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While de novo mutations (DNMs) are key to genetic diversity, they are also responsible for a high number of rare disorders. To date,
no study has systematically examined the rate and distribution of DNMs in multiplex families in highly consanguineous populations.
Leveraging WGS profiles of 645 individuals in 146 families, we implemented a combinatorial approach using 3 complementary tools
for DNM discovery in 353 unique trio combinations. We found a total of 27,168 DNMs (median: 70 single-nucleotide and 6 insertion-
deletions per individual). Phasing revealed around 80% of DNMs were paternal in origin. Notably, using whole-genome methylation
data of spermatogonial stem cells, these DNMs were significantly more likely to occur at highly methylated CpGs (OR: 2.03;

p value = 6.62 x 10~ '"). We then examined the effects of consanguinity and ethnicity on DNMs, and found that consanguinity does
not seem to correlate with DNM rate, and special attention has to be considered while measuring such a correlation. Additionally,
we found that Middle-Eastern families with Arab ancestry had fewer DNMs than African families, although not significant (p value =
0.16). Finally, for families with diseased probands, we examined the difference in DNM counts and putative impact across affected
and unaffected siblings, but did not find significant differences between disease groups, likely owing to the enrichment for

recessive disorders in this part of the world, or the small sample size per clinical condition. This study serves as a reference for DNM

discovery in multiplex families from the globally under-represented populations of the Middle-East.

Journal of Human Genetics (2022) 67:579-588; https://doi.org/10.1038/s10038-022-01054-9

INTRODUCTION

De novo mutations (DNMs) play major roles in organismal
evolution, in which they are responsible for creating biological
diversity [1]. Though rare, DNMs can also disrupt core develop-
mental pathways, resulting in severe genetic disorders, such as
autism spectrum disorder, congenital heart disease, and intellec-
tual disability [2, 3], and could explain the recurrence of such
severe disorders in outbred populations despite the detrimental
impact on reproductive fitness.

As the interest in understanding the roles of DNMs grows, it has
become useful to assess their pattern and distribution in both
simplex and multiplex families from ancestries representing the
diversity of global populations. The average DNM rate in humans
is estimated to be around 1-1.3 x 10~ mutations per base per
generation [4-6]. However, estimates are somewhat complicated
by the coverage efficiency in both parents and their children and
by the genomic context, e.g., the higher mutation rates in GC-rich
regions across different organisms, including humans [7, 8].
Moreover, considering the technical challenges produced by
PCR bias or sequencing errors, and the relatively low number of
DNMs in the genome, accurate calling and detection
requires approaches that can yield the highest sensitivity without
compromising specificity; and such combinatorial approaches
must be developed using complementary tools that help

increase the likelihood of capturing true positives while limiting
erroneous calls.

While previous studies have looked at DNMs in different
populations [4-6, 8-12], they have been somewhat limited by the
use of separate parent-offspring trios or a small number of multi-
generational families. Further, most studies to date have been
performed in outbred populations, with inadequate representa-
tion of the highly consanguineous Middle Eastern cohorts. We
thus aimed to explore the rate and distribution of single-gamete
DNMs detected using short-read whole-genome sequencing
(WGS) in a cohort of 146 multi-offspring families (353 unique
trios) enrolled in a large pediatric tertiary care center in the Middle
East. We applied three complementary tools to generate an
integrated list of DNMs for every individual, which was used to
estimate the DNM rate, determine the parent-of-origin, and
investigate the impact of parental age on DNM count. We also
examined the DNM mutational spectra and the distribution of
DNMs through genome methylation maps for both gonadal and
somatic tissues. Finally, we investigated the impact of consangui-
nity, ancestry, and disease status on DNM counts in our cohort. To
the best of our knowledge, this is the first large-scale assessment
of DNMs in a Middle Eastern multiplex family cohort, and it
establishes a reference for this globally under-represented
population.
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MATERIALS AND METHODS

Sample collection and DNA extraction

We gathered 353 trios from a total of 146 multi-offspring families (Table 1)
that were enrolled for research under institutional review board (IRB)
protocols IRB#1610004943 and IRB#712017158 at Sidra Medicine. Written
informed consent was obtained from each study subject. Whole blood
samples were collected and total genomic DNA was extracted from each
sample using DNeasy Blood & Tissue Kit (Qiagen sciences LLC, German-
town, MD, USA), and 1500 ng was used for WGS.

