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Abstract: For expanding applications of spongy graphene aerogels (GAs) cost-effectively, we report
a marriage of the two-step hydrothermal reduction and atmospheric drying method to fabricate a
spongy CNC-graphene aerogel (CNG) with oil/water selectivity and tunable mechanical strength
by a low-cost and straightforward approach. The reduced graphene oxide (rGO) with CNC by the
ice-templated method can give rise to forming the hierarchical structure of hybrid GAs within the
PUS network. Meanwhile, the fractured structure of PUS with a pre-compressive step arouses more
versatility and durability, involving its selective and high-volume absorbability (up to 143%). The
enhanced elastic modulus and more significant swelling effect than pure sponge materials give it a
high potential for durable wastewater treatment.

Keywords: graphene aerogel; cellulose nanocrystals; oil-absorption

1. Introduction

Assembling graphene to a three-dimensional (3D) porous monolith while keeping
the intrinsic advantage of the building blocks is of great promise to achieve the practical
application [1,2]. Cellular graphene bulk material, commonly known as Graphene aerogel
(GA), most approaches this nano-architectonic idea owing to its excellent electrical conduc-
tivity, large surface area, and low density [3]. Self-assembly during GO reduction process
and freeze-casting of intermediate hydrogel are two main 3D assembled strategies that
have been reported for “strong” graphene aerogel preparation. Liu et al. fabricated elastic
graphene aerogels using directionally grown ice crystals as templates followed by freeze-
drying [4]. The obtained anisotropic aerogel with a hierarchical porous structure could
recover to its initial height after 20 times of axial compression and high oil absorption cycles.
Dai et al. prepared an ultralight dual-network GA through a straightforward hydrothermal
reduction followed by lyophilization [5], and the hierarchical porous network structure
improved the absorption capacity toward various solvents, with absorption capacity (ratio
of weight before and after soaking) up to 310 g/g. Gao et al. synthesized a spring-like 3D
graphene aerogel with a long-range lamellar microstructure to undergo the large monolithic
deformation by bidirectional freezing and freeze drying strategies [6]. To replace or clear
the soft template of hydrogels, well-designed hierarchical structures of GAs are commonly
formed by freeze-drying or a supercritical drying technique [7]. It is well known that these
unique drying strategies enhance energy consumption and complicate the preparation
process. Therefore, the ambient pressure drying (APD) method was employed to prepare
compressive GAs by controlling the freeze rates of partially reduced GO (PRGO) and
reduction degree of GO carefully [8,9]. For instance, Yang et al. [10] synthesised graphene
aerogel by utilizing low-energy and low-cost atmospheric drying technology, which also
endowed the compressive GAs with well-developed internal porosity and superelasticity
(maximum strain of 93% for 3 cycles, 70% for 1000 cycles).
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Additionally, 3D graphene/cellulose monoliths utilizing APD showed excellent hy-
drophobicity and elasticity, emerging as promising large-scale and low-cost absorbent
materials in water treatment [11–13]. Xu et al. combined straightforward hydrothermal
synthesis and low-lost ambient drying to prepare graphene/cellulose aerogel with high
porosity [11]. Its adsorption capacity for various solvents is in the range of 87–207 g/g. Nev-
ertheless, recent research found that the high-content nanocellulose sandwiched between
graphene flakes can endow the hydrophobic aerogels with a higher modulus and larger
oil storage interspace. Although this ultralow density endowed the cellulosic GAs with
excellent mass-based absorption capability, the mechanical properties decreased with an in-
crease of compression cycles, which are unfavorable for preparing large-scale macroscopic
oil absorbents. Recent exploration of polymer/graphene materials is directly motivated by
its possibility for potential oil application. These polymer matrices, polyurethanes (PU)
foams with outstanding molecular design, could introduce elastic character and dimen-
sional stability into the 3D graphene structure. Qiang et al. synthesized a Graphene/PUS
composite via a straight dip-coating method [14], and the functionalized sponge coated
with the graphene “skins” exhibited good water repellency.The spongy skeleton strategy
has the potential to improve the robustness of the above-mentioned graphene-based ab-
sorbents. In addition, thermoplastic PU is notoriously difficult to recycle. Large quantities
of waste PU sponges are generated from the packaging industry. Therefore, exploring the
application of recyclable spongy graphene absorbent by a low-cost APD technique is a
greener and more energy-efficient way to solve oil pollution.

