
Vol.:(0123456789)1 3

Molecular Biology Reports (2021) 48:195–202 
https://doi.org/10.1007/s11033-020-06032-y

ORIGINAL ARTICLE

Pemafibrate prevents retinal neuronal cell death in NMDA-induced 
excitotoxicity via inhibition of p-c-Jun expression

Naoki Fujita1,2 · Kana Sase2 · Chihiro Tsukahara2 · Ibuki Arizono1,2 · Hitoshi Takagi2 · Yasushi Kitaoka1 

Received: 25 September 2020 / Accepted: 24 November 2020 / Published online: 5 December 2020 
© The Author(s) 2020

Abstract
Excitotoxicity is involved in the retinal neuronal cell death in diabetic retinopathy. Although fenofibrate has been shown 
to ameliorate the progression of diabetic retinopathy, the effect of pemafibrate, which is highly selective for peroxisome 
proliferator-activated receptor α on retinal neuronal cell death has not been documented. Here, we investigated whether 
pemafibrate exerts a beneficial effect against retinal ganglion cell (RGC) death induced by N-methyl-D-aspartate (NMDA) 
in rats. Experiments were performed on adult male Wistar rats that received an intravitreal injection of 20 nmol NMDA. 
Fluoro-Gold labeled RGC morphometry showed that oral intake of pemafibrate once a day for 7 days resulted in significant 
protection on RGC death induced by NMDA. Phosphorylated c-Jun protein, which is involved in apoptosis, was upregulated 
after NMDA exposure, and this increase was significantly lessened by the systemic pemafibrate treatment. Phosphorylated 
c-Jun immunopositive cells were colocalized with Thy-1 immunopositive cells, and the increased these cells were amelio-
rated by the pemafibrate treatment. An increase in TUNEL-positive cells was significantly suppressed by the pemafibrate 
treatment. Phosphorylated c-Jun immunopositive cells were colocalized with TUNEL-positive cells, and they were decreased 
by pemafibrate treatment.  These results suggest that the RGC protection achieved with pemafibrate appears to be associated 
with inhibition of phosphorylated c-Jun and its anti-apoptotic effect.
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Introduction

Peroxisome proliferator-activated receptors (PPARs) are 
involved in the body’s energy metabolism and are classified 
into three subtypes: PPAR-α, PPAR-β, and PPAR-γ. PPAR-α 
is distributed mainly in metabolic tissue, including the heart, 
skeletal muscle, liver, and retina, and it is activated by free 
fatty acids and leukotriene B4 as physiological ligands, 
which play a pivotal role in fatty acid metabolism [1–3]. 
PPAR-α has been shown to inhibit oxidative stress and 
degeneration in retinal neuronal cells in retinopathy model 
mice induced by high oxygen [4]. Fibrates are artificial 

ligands of PPAR-α that promote the beta-oxidation of fatty 
acids and lower triglycerides in the blood [5–7]. PPAR-α has 
recently attracted attention for its anti-inflammatory effects, 
but the precise mechanism by which PPAR-α confers such 
protection has not been elucidated. PPAR-α can inhibit 
the pro-inflammatory gene expression, leading to vascular 
inflammation reduction [5–7].

Fenofibrate is a PPAR-α agonist that has been used in 
the treatment of dyslipidemia. Large clinical trials, i.e., the 
Fenofibrate Intervention and Event Lowering in Diabetes 
trial [8] and the Action to Control Cardiovascular Risk in 
Diabetes trial [9–11], have shown that administration of 
fenofibrate inhibits the diabetic retinopathy progression 
[8–11]. A recent study has shown that fenofibrate reduces 
reactive oxygen species formation and ameliorates diabetic 
retinopathy [12]. Pemafibrate has been used as a novel treat-
ment for fibrate dyslipidemia, and recently it has become 
clear that it has various functions in vivo activities [13, 14]. 
It has been reported to be safer than fenofibrate [15] and to 
be highly selective for PPAR-α [16].
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c-Jun is a transcription factor belonging to the transcrip-
tion factor activator protein 1 group that is phosphorylated to 
become p-c-Jun and is linked to the expression of apoptosis-
related genes. Previous studies have reported that upregu-
lated p-c-Jun and p-JNK are accompanied with neuronal 
death in the retina of diabetic rats [17], and that inhibition 
of p-c-Jun activity might be neuroprotective in Parkinson’s 
disease model rats [18].