Whole-genome sequencing and quality check

Libraries were prepared using TruSeq DNA Nano kit (lllumina Inc, San
Diego, CA, USA), and samples were sequenced to an average depth of 30X
using lllumina HiSeq X at the Core Genomics Lab at Sidra Medicine. Raw
reads were aligned to GRCh37 using the standard settings of the BWA kit
v0.7.15 [13]. Pre- and post-alignment quality checks were performed using
FastQC v0.11.2 [14] and Picard v2.17.6 [15]. The heterozygosity and
missingness rate were plotted after variant calling to evaluate the sample
quality. We also performed a sex check, and we removed samples that
shared a lot of variants, which implies contamination has occurred.

De novo variant identification and pipeline optimization

To optimize de novo variant detection, we used three tools combined with
a manual inspection of a random set of ~3500 de novo variants by
integrative genomics viewer (IGV) to optimize the pipeline’s sensitivity and
specificity for each tool as follows: First, the VCF file generated by FreeBayes
v1.1.0 [16] was manually filtered for de novo variants based on genotype,
alternate allele ratio (0.25 to 0.75 in proband, and 0 in all other family
members), read depth (=12), and quality score (=30 for single-nucleotide
variants [SNVs] and =80 for insertions-deletions [INDELs]). Second, VarScan
v2.3.9 [17] was used to call variants directly from each trio’s mpileup file
generated using SAMTools v1.9 [18]. Filtration was based on the genotype,
alternative allele depth (0 in parents), “DENOVO” and “PASS” tags, p value

Table 1. Description of the included families and identified DNMs in
the study cohort

Description Count

Total cohort size 645 samples

Trios (males, females) 353 (190, 163)

Phenotypes

Neurogenetic 92
Craniofacial 17
Endocrine 9
Multi-system 17

Other 25

Healthy 193
Sub-populations

African 33
South-Asian 67
Middle-Eastern 207
Caucasian 21

Other 25

Total families 146
Consanguineous families 47

Median fathers’ age 34 years old
Median mothers’ age 29 years old
Total identified de novo variants 27,168
SNVs (median per individual) 24,808 (70)
INDELs (median per individual) 2360 (6)
Effective genome coverage 2.797 x 10°
SNVs rate 125%x10°8
INDELS rate 1.07x10°°
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(<0.005), and allelic ratio (Freq; =0.25 for SNVs and >0.30 for INDELs). Third,
we used a reference-independent k-mer-based variant caller, i.e., RUFUS
v1.0 [19], to call variants directly from BAM files. We used the
recommended k-mer size (25 bases) and kept variants tagged as “DeNovo”.

After calling, we combined the three lists of variants for each individual
and marked variants seen by two or three tools as “pass”, while those
unique to only one tool underwent processing with more stringent
filtration thresholds (FreeBayes: depth =14, RUFUS: Qual =16 for SNVs and
>17 for INDELs, and VarScan: Freq >0.3 for SNVs and >0.35 for INDELs) to
be approved or excluded. As a final step, we annotated variants using
SnpEff 4.3 T [20] to add information on the predicted consequences of the
variants, evolutionary conservation, population frequency, clinical disease
associations, etc. To remove population-specific rare variants missed in the
parents, we also filtered out variants with an allele frequency of >0.1% in
different databases [21-27].

Calculating effective genome coverage

The effective number of bases covered by WGS was calculated as
previously described [4]. The average initial number of bases covered was
2.84 billion and 56.07 million for non-CpGs and CpGs, respectively. After
filtration, 2.74 billion non-CpGs and 53.66 million CpGs remained; giving an
average total of 2,796,691,061 bases.

