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Abstract

Background

Small-molecules that disrupt the binding between glucokinase and glucokinase regulatory

protein (GKRP) in the liver represent a potential new class of glucose-lowering drugs. It will,

however, take years before their effects on clinically relevant cardiovascular endpoints are

known. The purpose of this study was to estimate the effects of these drugs on cardiorenal

outcomes by studying variants in the GKRP gene (GCKR) that mimic glucokinase-GKRP

disruptors.

Methods

The MEDLINE and EMBASE databases were searched for studies reporting on the associa-

tion between GCKR variants (rs1260326, rs780094, and rs780093) and coronary artery dis-

ease (CAD), estimated glomerular filtration rate (eGFR), and chronic kidney disease (CKD).

Results

In total 5 CAD studies (n = 274,625 individuals), 7 eGFR studies (n = 195,195 individuals),

and 4 CKD studies (n = 31,642 cases and n = 408,432 controls) were included. Meta-analy-

sis revealed a significant association between GCKR variants and CAD (OR:1.02 per risk

allele, 95%CI:1.00–1.04, p = 0.01). Sensitivity analyses showed that replacement of one

large, influential CAD study by two other, partly overlapping studies resulted in similar point

estimates, albeit less precise (OR:1.02; 95%CI:0.98–1.06 and OR: 1.02; 95%CI: 0.99–

1.04). GCKR was associated with an improved eGFR (+0.49 ml/min, 95%CI:0.10–0.89, p =

0.01) and a trend towards protection from CKD (OR:0.98, 95%CI:0.95–1.01, p = 0.13).
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Conclusion

This study suggests that increased glucokinase-GKRP disruption has beneficial effects on

eGFR, but these may be offset by a disadvantageous effect on coronary artery disease risk.

Further studies are warranted to elucidate the mechanistic link between hepatic glucose

metabolism and eGFR.

Background

In the current area of precise medicine, there is an ongoing search for new anti-diabetic medication

with different modes of action. Drugs that modulate the function of glucokinase have been the

scope of diabetes research for more than a decade now [1–4]. Glucokinase plays a pivotal role in

regulating pancreatic insulin secretion and hepatic glucose uptake, owing to its unique enzymatic

actions [5]. It catalyzes the conversion of glucose to glucose-6-phosphate, the first step in glycolysis.

To date, however, clinical trials with glucokinase activators in patients with type 2 diabetes have

been disappointing, since the glucose-lowering effects were non-sustained and accompanied by an

increased risk of hypoglycemia and hypertriglyceridemia [1]. Hepatoselective glucokinase activators

could theoretically bypass some of these side-effects, in particular the risk of hypoglycemia [6].

An alternative way to increase hepatic glucokinase activity is to disrupt the binding between

glucokinase and glucokinase regulatory protein (GKRP). GKRP is a liver-specific protein

located in the nucleus that binds–and hence inactivates–glucokinase in the fasting state. In the

postprandial state, glucokinase dissociates from GKRP and subsequently migrates towards the

cytosolic space where it facilitates phosphorylation of glucose [7, 8]. Lloyd and colleagues pre-

viously demonstrated that small molecules that disrupt the glucokinase-GKRP complex reduce

plasma glucose levels without causing hypoglycemia in mice [9]. Although promising, it will

probably take years before this new drug can be tested in a clinical setting.

Genetic epidemiology can be helpful to gain more insight into the clinical effects of glucoki-

nase-GKRP disruption in humans. Since individuals are ‘randomized’ at birth to receive a

wildtype allele or a variant that encodes GKRP that binds glucokinase less effectively, the

effects of this variant on clinical endpoints can be studied as a surrogate for glucokinase-

GKRP disruptors. Such a Mendelian randomization approach has been proven to be effective

in predicting the (un)intended effects of new drugs [10].

We previously reviewed current literature on the cardiometabolic effects of variants in the

glucokinase regulatory protein gene (GCKR) [11]. Individuals carrying the variant that binds

glucokinase less effectively are indeed characterized by reduced fasting plasma glucose levels,

but this is accompanied by an increased risk of nonalcoholic fatty liver disease (NAFLD),

hypertriglyceridemia, and gout [12–14]. Of interest, there are studies suggesting that the same

variant protects from chronic kidney disease (CKD) [15]. Given these opposing effects it is dif-

ficult to predict what the net effect will be on coronary artery disease (CAD), one of the most

clinically relevant outcomes in type 2 diabetes.

The aim of the present study was therefore to elucidate the association between GCKR and

CAD and CKD by conducting a systematic review and meta-analysis.