Excess extracellular glutamate has been linked to diabetic 
retinopathy. For example, increase in vitreous glutamate has 
been shown in diabetes patients [19]. Other reports have 
shown that glutamate levels were increased in retinal Muller 
cells from diabetic rats and that such elevation might cause 
glutamate excitotoxicity [20, 21]. N-methyl-D-aspartate 
(NMDA) is a glutamate receptor agonist that is implicated in 
neuronal death and has been used in various studies to model 
neuronal cell death. Intravitreal administration of NMDA 
has been exhibited to activate nuclear factor-κB, inflamma-
tory cytokines, and apoptosis-related factors and to produce 
retinal neurotoxicity [22]. Since diabetic retinopathy causes 
amacrine cell death and retinal ganglion cell (RGC) death 
[23–26], clarifying the mechanism of such cell death may be 
useful for understanding diabetic retinopathy.

In the current study, we investigated the effect of 
pemafibrate in rats with retinal neurotoxicity induced by 
NMDA and examined its alteration on p-c-Jun as a possible 
mechanism.

Materials and methods

Animals

A total of 41 8-week-old male Wistar rats were used for the 
study. The animals were housed in a room in which tempera-
ture (23 ± 1 °C), humidity (55 ± 5%), and lighting (light from 
06:00 to 18:00) were controlled. Labeling of RGCs, admin-
istration of pemafibrate, intravitreal injection and measure-
ment of RGC counts were performed on the schedule shown 
in Fig. 1. The study was conducted according to the Associa-
tion for Research in Vision and Ophthalmology Statement 
for the Use of Animals in Ophthalmic and Vision Research.

Labeling of RGCs

Rats’ RGCs were labeled retrogradely with a neurotracer, as 
described previously [27]. The animals were anesthetized by 
intramuscular injection of a mixture of ketamine and xyla-
zine. The cerebrum was aspirated, and pieces of gelfoam 
soaked in a 6% solution of Fluoro-Gold (Fluorochrome, 
Denver, CO, USA) were placed at the superior colliculus 
bilaterally.

Division of rats into groups

One day after the RGC labeling, rats were randomly 
assigned to administration of pemafibrate (pemafibrate 
group; n = 5) or to non-administration of pemafibrate 
(non-pemafibrate group; n = 5). For those in the pemafi-
brate group, pemafibrate 2.5 mg (10 mg/kg; provided by 
Kowa Co. Ltd., Nagoya, Japan) was dissolved in methyl-
cellulose and administered orally once a day for 7 days. 
Non-pemafibrate group was also made.

NMDA and PBS intravitreal administration

One day after administration/non-administration of pemaf-
ibrate, NMDA was administered intravitreally as described 
previously [28]. Briefly, rats were anesthetized by intra-
peritoneal injection of sodium pentobarbital, and 2 μl of 
1 × 10−2 M NMDA (Sigma-Aldrich) was then injected 
intravitreally into the left eye of each animal under micros-
copy, and phosphate-buffered saline (PBS) was injected 
intravitreally into the rats’ right eye.

Counting RGCs

Seven days after the intravitreal injection, the rats were 
killed by pentobarbital overdose, and their eyes were 
removed. The eyes were fixed and flat mounted. The 
tracer-labeled RGCs were counted at 500 μm (center area) 
and 2 mm (mid-periphery area) from the edge of the optic 
disc under a microscope (Carl Zeiss, Jena, Germany) with 
the use of UV filters at 8 different areas of 151,875 μm2 
each (two areas per retinal quadrant). Distinct glial cells 
(bright, small, spindle-shaped cells) were excluded from 
the counts.