Calculating DNM base-substitution frequencies

For the DNM spectra, we merged substitutions that represented the same
event on complementary strands (e.g., C>T was considered the same as
G > A) and calculated the fraction of each possible type. For the mutational
signature, we extracted the DNA sequence triplet around each variant from
the GRCh37 reference genome using the “getfasta” module from bedtools
[28]. We then calculated the proportion of each of the resulting 96 triplets
compared to the total number of DNMs.

Calculating GC content around DNMs

To calculate the percentage of GC content around de novo SNVs and
INDELs, we first determined the regions flanking DNM sites in sliding
windows ranging from 10-1000 bases. We then extracted these regions
from the GRCh37 reference genome using BEDTools v2.28 [28] and
calculated the GC content fraction within each window of bases.

Determining the parent-of-origin for de novo mutations
(phasing)

We followed a read-based phasing approach to phase the de novo
variants. This approach requires the existence of an “informative” inherited
heterozygous variant that can be phased to a parent and is in the same
sequencing read as the DNM, allowing the DNM to be phased. We used
Unfazed v0.2.3 for this purpose [29].

Effect of parental age on DNM count

To measure the effect across all families, we calculated the fraction of
paternal/maternal DNMs within the total number of phased DNMs in each
proband, scaled this to the entire DNM count per individual, and plotted
these against parental age at conception. We used a Poisson regression
model (using the glm function with the option link = “identity”) to examine
the relationship between paternal age and DNM count, following the same
style as published before [30]. To measure the effect within each family, we
ran the analysis on families with four or more children.

Calculating relatedness scores

To perform consanguinity analysis, we calculated the relatedness scores
using relatedness2, part of the KING inference method in VCFtools [31].
The relatedness score, or kinship coefficient (PHI), is defined here as the
probability of finding identical alleles when randomly selecting one allele
from each individual [32]. We used the recommended cutoffs of these
scores to distinguish between 1°¢ degree cousins (<0.177, >0.0884), 2"
degree cousins (<0.0884, >0.0442), and unrelated parents (<0.0442).

Correlation between local DNM rate and rates of methylation
We first downloaded a bigWig whole-genome bisulfite sequencing profile
of human adult spermatogonial stem cells (SSCs) [33], then determined all
CpG positions in the genome using the FASTA reference genome (GRCh37)
and appended the SSCs’ methylation values to these positions. We also
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extracted the SSCs’ methylation values for our list of DNMs that occurred at
CpG sites. Afterward, we counted the number of sites with high (>50%)
and low (<50%) degrees of methylation for both lists. We next calculated
the fraction of DNM-CpGs of the whole-genome CpGs in each methylation
interval and measured the fold difference between these fractions. We also
downloaded the methylation profiles of human liver cells and peripheral
blood mononuclear cells (PBMCs) to use as controls [34, 35].

Statistical analysis

All statistical analyses were performed in R statistical language (v3.4.3). For
scatter plots, Pearson correlation coefficients were calculated. p values in
all boxplots were calculated using pairwise Student’s t-test. In the
methylation analysis, binomial p values were used to calculate the
significance of the fold difference between fractions of methylation levels.
p values of less than 0.05 were considered statistically significant.

RESULTS

Cohort description and QC

A total of 146 families (n = 645 individuals) were enrolled in this
study, of which 47 (32%) reported a history of consanguinity (first-
or second-degree parental relatedness). Parental ages at concep-
tion varied as follows: fathers (median: 34 years old, range: 21-50)
and mothers [29, 16-44]. Family sizes differed across the cohort
(median: 2 offspring, range: 1-10), with more than 70% of families
being multi-offspring (Supplementary Fig. 1). All participants
underwent WGS to an average depth of 31.6X (Supplementary
Fig. 2), with variants aligned and called as described in the
Methods. After QC, a total of 353 unique trios could be established
from the cohort (one child plus both parents), which were selected
for DNM calling and annotation. The trios included 190 males and
163 females, 45.3% of whom had an underlying rare disorder. A
summary of these statistics is provided in (Table 1).