Methods

Data sources, searches, and study selection

The MEDLINE and EMBASE databases were searched for: 1) original, genetic association

studies addressing the relationship between common variants in GCKR (rs1260326, rs780094,
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or rs780093) and CAD; and 2) genome-wide association studies (GWAS) on CAD, as they are

likely to include the variants of interest (see S1 Table for search strategy and S1 Fig for flow-

chart). CAD was defined as myocardial infarction (MI), significant stenosis (i.e.�50%) in one

or more main coronary arteries, or coronary intervention, including coronary artery bypass

grafting (CABG) and percutaneous coronary intervention (PCI).

A second search was performed for the association between the common variants in GCKR
and renal function. Studies reporting serum creatinine levels, eGFR (based on serum creati-

nine or cystatin C), or presence of CKD were considered eligible (see S2 Table for search strat-

egy and S2 Fig for flowchart).

Cross-sectional articles, written in English, German, or Dutch, were included. No publica-

tion date or publication status restrictions were imposed. The electronic searches were con-

ducted by one researcher (P.I.H.G.S.) and completed on March 6, 2018.

Meta-analyses

Two separate systematic reviews and three meta-analyses were conducted to determine the associ-

ation between 1) common variants in GCKR and CAD; and 2) common variants in GCKR and

renal function, i.e. estimated glomerular filtration (eGFR) and chronic kidney disease (CKD;

based on dichotomized eGFR). Selection of variants was primarily based on functionality, i.e. the

variant has been shown to be functional and mimics the effects of glucokinase-GKRP disruptors

(i.e. rs1260326 [16, 17]). In addition, variants that are in strong linkage disequilibrium with this

functional variant, i.e. rs780094 or rs780093, were included as well (r2� 0.92 for both SNPs in

both Europeans and East Asians; source: 1000 Genomes project phase 3). The systematic reviews

and meta-analyses were performed according to the PRISMA statement with the only exception

of a (registered) review protocol (see S1 Checklist) [18].

Data extraction and quality assessment

Data extraction was done in a two-step, standardized fashion where one researcher (P.I.H.G.

S.) extracted the data, which was subsequently checked by two other researchers (N.S. and M.

C.G.J.B.). The following variables were extracted from the included studies: odds ratios or

unstandardized beta coefficients, with 95% confidence intervals or standard errors. Authors

were contacted in case of missing data (in particular for the GWAS). In case of non-response,

a reminder was sent three weeks later. When more than one GCKR variant was reported, the

functional variant (rs1260326) was chosen. The additive model was the preferred model of

inheritance, based on previous GCKR association studies [19]. Finally, given our interest in the

systematic effects of GCKR per se, we aimed to obtain the crude outcome variables, i.e. without

adjustment for potential mediators (e.g. plasma lipids levels).

To avoid inclusion of study cohorts that were reported more than once, in particular in

GWAS consortia, special attention was paid to the origin of the individual study populations.

In case of overlap, the study that contained the highest number of participants was included.

The quality of the study and the risk of bias were assessed by two independent researchers (P.I.

H.G.S. and N.S.) according to the Newcastle-Ottawa Scale (NOS) [20].

Data synthesis and analysis

Back-transformation of the log-transformed difference in eGFR between the two GCKR alleles

was done as described elsewhere [21]. Odds ratios and beta coefficients were meta-analyzed

based on a random-effects model, using the DerSimonian-Laird method to incorporate

between-study heterogeneity. Funnel plots were visually examined for asymmetry and ana-

lyzed by means of regression (Egger’s test).

Glucokinase regulatory protein and cardiorenal disease
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Since most studies (in particular GWAS) only reported the principal summary measures

(i.e. odds ratios) instead of individualized data, it was not feasible to adjust for potential envi-

ronmental effects, nor was it possible to assess Hardy-Weinberg equilibrium or linkage dis-

equilibrium for each study.

Sensitivity analyses were performed to assess the impact of studies that included subjects

with different ancestries, studies with low quality (defined as a NOS score <5 stars), and stud-

ies that did not report crude (or age- and/or sex-adjusted) estimates. All analyses were con-

ducted with the ‘R’ statistical software (R Developmental Core Team) using the metaphor
package [22].