Fig. 1  Flow diagram of the experimental procedure
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Immunoblotting

Expression of p-c-Jun in the sensory retinas that had been 
removed from the enucleated eyes of 11 rats was exam-
ined by Western blotting. The retinas were homogenized 
in protein extraction buffer. Centrifugation was performed 
at 15,000 g for 15 min at 4 °C, and supernatants were 
obtained. The protein concentration was determined with 
use of a commercial protein assay kit (Bio-Rad Labora-
tories). Samples (8 μg each) were loaded onto SDS poly-
acrylamide gels (Bio-Rad Laboratories) and transferred 
to PVDF membranes (Immobilon-P, Merck Millipore, 
Tullagreen, Ireland). The membranes were incubated in 
Tris-buffered saline containing 0.1% Tween 20, and one 
of the following primary antibodies: anti-phospho-c-Jun 
antibody (1:200 dilution) (Cell Signaling Technology, 
Inc., Beverly, MA, USA) or beta-actin antibody (1:5000 
dilution) (Sigma). The membranes were then reacted with 
peroxidase-conjugated anti-rabbit IgG or anti-mouse IgG 
antibody (1:5000 dilution) (Cappel, Aurora, OH, USA) 
and visualized with a chemiluminescence detection sys-
tem (ECL Plus Western Blotting Detection Reagents). The 
bands were then scanned and analyzed quantitatively with 
the use of NIH Image software.

Immunohistochemical analysis

Twelve hours after vitreous injection of NMDA or PBS, 
removed eyes of 10 rats were fixed by immersion in 4% par-
aformaldehyde for 24 h. After paraffin processing and sec-
tioned, deparaffinized sections were blocked with 1% bovine 
serum (Roche Diagnostics GmbH, Mannheim, Germany) 
and incubated with anti-p-c-Jun antibody (Cell Signaling 
Technology, Inc.) or anti-Thy-1 antibody (Santa Cruz Bio-
technology) diluted 1:100 in 1% BSA in PBS overnight. The 
secondary antibodies were FITC-labeled anti-rabbit anti-
body, or rhodamine-labeled anti-mouse antibody (Cappel, 
Aurora, OH, USA). Photomicrographs of the sections were 
obtained with a confocal microscope (LSM510, Carl Zeiss).

TUNEL assay

TUNEL assay was used to detect retinal cells undergoing 
apoptosis. The assay was performed 12 h after the NMDA 
and PBS injections and applied in situ to 10 rats with a fluo-
rescein apoptosis detection system (Promega, Madison, WI) 
[29]. TUNEL-positive cells were counted at 1.0–1.5 mm 
from the edge of optic disc on photos obtained with a con-
focal microscope (Carl Zeiss). A positive control group was 
also made using DNase (Promega, Madison, WI) in the PBS 
group.

TUNEL combined with p‑c‑Jun 
Immunohistochemistry

After TUNEL assay, slides were double-stained with anti-p-
c-Jun antibody, as described above.

Statistical analysis

Data are presented as mean ± SEM. Differences between 
groups were analyzed by one-way analysis of variance 
(ANOVA) followed by Dunnett’s test or Mann-Whitney U 
test. A P value of less than 0.05 was considered statistically 
significant.

Results

Effects of pemafibrate on NMDA‑induced 
neurotoxicity

Using retrograde labeling with Fluoro-Gold, we found a sig-
nificant decrease in the number of RGCs in the NMDA vitre-
ous injection group compared to the control group (Fig. 2). 
The number of RGCs at the center in the control group was 
2963 ± 349/mm2, while the number was 962 ± 65/mm2 in the 
NMDA group. This decrease was significantly ameliorated 
in the systemic pemafibrate treatment group (RGC number 
was 1350 ± 61/mm2; p < 0.05; Fig. 2b). Similarly, the num-
ber of mid-periphery RGCs was 2072 ± 139/mm2 in the con-
trol group, while it was 752 ± 77/mm2 in the NMDA group 
(Fig. 2c). This decrease was significantly prevented by the 
pemafibrate treatment (RGC number was 1106 ± 48/mm2; 
p < 0.05; Fig. 2c).