A combinatorial approach to calling DNMs and calculating
DNM rate

To ensure the comprehensive ascertainment of variants and to
improve sensitivity and specificity, we used a combination of three
different approaches to identify de novo mutations with a three-step
workflow (details in Methods, Supplementary Fig. 3). In total, we
identified 24,808 high-quality de novo single-nucleotide variants
(SNVs) and 2360 INDELs in 353 trios (Table 1 and Supplementary
Fig. 4), with the median genome containing 70 de novo SNVs
(average = 70.3) and 6 de novo INDELs (average = 6.7). Taking into
consideration the effective genome coverage of around 2.797 billion
base pairs (see Methods) and genomic diploidy, we calculated a
median DNM rate of 1.25x 108 and 1.07x10~° per base per
generation for SNVs and INDELs, respectively. These rates are
consistent with previous reports [4, 5, 30, 36].

Effect of parental age on DNM count and differences across
families

To determine the parental contribution to DNMs, we sought to
determine the parent-of-origin where possible using read-based
phasing. Given the 150-bp read length, we were able to phase
13% (range: 4.2-25%) of the de novo variants on average
(Supplementary Fig. 5). Among the 3537 variants phased, 2817
were paternal in origin and 720 were maternal. This corresponded
to a paternal-to-maternal DNM phasing ratio of ~3.91:1, in line
with prior estimates [30].

We then checked for correlations between parental age and DNMs
across the cohort (Fig. 1A). Although we observed a significant
increase in DNMs by 136 per year of paternal age (Pearson
correlation; 95% CI: 1.11-1.61, p=1x10"%), we observed a weak
correlation with maternal age, with an increase of 0.33 DNMs per year
(Pearson correlation; 95% Cl: 0.11-0.56, p = 3.8 x 10~3). These results
agree with previous findings that show parental age effects on the
DNMs found in offspring [5, 6, 9, 37, 38].
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Given that DNMs count can be affected, in addition to paternal
age, by other factors such as family membership, number of
offspring, and ancestral population, we applied a Poisson
regression analysis that integrates these factors into the model.
Initially, we built a null model focusing on the paternal age effect
on the DNM count but using only families with more than three
offspring (n = 21). This showed an estimated paternal age effect of
1.57 DNMs per year (95% Cl: 1.29-1.85, p < 2.2e—16) (Supplemen-
tary Table 1). Then we fitted a Poisson regression model by adding
family membership to the model that incorporated paternal age
and DNM count, and found that the paternal age effect
significantly varies between families, ranging from —0.39 (95%
Cl: —1.66-0.87) to 7.8 (95% Cl: 4.28-11.40) additional DNMs per
year (Fig. 1B, C). This interaction model fits better than the null
model and gives an improved regression model (p =0.002). This
model shows an average increase of 2.1 (95% Cl: 1-3.2) DNMs per
year of paternal age. We also examined two more Poisson models
that test the paternal age effect on DNM counts and separately
add number of offspring and population, but both factors had no
significant effect on the relationship of paternal age and DNM
count (Supplementary Table 1).

Effect of additional siblings on DNM detection accuracy

We stratified the cohort based on the number of offspring per
family to investigate if additional offspring reduced the DNM
counts in each “index” child (Supplementary Fig. 1). We found the
average number of DNMs per individual to be lower in larger
families compared to smaller families, with a reduction of around
1.15 DNMs per added sibling (Fig. 2), suggesting that sequencing
additional family members can significantly improve the ability to
discriminate true de novo variants from rare inherited ones.