Results

Systematic review and meta-analysis of the association between common

variants in GCKR and CAD

The electronic search identified 3,051 unique records, which eventually resulted in five studies

that were used for the meta-analysis [23–27] (see S1 Fig for flowchart and reasons for exclu-

sion). All included studies were written in English. Twenty-six studies showed overlap with

one of the included studies, i.e. the combined UK Biobank, CARDIoGRAMplusC4D 1000

genomes-based GWAS, and Myocardial Infarction Genetics and CARDIoGRAM Exome data-

set [24], and were therefore not included in the meta-analysis (S3 Table). The genetic variants

of interest were often not reported in the main article, but could be found in the (online) sup-

plementary materials of the article. For one GWAS, the authors were contacted and the

requested data were kindly provided [25].

The characteristics of the included studies are shown in Table 1. In total, 274,625 subjects

were included. In some, mainly Asian studies, the GCKR effect allele–defined as the allele that

predisposes to reduced fasting plasma glucose levels (similar to the effect of a glucokinase-

GKRP disruptor)–was the predominant allele. The overall quality of the studies was good (S4

Table).

Meta-analysis demonstrated that the GCKR effect allele was significantly associated with

CAD (OR: 1.02, 95%CI: 1.00–1.04, p = 0.01) (Fig 1). Heterogeneity was low (Q = 3.30, I2 = 0%)

[28]. Due to the low number of included studies, a funnel plot (or testing for funnel plot asym-

metry) was not included, according to previous recommendations [29, 30]. Since the meta-

analysis was dominated by one large study–which is composed of 76 sub-studies [31]–we con-

ducted several sensitivity analyses to test the robustness of our findings. First, this large study

Table 1. Characteristics of included studies on coronary artery disease (CAD).

Author Year Ancestry Population type Number of

cases

Number of

controls

Covariates adjusted for SNP EAF Outcome

Lian [23] 2013 Asian Hospital 568 494 - rs780093 0.52 CHD

Nelson [24] 2017 European + non-

European

General

+ hospital

268,744� - Array and population structure/

ancestry

rs1260326 0.40 CAD

Raffield [25] 2015 European Type 2 diabetes 212 771 Age, sex rs1260326 0.39 MI

Takeuchi

[26]

2012 Asian Hospital 1,347 1,337 Not specified rs780094 0.56 CAD

Zhou [27] 2015 Asian General

+ hospital

555 597 - rs1260326 0.42 CAD

�Number of cases refers to the overall population.

Abbreviations: SNP: single nucleotide polymorphism; EAF: effect allele frequency; CHD: coronary heart disease; MI: myocardial infarction.

https://doi.org/10.1371/journal.pone.0206174.t001
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was replaced by another large study that combined the CARDIoGRAMplusC4D 1000

genomes-based GWAS dataset with an additional 56,354 samples (n = 260,365 subjects in

total, S3 Table) [32]. The subsequent meta-analysis revealed a similar, but less precise point

estimate (OR: 1.02, 95%CI: 0.98–1.06, p = 0.37, S3 Fig). The initial large study was also

replaced by the CARDIoGRAMplusC4D Metabochip data [33, 34], which overlaps for ~55%

with the CARDIoGRAMplusC4D 1000 genomes-based GWAS data (S3 Table) [35]. This also

allowed a better sensitivity analysis stratified by ancestry, since data for Europeans only have

been presented separately [34]. Again, the overall meta-analysis showed a similar, but non-sig-

nificant point estimate (OR: 1.02, 95%CI: 0.99–1.05, p = 0.27, S4 Fig).

The GCKR effect allele was significantly associated with CAD in studies that included sub-

jects of European ancestry only (n = 3) (OR: 1.02, 95%CI: 1.00–1.05, p = 0.02), but not in stud-

ies that included subjects of Asian ancestry only (OR: 1.06, 95%CI: 0.98–1.15, p = 0.13; S4 Fig).

Of note, these effect sizes were not statistically different (p = 0.36). Repeat analysis without the

study with low quality [25] (i.e. NOS score <5 stars) did not affect the primary outcome.

Systematic review and meta-analysis of the association between common

variants in GCKR and eGFR and CKD

Of the 661 eligible records that were selected by our initial search, eight studies fulfilled all in-

and exclusion criteria and were used for the meta-analyses (see S2 Fig for flowchart and

Fig 1. Meta-analysis of the relationship between the GCKR effect allele and coronary artery disease (CAD). �Number of individuals refers to the overall population.

https://doi.org/10.1371/journal.pone.0206174.g001
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reasons for exclusion, and S5 Table for duplicate studies). All included studies were written in

English. The genetic variants of interest were often not reported in the main article, but could

be found in the (online) supplementary materials of the article. For two GWAS, the authors

were contacted and the requested data were kindly provided [36, 37]. Six studies reported data

on creatinine-based eGFR [36, 38–42], one on cystatin C-based eGFR [15], and four on CKD

[36, 37, 40, 42]. Study characteristics of the eGFR and CKD studies are provided in Table 2. All

studies used only the (creatinine-based) eGFR criterion to define CKD. Quality assessment of

the included studies yielded an average score of five out of nine stars (S6 Table). Many studies

reporting on eGFR scored low on ‘comparability’, i.e. the analyses were adjusted for covariates

more than age and/or sex, whereas we aimed to obtain the crude relationship between GCKR
and eGFR.