Herein, porous cellulose graphene aerogel (CNG) was prepared using a two-step
reduction process without lyophilization, where the cellular walls of aerogels enclosed
by macroscopic-scale sponge porous scaffold led to a primarily enhanced mechanical
performance. Even when the impact load with maximum (99%) strain is applied, the CNG
exhibits resilience capacity without fracture and degradation. In addition, the cooperation
of GAs and sponge porous cell walls endows a water droplet “sticky” hydrophobicity,
which can absorb n-heptane over 1.3 times its volume and 120 times its weight and reuse
manually about 1000 times. More importantly, these graphene sponges display a noticeable
swelling effect, which means that adsorbed oil extended storage in more volume space
of the nanocomposite. The CNG enabled a combination of visible polymer framework
and microscale graphene scaffold, which can be successfully used for efficient and cost-
effective water purification. These properties also demonstrate that, if graphene sheets
are assembled into polymer skeletons where graphene nanosheets are kept, novel and
combined properties will be observed.

2. Materials and Methods

The recycled PUS samples were obtained from Shenzhen Tenghuida Electronic auxil-
iary material Co., Ltd. The Cellulose Nanocrystals (CNCs) were obtained from ScienceK
(http://sciencek.com/, accessed on January 2018) and its length nanoscale is approxi-
mately 100 to 200 nm size range, with the length–diameter ratio being 10–20. Graphite
powder (CP), L-Ascorbic acid (AR), sulfuric acid (98% ), sodium hydroxide (AR), potassium
permanganate (AR), and hydrogen peroxide (AR) were supplied by Shanghai Aladdin
Bio-Chem (China) and used without further purification. Graphene oxide as a raw material
was synthesized according to a modified Hummer’s method [15]. The radial length of
the obtained two-dimensional GO sheets ranged from 0.1 to 20 µm. The 1.5 mg/mL CNC
aqueous dispersion and GO suspension with different concentrations (3 mg/mL, 4 mg/mL,
5 mg/mL) were mixed for further processing. The pretreatment of the PU sponge was
conducted through a strong pre-compression up to a certain strain and are cleaned with
ethanol and placed in an oven to dry before use specifically, which is completed by adjust-
ing the control distance of the 12-ton tablet press keeping it for 24 h PUS with a tetragonal
or cylindric morphology dips coating of the GO/CNC mixture solution in a 100 mm culture
dish. Straight after 30 min of ultrasonic dispersion, the mixture is a nearly homogenous
dip-coating material. After the addition of 25 mg ascorbic acid in a 200 mL beaker, GO

http://sciencek.com/


Materials 2021, 14, 5961 3 of 11

sheets are hydrothermally assembled for 2 h. The intermediate gel-like solid was obtained
and then sequentially subjected to a wash in deionized water; this step was repeated about
three times till the PH near neutral. Subsequently, a freeze casting process was carried
out by the breaker partially submerged in an ethanol/dry ice cooling bath for 2 h. After
further reduction, the reduced hydrogel was transferred to an air dry oven under ambient
conditions for 12 h. Finally, the CNG-X materials were obtained after annealing treatment
at 200 ◦C for 2 h (where X denotes the concentration (mg/mL) of GO in the synthesis step).
On the other hand, the same process was used to prepare the G/PUS product without
mixing CNC suspension.

3. Characterization

CNG was characterized with a Nicolet 6700 Fourier transform infrared spectroscopy
(FT-IR). Scanning electron microscopy (SEM) images were obtained by a Hitachi SU8010
at 20 kV. The X-ray diffraction (XRD) analysis is done with an X-ray source of CuKα
radiation at a generator voltage of 40 kV and a generator current of 40 mA (X’Pert PRO
DY2198). TEM observations were performed with a JEOL JEM-2100F TEM at 200 kV. The
Young’s modulus of CNG was determined by a Zwick/Roell testing machine (Z010 TH)
using a displacement-controlled compression mode with a rate of 5 mm/min. Contact
angle measurements were conducted with a JC2000ACS drop shape analyzer (Zhongchen
Digital Technology and Equipment, Shanghai, China). The precompression of the samples
was conducted using a 12-ton tablet press (Shangha Tianqi Pharmaceutical Machinery
Company, Shanghai, China).