De novo mutation load and consanguinity

Given the high level of consanguinity (~32%) in our cohort, we
explored whether there was evidence for a correlation between
consanguinity and DNM count (Fig. 3, Supplementary Fig. 6).
Rather than relying solely on reported parental consanguinity, we
computed each child’s relatedness score using KING (see
methods) [31]. Although the number of DNMs was not expected
to be affected by consanguinity, the offspring of consanguineous
marriages appeared to have fewer DNMs (p value =0.033)
(Fig. 3A). To rule out confounders impacting this correlation, we
also examined the relationship between relatedness score and
both the father's age at conception (Fig. 3B) and family size
(Fig. 3C). Notably, consanguineous parents in our cohort appeared
to have had children at younger ages than non-consanguineous
parents, as well as larger family sizes, which, as explained earlier,
reduces the DNM count due to sibling sharing. As expected,
correcting for these factors (the father's age in particular)
uncoupled the relatedness score from the DNM counts (Fig. 3D,
E), providing a rational explanation for why the offspring of
consanguineous parents appeared to have fewer DNMs than non-
consanguineous trios.

DNM spectra and mutational signature

We next examined the distribution of DNMs in relation to base
changes (Supplementary Fig. 7A). Consistent with previous reports
[39], we found a nearly 2-fold enrichment in transitions versus
transversions, with 35% of DNMs being C > T. To drill deeper into
the genomic context of the DNMs, we examined all possible DNA
sequence triplets at the DNM sites which, together, make up the
mutational signature of de novo mutations (Supplementary Fig. 8).
Among the highest proportion of DNMs (i.e., C > T substitutions),
CpG sites were found to contribute to a large fraction of the DNM
events. The same mutational signature was also discovered
previously in three different trio datasets [40]. We then followed
the above approach to compare the fractions of phased DNMs
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from both parents (Supplementary Fig. 7B). We found no
statistically significant difference in the DNM spectra by parent-
of-origin, likely due to the relatively limited number of phased
DNMs per individual.

We further examined the effect of local GC content on
mutability. Using a sliding window approach (with windows

SPRINGER NATURE

ranging from 10-1000 bases), we extracted the genomic sequence
from around each DNM from the GRCh37 reference genome and
calculated the GC content surrounding SNVs or INDELs (Supple-
mentary Fig. 9). We found a higher GC content near SNVs and a
lower content near INDELs compared to the average genomic GC
content of 41% [41].
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We next calculated the mutation rates of both transition and
transversion variants with respect to CpG site (Supplementary
Table 2). We found that CpG dinucleotides had much higher
mutation rates compared to non-CpGs, and the difference
was clear.

CpG methylation as a driver for DNM development

The high correlation between DNMs and CpG sites suggested that
methylation levels play a role in the genesis of DNMs in parental
gametes. To assess this, we compared the mutation rates at CpG
sites with respect to the level of methylation (i.e., percentage of
reads containing a methyl group) across human tissues. First,
when we examined adult spermatogonial stem cells (SSCs) [33],
we observed a total of 3,801 variants in our DNM catalog at CpG
sites, 475 of which were paternal in origin. Surprisingly, for the
paternally phased variants, we found that the highly methylated
CpG sites (i.e, >50% of reads methylated) were 2.03 times
(binomial p value =6.62x 10~"") more likely to have DNMs than
the low-methylation sites (Table 2). To improve the specificity of
this observation, we performed the same analysis using the
methylation profiles of two other human tissues as controls: liver
cells and PBMCs [34, 35]. We found much smaller fold-change
differences between the methylation levels in terms of mutation
rate (binomial p values = 0.03 and 0.004 for liver cells and PBMCs,
respectively). These results provide further evidence for the key
role of CpG methylation in the development of de novo
mutations.

DNM localization and count in different populations and
disease phenotypes

We next examined the genomic localization of the 27,168 DNMs in
our cohort. Among these variants, 459 were in coding regions
(average per child = 1.3, median = 1). This represents 1.7% of the
total number of variants, which is consistent with the proportion
of coding bases in the human genome. We also found 43 (0.16 %)
loss-of-function de novo variants, of which 13 (30%) were
predicted to cause nonsense mediated decay.

We stratified our cohort based on ethnicity and disease
phenotype to assess if there were differences in the DNM counts
in these categories. African and South-Asian populations seemed
to have a significantly higher number of DNMs compared to
Middle Eastern and Caucasian populations, as shown in Fig. 4A.
However, when we accounted for differences in paternal age
between these populations (Fig. 4B), we found that the fathers’
ages at conception could be the factor driving the differences in
DNM counts across the populations. After correcting for the
father’'s age, none of the populations remained significantly
different from the others, although the African population showed
a higher trend across populations.