Effects of pemafibrate on p‑c‑Jun protein levels 
in the retina

Immunoblotting showed a significant increase in the p-c-Jun 
protein levels in the retina 12 h after NMDA injection com-
pared to the control group (Fig. 3). However, this increase 
was significantly prevented by the systemic pemafibrate 
treatment (Fig. 3).

Localization of p‑c‑Jun in the rat retina

Immunohistochemical analysis showed that faint p-c-Jun 
immunoreactivity was observed in the control group, but 
12 h after NMDA injury, p-c-Jun immunoreactivity was 
apparent (Fig. 4e). They were observed in mainly RGC 
layer (RGCL) and inner nuclear layer (INL) and were colo-
calized with Thy-1 immuno-positive cells in the RGCL 
(Fig. 4d-f). In the pemafibrate group, p-c-Jun immunore-
activity tended to be decreased compared to NMDA group, 
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and they were also observed in Thy-1 positive cells in the 
RGCL (Fig. 4g-i).

Effects of pemafibrate on p‑c‑Jun in NMDA‑induced 
apoptosis

TUNEL staining showed abundant apoptotic cells in the 
RGCL and INL in the NMDA vitreous injection group 
and they were decreased in the pemafibrate treatment 
group (Fig. 5a). The number of TUNEL-positive cells 
in the RGCL was significantly lower in the pemafibrate 

oral administration group compared to the NMDA group 
(Fig. 5b). Although the number of TUNEL-positive cells 
in the INL tended to be lower in the pemafibrate group 
compared to the NMDA group, the difference was not sta-
tistically significant (p = 0.075; Fig. 5b). Moreover, the 
double staining revealed that p-c-Jun immuno-positive 
cells were co-localized with TUNEL-positive cells after 
NMDA injection, indicating that they are consistent with 
apoptotic cells (Fig. 5c). Furthermore, such colocalized 
cells were not as abundant in the pemafibrate group as they 
were in the NMDA group (Fig. 5c).

Fig. 2  Effects of pemafibrate on RGC loss induced by NMDA. (a) Neurotracer-labeled RGCs in flat preparations. Scale bar = 50 μm. (b) Number 
of RGCs at center area. n = 4–5. *P < 0.05. (c) Number of RGCs at mid-periphery area. n = 4–5. *P < 0.05
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Discussion

Our study revealed a significant neuroprotective effect of 
systemic administration of pemafibrate on NMDA-induced 
retinal neuronal excitotoxicity. A previous study showed a 
neuroprotective effect of oral fenofibrate administration in 
a Parkinson’s disease model rat [30]. Other study demon-
strated that fenofibrate treatment significantly ameliorated 
neuronal death in hippocampus following global cerebral 
ischemia/reperfusion [31]. In addition, it was shown that 
daily administration of fenofibrate led to neuroprotection 
in a transgenic mice model of amyotrophic lateral sclerosis 
[32]. On the other hand, some studies showed the effect of 
PPAR-α agonist on retinal vessels. For example, oral admin-
istration of pemafibrate has been shown to prevent patho-
logical angiogenesis in the retina by increasing FGF21 levels 
in a mouse model of oxygen-induced retinopathy [33]. In 
a very recent study, pemafibrate was shown to ameliorate 
diabetes-induced retinal vascular leukostasis and leakage 
via thrombomodulin upregulation [34]. Taken together, it 
is likely that pemafibrate has a beneficial effect not only in 
terms of vascular permeability but also in terms of neuronal 
cell survival in retina.

The present study showed that vitreous administration 
of NMDA led to a significant elevation in the p-c-Jun pro-
tein level, and this increase was significantly prevented 
by systemic pemafibrate treatment. The increase in p-c-
Jun 12 h after NMDA injection was consistent with our 
previous study showing significant increases 6 h and 12 h 

Fig. 3  Effects of pemafibrate on p-c-Jun expression in retina. (a) Rep-
resentative immunoblotting of p-c-Jun. (b) Band density. Data are 
normalized with β-actin. n = 5–6. *P < 0.05