4. Results

A high efficient and energy-saving wet shaping method under atmospheric pres-
sure was demonstrated in this work. The typical fabrication procedure was depicted in
Figure 1a); firstly, the CNC solution was obtained after an ultrasonic bath (the dispersible
behavior of CNC proved by a Tyndall scattering effect). Then, the stable suspension
containing CNCs and GO was achieved by mechanical and ultrasonic mixing, graphene
oxide (GO) nanosheets in the solution as represented by brown sheets, and the green
rod-like nanofiber represents wood-derived CNC. Then, the pre-compression of the waste
PU sponge with the fractured network was utilized to integrate the microstructure of
3D graphene as shown in Figure 1b), and the rectangle PUS samples were immersed in
as-prepared suspension. Notably, depending on the various shaped PUS samples, the
proposed CNG could successfully fabricate the rectangle sample and other arbitrary shapes
such as a cylinder. In addition, the CNC/GO/sponge mixture was partially reduced with
ascorbic acid under a hydrothermal process, which is also the critical precursor of the
high-performance graphene sponge preparation. After that, a 3D linked network forms
between partially reduced graphene oxide (PRGO) and sponge backbones.

Moreover, these steps towards a more facile and green route, CNC/GA as an essential
building block, are assembled into the 3D architecture of PUS. When the intermediate is
frozen, GO nanosheets are expelled by the grown ice crystals, also known as ice templating,
and for the formation of the micro-pore network in each sponge nest. The freezing tem-
perature and the amount of oxygen-containing groups of GO are adjusted via reduction
time [16]. These embedded networks of CNC/graphene sheets are formed among the
void spaces of sponge bond and all networks along the macrocellular skeleton to yield an
interconnected 3D compartmental micro-network. After ambient drying, the CNG with
a hybrid porous structure is thus obtained. As a typical example, the digital photos of
Figure 1e–f) show the difference between CNG and white/black PUS in macroscopic view
by up-close photography. The opaque sponge porous array is characterized as regular
hexagons with an average side length of 1 mm in each hexagon. The schematic microstruc-
ture images (Figure 1b–d) also show representative SEM images of the CNG (Figure 1g–h),
which is presented that the isotropy sponge acted as a skeleton (marked in yellow dotted
lines) for graphene nanosheets. A much better explanation is to treat these morphological



Materials 2021, 14, 5961 4 of 11

features by adding the periodic sponge walls to the outlayer of the generated porous
CNC/graphene. It is helpful to see how they are related macroscopically to the surface
properties. The schematic diagram of a water drop in contact with the CNG demonstrated
in Figure 1f). For a small droplet stick to the surface (the volume is 30 µL), the high adhesive
force equals the weight. Thus, high hydrophobicity is expected, and yet the droplet sticks
to the surface at the same time (Supplement Movie S1). The unique embedded multiple
networks developed this hybrid porous and hydrophobic structure of CNG.

Figure 1. (a) Illustration of the preparing process of CNGs at ambient pressure condition. (b–d) the
proposed schematic sketch for explaining the precompression and formation process of the cellular
structure embedded in CNGs; (e–f) Digital images of CNG from macroscopic porous; (g–h) SEM
images of porous CNG

4.1. Chemical Evolution during the Reduction Process

The XRD diffraction patterns of CNC, the prepared GO and the rGO/PUS and after
the CNC adding (CNG) are presented in Figure 2. A similar result of CNC exhibited
characteristic diffraction peaks, which were in agreement with the diffraction peaks of
cellulose [17]. The phases structural of the obtained GO present a sharp diffraction peak
at 9–10◦. In the XRD pattern of the G/PU, the characteristic peak of GO was not present,
indicating the removal of oxygen-containing functional groups. Meanwhile, the broad
diffraction peak at 2θ = 12.8° could be due to the PU’s crystallinity indicating its amorphous
nature [18]. After adding the cellulose nanofiber, the XRD pattern of the CNG sample
has the characteristic XRD peak of cellulose nanocrystal at 2θ = 22.6°. Compared with the
high crystallinity of CNC, although the attenuation of the peak indicates a decrease in the
degree of crystallinity, the original crystalline cellulose still maintained in the resultant [12].
The CNC succeeded in being loaded into a 3D graphene network via a 6h-hydrothermal
process under ambient pressure drying. The typical FTIR spectrum (Figure 2b) was used
in this study to identify the possible interactions between graphene, PU, and CNC. The
polyurethane sponge contains carbonyl, amine, and amide groups, forming hydrogen
bonds with graphene oxide during the complexation. The spectrum of PUS is clearly
shown in Figure 2b), the strong peak centered at 3280, 1700, 1533, and 1100 cm−1 was
attributed to the C-O, C-N-H, C=O and N-H. The spectra of G/PU presented the diminish-
ing of the peaks, which have some similar chemical groups, indicating the involvement
of these groups in the composite synthesis. After the CNC added, the spectra alterations
for the CNG are the new bands at wavenumbers 1030 cm−1, showing the vibration of
–SO3 groups. These sulfate groups are randomly distributed on the surface of cellulosic
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nanoparticles [17]. These changes indicated the successful implementation of introducing
cellulose nanocrystals on the surface of CNG samples.