After looking into the differences among phenotypes in terms
of DNM counts, we found that probands with neurogenetic
disorders had, on average, more DNMs compared to healthy
subjects, although that difference did not achieve statistical
significance. We also found no significant differences between any
of the other phenotype groups and healthy subjects (Fig. 4C). To
delve deeper into the variants in our dataset, we used the
annotated files to compare several metrics between the different
phenotypes. We compared the percentage of variants with certain
thresholds of combined annotation-dependent depletion (CADD)
scores (Supplementary Fig. 10A), genomic evolutionary rate
profiling (GERP) scores (Supplementary Fig. 10B), combined CADD
and GERP scores (Supplementary Fig. 10C), and predicted loss-of-
function intolerance (pLl) scores (Supplementary Fig. 10D), with no
significant differences between the phenotypes.

Finally, we tested if the variants with different functional effects
were enriched in certain phenotypes (Supplementary Fig. 11). To
do this, we first compared the phenotypes using the normal
functional impact annotation of “LOW”, “MODERATE", and “HIGH"
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(Supplementary Fig. 11A). We then sub-categorized the variants,
based on their functional impact, into protein non-disrupting
("MODIFIER” + “LOW") and protein-disrupting  (“MODERATE"
+ “HIGH") variants (Supplementary Fig. 11B). We also failed to
find any significant differences between the DNM distributions
across the different phenotype groups in this regard.

DISCUSSION

In this study, we investigated the spectrum and distribution of
DNMs in 146 multiplex families from the genetically under-
represented population of the Middle East. We devised a highly
sensitive and specific combinatorial approach for DNMs calling
and discovered 27,168 high confidence DNMs in 353 unique
individuals, with a median of 70 de novo SNVs and 6 de novo
INDELs per genome, consistent with previous estimates
[4, 5, 30, 36]. We noted that while each tool independently gave
similar numbers of DNMs per individual, the advantages of a
combinatorial approach over single tools lies in establishing
consensus to remove false positives and rescue false negatives,
leading to higher accuracy and validation of DNM:s.

Selection of the candidate DNM calling tools was mainly driven
by our aim to use approaches that rely on different underlying
algorithms to maximize the sensitivity and specificity of the
pipeline. After investigating many tools for de novo calling, we
selected the following three: FreeBayes, VarScan and RUFUS.
FreeBayes uses a haplotype-based approach to call variants [16].
This method is relatively more comprehensive, compared to
alignment-based methods [18, 42, 43], in that it relies on the
actual sequences of reads aligned to a particular target, rather
than only their alignment, allowing more sensitive detection of
variants at regions with highly similar sequences. However,
FreeBayes and many other tools apply probabilistic algorithms
to call variants and examine their confidence, which can be
affected by several confounders, including read depth. VarScan
employs a heuristic variant calling approach that depends on
meeting certain threshold settings for read depth and other
parameters [17]. RUFUS, meanwhile, employs a reference-
independent approach that directly compares raw sequence data
of the samples to be assessed, with greatly increased specificity
[19].Thus, these 3 tools are complementary in their approaches,
and help overcome certain issues such as repetitive sequences,
variable depth of coverage, and reference bias, while maintaining
reasonable resource utilization and speed of calling.In order to
establish parent of origin effects, we phased the DNMs using a
read-based approach, relying on neighboring heterozygous
“informative alleles” to unambiguously assign alleles to either
parent [44]. In this way, we were able to phase ~13% of all
variants, of which around 80% appeared to be paternal in origin.
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Although we had a relatively low phasing rate in the study cohort,
our results correspond with previously reported findings which
showed similar proportions of parental gamete-of-origin [4, 30].
These observations, together with the hypothesis that single-
gamete DNMs arise during genome replications of the parental
gamete [44], underscore the role of spermatogenesis in DNM
development.

