smaller-scale comparative
genomics study (Pang et al., 2015). Therefore, presence of genes
encoding a T3SS may not a good indicator of virulence potential
for A. hydrophila strains in fish. Similarly, the majority of human
clinical isolates (seven out of ten) do not encode T3SS.

Interestingly, there is an inverse relationship between presence
of a Tad system and a T3SS in many of theA. hydrophila genomes
we analyzed. The Tad system is encoded in the vAh isolates,
but they do not encode T3SS. On the other hand, almost all of
the non-vAh A. hydrophila strains do not encode a Tad system,
but many of these genomes encode T3SS (Figure 2). Ten strains
have neither Tad nor T3SS systems, and only one strain (human
isolate AHNIH1) encodes both systems. Therefore, the three
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secretion systems consistently encoded in vAh strains are T2SS,
T4P, and Tad.

Flagella are important in motility and often in attachment
to the host. They are linked with biofilm formation, which
contributes to persistent infection (Tomás, 2012). In eels, an
A. hydrophila polar flagellum mutant had decreased survival
and adherence to eel macrophages (Qin et al., 2014). Because
flagella proteins are similar to T3SS proteins (Nguyen et al.,
2000; Gophna et al., 2003), we included them in our comparative
genomics analysis. All the evaluated A. hydrophila genomes
encode mandatory flagella genes. In some bacteria, T3SS
components play a role in flagellar rotation (Diepold and
Armitage, 2015), but in A. hydrophila, there is only one T3SS
gene (sctN) shared by all the evaluated A. hydrophila genomes. In
Sodalis glossinidius, SctN mediated entry into tsetse fly cells (Dale
et al., 2001). An A. hydrophila master regulator of T3SS (ExsA)
negatively affects the lateral flagella (Zhao and Shaw, 2016), so it is
possible that T3SS and flagella proteins interact in A. hydrophila
strains encoding both systems.

T6SS is widely distributed in Gram-negative bacteria, and it
contributes to bacterial fitness in specific niches (Cianfanelli et al.,
2016). In particular, it delivers secreted proteins into competitor
bacteria or host cells (Zoued et al., 2014). T6SS is categorized
into three phylogenetic subtypes (T6SSi, T6SSii, T6SSiii) (Russell
et al., 2014). All of the A. hydrophila genomes we evaluated
encode the entire T6SSi operon or remnants of the T6SSi. Some
of the U.S.A. vAh strains have only three genes (hcp, tssH, and
vgrG) of T6SS, while other vAh strains from U.S.A. and China
encode all the core genes of T6SS. We extended our research to
understand the role of these remnants in the pathogenicity of A.
hydrophila.

Strain ML09-119 encodes two hemolysin co-regulated
proteins (Hcp) (AHML_05970 and AHML_10025) and two
valine-glycine repeat G (VgrG) proteins (AHML_05975 and
AHML_10030). The hcp genes are located adjacent to the vgrG
genes in strain ML09-119; the hcp1 gene is adjacent to vgrG1
gene, and hcp2 gene is adjacent to the vgrG2 gene. Multiple
copies of hcp and vgrG genes are commonly seen in several
bacterial species that possess a T6SS, including V. cholerae,
Pseudomonas aeruginosa, A. hydrophila SSU, and A. hydrophila
ATCC 7966T (Mougous et al., 2006; Podladchikova et al., 2011;
Sha et al., 2013).

Hcp and VgrG are effector proteins of T6SS (Cascales, 2008).
However, structural analysis of Hcp and VgrG from P. aeruginosa
andV. cholerae showed that these proteins independently formed
a transportation channel between the inner and outermembranes
through which other effector molecules can be transported to
the host cell (Leiman et al., 2009; Pell et al., 2009). Thus, Hcp
and VgrG could also be part of the secretion apparatus. Hcp
and VgrG contribute to pathogenesis of several Gram-negative
species, including E. coli (Dudley et al., 2006), P. aeruginosa
(Hood et al., 2010), Edwardsiella tarda (Rao et al., 2004), and
Aeromonas (Sha et al., 2013). In V. cholera, an hcp1/hcp2mutant
is avirulent, whereas individual hcp1 or hcp2 mutants retain
virulence. Therefore, at least one Hcp protein is required and
sufficient for virulence (Pukatzki et al., 2006).