Figure 2. (a) XRD patterns of CNC, GO, G/PUS, CNG; and (b) FTIR spectrums of PUS, G/PUS,
CNG.

4.2. Tunable Morphology and Structure of CNG

Typical architectures of CNG sponge were prepared by the hydrothermal reduction
and frozen by dry ice, as shown in Figure 1a. Most of the pores embedded in the sponge
skeleton are nearly round, approximately the same as pure graphene aerogels. The macro-
scopic pores of PUS are visible to the naked eye, and the average diameter is a few hundred
microns. The formation of embedded pores is associated with the environment, chem-
istry, and other factors. Thus, the hierarchical porous structure of the prepared CNGs
can be tuned by different GO concentrations, freezing rates, and additives, which were
investigated to realize successful morphology control. The illustrations in Figure 3 show
the interior porous structure evolution with different parameters, including the shape,
arrangement, and pore size.

Comparable results were obtained when different concentrations of the dispersed
GO solution were tested. Figure 3a–c) shows graphene-sponge prepared by self-assembly
of graphene sheets into the internal network of PU sponges without altering the original
sponge morphology. However, no near-round graphene pores can be observed, with
graphene sheets randomly assembling on the walls, displaying large disordered pores and
damaged walls. Further improving the freezing media and adding CNC as an additive,
porous graphene networks with near-round or disordered, irregular pores can be obtained.
The graphene matrix induced by the soft templates are easy to rupture owing to the
effect of capillary force, gravity, and surface roughness [19], and adding nanofiber or
other one-dimensional nanomaterials in the freezing process can improve their stabilities.
Additionally, the liquid–particle and particle–particle interactions during the dynamic
freezing process also play a crucial role. The internal porous structure can be affected
significantly by the freezing rate due to the ice formation path and style. Except for using
dry ice as the rapid freezing medium, the refrigerator was utilized to freeze the CNC/GO
aqueous dispersion relatively slowly to get a CNC/graphene-refrigerator sponge. The
walls are thin and near-transparent, consisting of overlapped graphene sheets.These pores
of slow-frozen graphene sponge are disordered with smooth walls. On the other hand,
the SEM images in the next column (Figure 3d–f) show fluffy graphene sheet walls and
disordered pores inherited from the ice template, which are identified with the yellow
round marks. Notably, some tiny pores can be found at specific concentrations (5 mL/mL),
preserving the morphology of ice crystals (denoted as CNG-5). Figure 3 also shows
different magnification TEM images of the CNG-5 sample.The rod-like CNC acting as
“spacers” between 2D graphene layers can efficiently impede their restacking and allow the
microporosity of 3D graphene to survive ambient drying more easily, which is consistent
with Figure 3g,h).The wrinkled nanosheets are transparent at the edge, indicating the
presence of few-layers of graphene nanosheets. Therefore, the tunable freezing media and
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rate can change the porous structure made from an ambient pressure dring, then further
changing the morphologies of the final graphene-based sponges.

Figure 3. Microscopic structures of spongy CNC-graphene aerogels. (a–f) CNG prepared with
different GO concentrations and freezing media exhibit distinguished structures; (a) 5 mg/mL, dry
ice; (b) 4 mg/mL, dry ice; (c) 4 mg/mL, dry ice; (d) 5 mg/mL, refrigerator, adding CNC; (e) 4 mg/mL,
refrigerator, adding CNC; (f) 3 mg/mL, refrigerator, adding CNC; (g–i): TEM images of the CNG
prepared with dry ice as freezing medium.