Fig. 4  Immunohistochemistry of p-c-Jun (b, e, h) and Thy-1 (a, d, g) in retina. (a-c) PBS- treated retina, (d-f) NMDA-treated retina and (g-i) 
NMDA + pemafibrate treated retina. Arrows indicate colocalizations of Thy-1 and p-c-Jun immunopositive cells. Scale bar = 50 μm. n = 6
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after NMDA administration [35]. It was shown that ET-1 
increased the p-c-Jun protein level and this increase was 
markedly inhibited by fenofibrate in cultured cardiomyo-
cytes [36]. It is interesting to note that fenofibrate reduced 
cardiac fibrosis via the inhibition of c-Jun activity [37]. 
There is a possibility that other signaling pathway par-
ticipates in the protective effect of pemafibrate because 
of the discrepancy between large reduction in p-c-Jun and 
modest protection in RGCs. However, since we previously 
found that inhibition of p-c-Jun resulted in neuronal cell 
protection in the RGCL against NMDA injection [35], 
it is reasonable to speculate that the protective effect of 
pemafibrate is accompanied with p-c-Jun inhibition. As 
reported previously [35], p-c-Jun was colocalized with 
Thy-1 immunoreactivity, and the increased p-c-Jun was 
ameliorated by pemafibrate treatment, thus implicating 

decreased p-c-Jun in RGCs may be involved in RGC pro-
tection by pemafibrate.

It is well known that vitreous administration of NMDA 
causes abundant TUNEL-positive cells in the RGCL and 
INL [38]. The current study also confirmed the presence of 
abundant TUENL-positive cells in the RGCL and INL. The 
number of TUNEL-positive cells in the RGCL was signifi-
cantly lessened by systemic administration of pemafibrate, 
while the reduction of TUNEL-positive cell number was 
not significant in the INL. One hypothesis posits that the 
effects of pemafibrate may vary dependent on cell types as 
the INL consists of the nucleus of amacrine cells, bipolar 
cells, horizontal cells, and Müller cells. Colocalization of 
TUNEL-positive cells and p-c-Jun immunopositive cells 
implicates the involvement of p-c-Jun in apoptosis, and these 
colocalized cells were decreased by pemafibrate treatment. 

Fig. 5  TUNEL assay in retina. (a) TUNEL-positive cells 12  h after 
NMDA injection with or without systemic pemafibrate treatment. 
DNase was used for positive control. TUNEL-positive cells were 
not seen 12  h after PBS injection. Scale bar = 50  μm. (b) TUNEL-
positive cell number in the RGCL. n  = 5. *P  < 0.05. (upper panel). 
TUNEL-positive cell number in the INL. n = 5. (lower panel). (c)

Double-labeling for TUNEL and p-c-Jun immunoreactivity 12  h 
after NMDA injection with or without systemic pemafibrate treat-
ment. PBS is also shown as a control. Arrows indicate colocalizations 
of TUNEL-positive cells and p-c-Jun immunopositive cells. Scale 
bar = 50 μm
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In line with this finding, previous studies have suggested that 
PPAR-α agonists suppress apoptosis. For example, fenofi-
brate was shown to inhibit palmitate-induced myocardial 
apoptosis in mice [39]. Moreover, a recent study showed 
that daily intraperitoneal injection of fenofibric acid signifi-
cantly decreased retinal apoptosis in STZ-induced diabetes 
[40]. Hence, long-term studies will be needed to support the 
idea that pemafibrate has potential for treatment of diabetic 
retinopathy since apoptosis is involved in the pathophysi-
ology of this disease [41]. Furthermore, more beneficial 
effects of pemafibrate include usefulness for patients who 
have renal dysfunction because it is metabolized in the liver 
[42]. Other effects the pemafibrate could have are protective 
effects against atherosclerosis and inflammation in hyperlipi-
demic condition [42]. It has been reported that oral fenofi-
brate reduced caspase-3 immunoreactivity in a rat stroke 
model and that prior administration of fenofibrate resulted 
in a significant reduction in infarct size [43]. Therefore, it 
is possible that the neuroprotective effect of pemafibrate is 
accompanied by an anti-apoptotic effect. Further studies are 
needed to clarify the mechanism underlying the neuroprotec-
tion provided by pemafibrate.
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