In line with previous studies [5, 6, 9, 37, 38], we found the
number of DNMs to be increased with advancing parental age,
and the rate was different for fathers versus mothers. It has been
hypothesized that the accumulation of DNMs observed with
advancing paternal age arises from incidental copying errors
during genome replication over the course of spermatogonia
mitosis [38, 44].

Interestingly, significant inter-family variability (p =0.001) was
observed when assessing the effect of paternal age on DNM
accumulation. This variability is unlikely to be driven by
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differences in family size (Supplementary Table 1). However, three
potential reasons could explain this variation. First, the overall
mutation rate might have been affected by differences in the
genetic make-up of the families and their environmental
exposure. Second, the age at puberty of the parents, at which
gametogenesis starts, may have differed, and thus a parent that
experienced a late puberty would accumulate fewer mutations
than a father with the same age of conception who underwent
puberty earlier. Third, although replication errors have been
suggested to be the main contributor to DNM development, other
sources (e.g.,, DNA damage) could influence this variation and may
have differed among families in our cohort [30, 45].

As part of our DNM calling pipeline to reduce the number of
missed parental heterozygotes, we excluded variants shared
between the probands and siblings in each family. One
consequence of this was that variability in the number of siblings
across families may have affected the DNM counts. To test this, we
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Table 2. Fold difference in the fraction of DNMs based on methylation levels
Cell type Methylation level DNM CpGs All CpGs Fraction Fold difference P value (Binomial)
SSCs <50% 86 8,804,182 9.77 x 10°® - -
>50% 389 19,617,481 1.98x10° 2.03 6.62x10""
Liver cells <50% 288 18,383,721 1.57x107° - -
>50% 187 10,037,942 1.86x10° 1.19 0.03
PBMCs <50% 316 20,440,889 1.55% 107> - -
>50% 159 7,980,774 1.99% 10> 1.29 0.004

stratified the cohort based on the number of offspring per
family and found that the average number of DNMs per
individual decreased with an increase in the number of siblings,
reflecting the importance of sequencing more siblings in rare
disease families where the proband is suspected to have
pathogenic DNMs.

Furthermore, we explored if DNM rates in any way correlate
with consanguinity, although such correlation is not actually
expected in single-gamete DNMs, because they arise before
zygote fertilization [30], and are thus independent of parent
relatedness. In our study cohort, we observed a nominally
significant correlation; however, this correlation appeared to be
confounded by both the father’'s age at conception (consangui-
neous couples in our cohort conceived earlier) and the availability
of more siblings in consanguineous families (larger kindreds). This
observation sets a valuable precedent for studies in similar
population settings, where such variants ought to be taken into
consideration to avoid confounded results and interpretations.

We next examined the distribution of DNMs by substitution
type and found a marked enrichment in transitions over
transversions. Although the mutational spectrum was previously
shown to be different in terms of the parent-of-origin [30], we
found no significant differences, which is likely due to the small
number of phased variants in our cohort. Furthermore, by
examining the mutational signatures of the DNMs, we found that
CpG sites disproportionately contributed to DNM events, which
was also seen in other recently examined datasets [40]. Moreover,
we found a higher GC content near SNVs (average of 44.2% per 10
bp window), compared to the average genomic GC content of
41% [41]. This was expected, as a high GC content has been
shown to affect the repair pathways and elevate the mutation rate
[7, 46]. On the other hand, INDELs appeared to occur more often
within lower GC content regions, which contradicts a previous
study that showed a positive correlation between INDEL and GC
content [47]. However, this contrary finding was not statistically
significant, probably due to the cohort size.

We next questioned whether CpG methylation is a driving
factor in DNM development. To investigate this in our cohort, we
compared the DNM sites in the whole-genome methylation
profiles of human adult SSCs to those of PBMCs and liver cells [33].
Indeed, highly methylated CpG sites were twice as likely to be
mutated than low-methylation sites. Previous study on CpG
substitution rate in introns of human genes have also shown a
positive correlation [48]. Another study performed on methylation
profiles generated by reduced representation bisulfite sequencing
also showed that methylated CpG sites are relatively more likely to
mutate than unmethylated CpGs [5]. This suggests that DNA
methylation during spermatogenesis is a key DNM developmental
mechanism.