4.3. Tunable Mechanical Strength of CNG

Previous research has shown the mechanical properties of the pre-treated sponge
relied mainly on the skeleton contact area and being verified that the fractured sponge
network shows an increase of the contact area with the compressive stress in contrast to
the network without pre-compression treatment [20]. Aside from the reinforcing effect
of the organic skeleton, we also combined it with considering mechanical behaviors of
embedded cellular graphene in static compression status. The axial compression tests of all
samples were carried out using a universal testing machine (more details in Supplementary
Movie S2). Figure 4a shows the photographs of the pre-compression step of the cylindrical
PUS sample by high-strength steel fixtures on both sides. The stress–strain test of PUS
was performed with a 100 N load cell kit and observed the variation of stress by different
compression levels, as shown in Figure 4b. Although the organic skeleton of the samples
increased the stress, a plateau stress region over a wide range of strain values appears.
This feature means that the skeleton networks in the matrix do not affect the yield stress
when the strain is between 7% and 45%, and the porosity values mainly determine the
yield stress. Like the embedded graphene sheets in the PUS, the skeleton could enhance
the compression strength of these graphene elastomers. Still, stress–strain curves revealed
a smooth plateau region that deformation over this region occurs in a nearly constant
state [12].
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Figure 4. The stress–strain curves of pre-compressive PUS and CNG. (a) the stress–strain curves of
PUS after preloading at different compressive strain(30%, 50%, 70%) for one cycle; (b) the stress–strain
curves of the CNG at a strain of 80% for 10 cycles; (c) bar graphs of compressive modulus versus
CNC content. Inset images are optical images of water droplets on the CNG.

In contrast to what is observed in the CNG specimens, the micropores structure
strongly affects the stress–strain response without a plateau stress region such as deforma-
tion over the above strain region. This phenomenon can be attributed to the high modulus
of whisker-like CNCs nanoparticles and changes induced by the dual network, which
combined polymer networks and graphene cellular porosity. The previous research also
revealed that the compressive yield stress of porous graphene materials increases linearly
with an increase in porosity [21]. In order to investigate the reusability, the cyclic axial
compression of CNG-5 was measured. As shown in Figure 4b, the compressive-recovery
curves exhibited its good resilience. In the first load—unload cycle, the stress linearly
increased, demonstrating elastic strain changes larger than 60%. The elastic deformation of
the polymer networks provides the initial compressive strength, bending, and shearing
deformation of the graphene sheets further hindering the deformation under external force
as the strain increased. The second cycle revealed many contractions; moreover, the typical
hysteresis loops show a slight change in the following five cycles. As cycling continues,
the loading-unloading path is repeated (indicated by arrows), and no flat stress regions
occur in the stress–strain curves. With an increase of unload/reload loops, the modulus of
CNG-5 decreases gradually and the compressibility tends to be stable (Figure 4c). Most
graphene hybrid composites show the similar compressive properties after the residual
stress is released [22,23].

4.4. Absorption and Swelling Properties of CNG

Owing to the hydrophobic porous structure and ultra-lightweight, the oil adsorption ca-
pacity (the ratio between the final and initial weight after absorption) of cellulose/graphene
aerogels up to 198 times their weight [24]. Pristine CNG was weighed before it was en-
tirely immersed into various organic solutions for the absorption rate study. The whole
absorption process was fast and generally reached saturation within 5–10 s (precise time
as shown in Supplementary Movie S3). Then, take out the soaked sample and stand for a
period of time before weighing its weight. Saturated absorption capacities of absorbents
are classified into two categories, weight gain and volume gain, depending on different
application requirements. The oil-collection weight gain Qm was calculated from the ratio of
the mass of the absorbed oil Mo to the mass of the absorbing material Mm (Qm = Mo/Mm).
The volume-based absorption capacity Qv is given by the equation Qv = Vo/Vm , where
Vo and Vm are the volumes of the absorbed oil and absorbing material, respectively. The
process of oil adsorption is repeated at intervals of a period (30 s). The adsorbed oil can be
recovered by simple mechanical squeezing for repetitive uses. Although the initial weight of
CNG is roughly 20 times to these pure aerogels, it demonstrates high absorption capacities
of 50 to 80 times their weight for the most common organic solvent.