Secretion systems and effector proteins of A. hydrophila
strain SSU have been studied extensively. It has been proposed
that strain SSU be reclassified as Aeromonas dhakensis (Beaz-
Hidalgo et al., 2015), but being a closely related species to
A. hydrophila, SSU provides valuable comparative information.
Strain SSU encodes a full T6SS, and its components are capable
of translocating effector protein Hcp into eukaryotic cells (Suarez
et al., 2008). Hcpmodulates the activation ofmacrophages during
infection in a mouse model (Suarez et al., 2010b). Effector
protein VgrG is responsible for inducing host cell toxicity
by ADP ribosylation of actin (Suarez et al., 2010a). In an
intraperitoneal murine model of infection, all Hcp and VgrG
paralogues were required for optimalA. hydrophila SSU virulence
and dissemination to mouse peripheral organs (Sha et al., 2013).

vAh strain NJ-35 also encodes a functional T6SS that is located
on a genomic island (Pang et al., 2015). This strain encodes
three Hcp proteins. Hcp1 is responsible for T6SS assembly
and inhibiting bacterial competition, Hcp2 negatively impacts
biofilm formation and bacterial adhesion, and Hcp3 positively
contributes to bacterial adhesion and biofilm formation (Wang
et al., 2018). In NJ-35, all three genes contribute significantly to
virulence, but a hcp2 mutant had greater attenuation than hcp1
and hcp3mutants (7-fold increase in LD50 for hcp2 compared to
2-fold increase in LD50 for hcp1 and hcp3).

In our study, deletion of the hcp1 and vgrG1 genes in vAh
strain ML09-119 affected virulence significantly (Figure 3A).
This finding is consistent with those reported for A. hydrophila
strain SSU and vAh strain NJ-35, but both of these strains encode
a functional T6SS, while strain ML09-119 does not. So what is
the role of Hcp and VrgG in vAh strains that do not encode
a functional T6SS? Our virulence data substantiates they could
have similar roles in pathogenesis as Hcp and VgrG proteins
in strains SSU and NJ-35. However, there is another intriguing
possibility. It has been hypothesized that putative effector islands
could be translocated by Hcp and VgrG (De Maayer et al., 2011),
and it is worth noting that T6SS is encoded on a genomic island
in vAh strain NJ-35. Therefore, it is possible that Hcp and VgrG
mobilize effector islands in A. hydrophila and are responsible for
the genomic variation in T6SS encoded in the species.

With the goal of developing an effective vaccine to protect
catfish from MAS caused by vAh, we determined the level of
protection provided by the 1hcp1 and 1vgrG1 mutants. Both
mutants provided significant protection. The1hcp1 and1vgrG1
mutants are not safe enough for use as vaccines, but our results
validate our approach of using comparative genomics to identify
candidate virulence genes. Our results also indicate that deletion
of virulence genes is a valid approach for live attenuated vaccine
development against vAh.

T9SS is typically only found in some species in the
Bacteroidetes phylum, so it is not surprising that only one gene
(sprA) encoding a protein similar to T9SS is present in all the
evaluated A. hydrophila genomes. T9SS functions as a secretion
system but also enables gliding motility (McBride and Zhu, 2013;
Sato et al., 2013; McBride and Nakane, 2015). In Flavobacterium
johnsoniae, SprA is responsible (along with SprE and SprT) for
secretion of SprB (Shrivastava et al., 2013).
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Due to their role in secreting proteins involved in
pathogenesis of multiple bacterial species, it is not surprising
that 30 of the A. hydrophila secretion system proteins have
predicted interactions with channel catfish proteins. We chose
channel catfish as the host species for this analysis because
of its importance as an aquaculture species in the U.S.A. and
due to the impacts and known virulence of vAh strains on this
species. These results confirm the multiple interactions between
A. hydrophila secretion systems and channel catfish, adding
additional evidence to their potential roles in A. hydrophila
virulence.

In summary, our analysis indicates that vAh strains do
not encode two of the contact-dependent secretion systems
commonly involved in virulence of many Gram-negative
pathogens, T3SS and T6SS. In fact, the T3SS is missing in
all vAh strains and many other A. hydrophila strains. This
suggests that vAh utilizes other systems to secrete effectors,
toxins, and large secreted proteins. T1SS, T2SS, and T4P systems
are encoded in all the A. hydrophila strains we sequenced, and
these systems likely secrete several virulence-related proteins.
Interestingly, the Tad system is present in all the vAh strains we
sequenced, but it is only present in two of the non-vAh strains
we analyzed. It is possible that the Tad system is one of the vAh-
specific adaptations that make this clade of A. hydrophila more
virulent.

Although only some A. hydrophila have a complete T6SS,
all of the strains in our analysis encode three T6SS proteins.
We determined that two of these genes, 1hcp1 and 1vgrG1,
contribute significantly to channel catfish virulence. Further
investigation of the role of these T6SS genes in A. hydrophila is

warranted, including the effects of deleting all the hcp and vrgG
alleles on A. hydrophila virulence.
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