We then stratified our cohort based on ethnicity and disease
phenotype to assess differences in the DNM rates across these
groups. In terms of population structure, the African population
appeared to have more DNMs (although not significant) than
other ethnicities, even after correcting for parental age at
conception. This pattern could either have been confounded by
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factors not included in our calculations, as was seen in a
previous study in which temperature was shown to affect
mutation rates [49], or be a true population-specific pattern that
contradicts a previous estimate which showed similar DNM
rates among different sub-populations except for a reduction in
the Amish population [1]. It could also be a consequence of the
small sample size provided by the cohort. In terms of disease
phenotype, many studies in the past have established a
prominent role for DNMs in certain congenital and develop-
mental conditions, e.g., congenital heart disease, intellectual
disability, and autism [50, 51]. Here, we found no significant
differences in DNM count or predicted impact/severity of DNMs
in children with these conditions versus their control siblings, or
for other disease categories represented across our cohort.
There are several explanations for this. First, the cohort size
within each disease category may have been too underpowered
to detect significant differences in pairwise comparisons;
however, even when we amalgamated several disorders
together to compare against controls, the resulting differences
by count and by predicted impact did not reach statistical
significance. Second, given our families inhabit an area of the
world with high consanguinity, it is possible that the allelic
architecture driving disease in the affected probands is largely
recessive, rather than de novo. Consanguineous families are
known to be rich in homozygous recessive alleles that could be
disease-causatives [52]. This would explain the overall equality of
the burden of DNMs across siblings, despite disease status,
which has important implications for studies looking at pediatric
disorders in Middle Eastern settings. In particular, diseases long
thought to be largely dominant (caused by DNMs) in global
(outbred) cohorts may, in fact, involve recessive genes that have
yet to be discovered in populations with high degrees of
consanguinity [53-55]. Congenital heart disease is an example
where causative mutations in MCTP2 gene are known to be only
dominant, but found to be recessive in a consanguineous cohort
[56]. This has implications for the biomedical discovery of
pathways that can be targeted for drug development and
intervention. Importantly, this could lead to improvements in
newborn and prenatal screening programs in regional popula-
tions to help with the early detection and possible eradication of
conditions in the future. Third, we filtered our data for DNMs
only existing in the probands and absent from both parents and
siblings, which most likely removed not only the missed parental
heterozygotes but also gonosomal and post-primordial germ-
cell-specification variants that can appear in multiple children of
the same parents. These post-zygotic variants were hypothe-
sized to be correlated with different phenotypes, including
adult-onset neurodegenerative disorders [57, 58]. Such an
evidence of the role of these mutations is disease etiology
might be sufficient to promote a difference between the
phenotype groups.

Overall, the study produced a detailed illustration of DNMs in a
large cohort of Middle Eastern families from Qatar. Because our
cohort consisted of two-generation families only, we could not
estimate the missed heterozygosity rate (variants wrongly
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genotyped as absent from a parent due to technical or
computational errors but observed in a grandparent). We were
also limited in our ability to identify the parent-of-origin for many
DNMs due to the limited number of informative sites within
short-read data. Nevertheless, most of our findings corresponded
to globally observed rates and patterns of DNMs, thus establish-
ing an important baseline dataset for Arab populations of the
Middle East. Furthermore, while we were able to dissect the
correlation between consanguinity and DNMs and show the
impact of sequencing additional siblings on improving specifi-
city, we were unable to replicate the differences in DNM rates
between disease and control individuals across multiple diseases,
nor across different predicted impact categories of DNMs in
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health and disease. This may be due to the small size per disease
cohort, or to the effect of consanguinity enriching for recessive
subtypes of clinical conditions rather than those caused by
DNMs. Future studies with larger cohorts from the region will be
required to resolve these discrepancies, with important implica-
tions for screening and intervention strategies in the future.
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