In particular, the volume ratio of absorbed liquid is much higher than lightweight
aerogel and other graphene-based foams as shown in Figure 5a), such as the nanofiber
hybrid graphene aerogels [12], Graphene coating PUS [25,26], Surface modified PUS [27],
and functional graphene sponge [5,28]. These volumetric oil absorption rates can be
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calculated according to the density of oil absorption material ρm in the literature, due to
the Qv = Vo/Vm = (Mo ρm )/(Mm ρo), the ρo is a given condition. The absorption capacity
Qm = Mo/Mm of these materials toward low-density organic solution such as n-heptane,
n-hexane, ethanol were around 25–100 g/g, while, for higher density oil/organic solvents,
such as diesel, mineral oil, and soybean oil, ranging from ∼100 to ∼160 g/g. Notably,
the adsorption capacity exceeds 1 ml per cubic centimeter of CNG, which can also be
interpreted as the swelling property of CNG after the adsorption of organic liquids. A
schematic diagram for the typical swelling process is illustrated in Figure 5c). The adsorbed
organic solvent enters into the hierarchical network and leads to an interlayer swelling effect
occurring [29]. The swelling of the CNG increases their internal volume and interlayer
distance largely, increasing oil storage space. In addition, the distinct volume ratio of
various organic solvents suggests that the volumetric oil absorption rates can be altered
by adsorbed organic solution and up to 142% as shown in Figure 5b). The experimental
results show clear dependence variation of such swelling effect on the absorbed organic
liquid, especially on the molecular weight of oil. The swelling ratio of CNG is significantly
higher than neat sponge after adsorption of 0.2 mL ethanol (more details in Supplementary
Movie S4). As shown in Figure 5d), the surface contact angle of CNGs prepared by different
concentration GO (3–7 mg/mL) was 124.1°, 125.9°, 130.0°, 127.8°, and 122.2°, respectively.
Therefore, the CNG-5 possesses higher hydrophobicity, which is beneficial for selective
uptake of oils and organic solvents. Owing to the attractive properties of directional and
selective absorption, the pumping experiment in an oil–water mixture was conducted by
joining the pipe end with a cylinder CNG as shown in Figure 5e).The 50 mL n-heptane
solution stained with Sudan red IV floating on the surface of water was removed by
continuous pumping. The water level in the beaker was unaffected when the absorbent
submerged under the water (as shown in Supplementary Movie S5). A comparison of the
adsorption capacity and mechanical performance of different oil adsorbents is given in
Table 1. These results demonstrate that CNG is a promising candidate for the selective
adsorption of waste oils from water in practical applications.

Table 1. Comparison of different oil adsorbents from past studies

Adsorbent Q (g·g−1) Solvent Recycle Mechanicalness Ref

PDMS/GO 6 Soybean oil 10 60% (50 cycles, 42.5 kPa) [30]
FGN/PU 26 N-hexane 50 71.4% (400 cycles, 15 kPa) [31]

Silk/G-sponge 53 Soybean oil 10 60% (100 cycles, 14 kPa) [32]
Polyimide GA 25 Ethanol oil 10 60% (100 cycles, 2.3 kPa) [24]

CNG 55 N-hexane 50 60% (100 cycles, 32.5 kPa) this work
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Figure 5. (a) Recyclability of CNG for absorption of n-heptane. Inset is the digital images during the
process of removing oil on water surface, 1.3 mL pump-oil was stained with Sudan Red; (b) compar-
ison of volumic adsorption capacities of different organic liquids (Graphene coating PUS, Surface
modified PUS, Nanocellulose/graphene aerogel, dual Graphene Aerogel, rGO-PUS); (c) a schematic
description of swelling effect during the process of removing oil on water surface; (d) the relationship
between the GO concentration of density and water contact angle is measured; (e) the continuous
adsorption experiment of n-heptane using a peristaltic pump.

5. Conclusions

In summary, spongy CNC/graphene aerogels have been successfully prepared via
an ambient-drying method with a pre-compaction treatment. The corresponding hybrid
structure allows CNGs to have unique compressive strength to afford compression cycling
numbers and maintain a linearly mechanical property. Moreover, optimizing the freezing
and drying process and controlling the internal microstructure with hierarchical pores
simultaneously led to a high volumic oil-absorption capacity (up to 142%). The composite
developed here also demonstrated a swelling effect with easy recyclability. Significantly,
this energy saving synthesis process would be a key progress for realizing large-scale
commercial production, and this graphene-based hybrid material provided access to
assembling a monolith by embedding porous structures of graphene aerogel inside another
porosint. The networks’ interactions changed the material’s bulk properties to find broader
promising applications for graphene aerogels, including pressure sensors and petroleum
contamination remediation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ma14205961/s1, Movie S1: Inverted droplets, Movie S2: Axial compression test, Movie S3:
Static oil absorption, Movie S4: Swelling effect, Movie S5: Pumping experiment.

https://www.mdpi.com/article/10.3390/ma14205961/s1
https://www.mdpi.com/article/10.3390/ma14205961/s1
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