Meta-analysis, including 195,195 individuals, showed that the GCKR effect allele was signif-

icantly associated with an increased eGFR (0.49 ml/min, 95%CI: 0.10–0.89, p = 0.01) (Fig 2).

Heterogeneity was high (Q = 43.12, I2 = 88.4%). The only study that reported on cystatin C-

based eGFR observed similar effect sizes, which was statistically significant in the discovery

cohort (p = 0.006), but not in the replication cohort (p = 0.16) [15].

The meta-analysis for CKD, including 31,642 cases and 408,432 controls, showed a protec-

tive effect of the GCKR effect allele on CKD, albeit not statistically significant (OR: 0.98, 95%

CI: 0.95–1.01, p = 0.13; Q = 5.54, I2 = 45.9%) (Fig 3). The forest plot identified one outlying

study that explained the moderate heterogeneity (Fig 3). Repeat analysis without this study

[40] resulted in a significant, negative relationship (OR: 0.97, 95%CI: 0.95–0.99, p = 0.003).

The same study also accounted for the non-significant relationship with CKD when sensitivity

analyses were conducted for Asian studies only (S5 Fig). All CKD studies were of sufficient

quality (NOS score� 5 stars) and did not adjust for co-variates other than age and/or sex.

Discussion

Glucokinase regulatory protein (GKRP) is a liver-specific protein that plays an important role

in the regulation of hepatic glucose uptake and, consequently, de novo lipogenesis, one of the

principal pathways in the development of NAFLD [11]. By studying the systemic effects of

common variants in GCKR it is possible to gain more insight into the interaction between

hepatic glucose metabolism and cardiorenal disease. Moreover, it allows an evaluation of

small-molecule disruptors of the glucokinase-GKRP complex as a potential new glucose-low-

ering treatment. In three meta-analyses using data from at least ~200,000 individuals, we

showed that the GCKR effect allele–which encodes a GKRP protein that binds glucokinase less

effectively–appeared to be associated with CAD, whereas a protective effect was observed for

eGFR.

Previous studies have shown that the GCKR effect allele is associated with an atherogenic

lipid profile, i.e. higher plasma triglycerides and apolipoprotein B levels, reduced HDL choles-

terol levels and the presence of small-dense LDL particles [12, 43, 44]. In that respect it is of no

surprise that we did observe a positive association of GCKR on CAD in our primary analysis.

If, however, one would take into account the effect of GCKR on only plasma triglycerides, it

would be anticipated to already result in an odds ratio of 1.05 to develop CAD [45]. The

smaller effect estimate that was found in this study (OR: 1.02, 95%CI: 1.00–1.04) should there-

fore be accounted for by another, protective factor that blunts the plasma lipid-mediated

effects of GCKR on CAD risk. GCKR has previously been associated with reduced fasting

plasma glucose levels [12]. The hitherto reported protective effect of GCKR on eGFR could be

another explanatory factor. Previous epidemiological studies have shown that CKD is an inde-

pendent cardiovascular risk factor [46].

Glucokinase regulatory protein and cardiorenal disease
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The current meta-analyses were confined to creatinine-based renal outcome measures

(eGFR and CKD), since these were most frequently reported. Köttgen and colleagues showed

that the positive relationship between GCKR and (creatinine-based) eGFR was also observed

for cystatin C-based eGFR [15]. The same authors suggested that another gene, which is in

linkage disequilibrium with GCKR, is actually responsible for the association with renal func-

tion [15]. However, previous experiments in liver-specific glucokinase knockout mice–which

are metabolically opposite to increased glucokinase-GKRP disruption–are characterized by

increased kidney damage [47], which is in line with the current study.

The mechanism by which enhanced glucokinase-GKRP disruption exerts its renoprotective

effects remains to be elucidated. The GCKR effect allele has been associated with increased

NAFLD risk, low HDL cholesterol levels, and higher urate levels [12, 13, 43, 44, 48], which in

turn have been associated with deterioration of renal function [49–51]. These factors should

therefore be outbalanced by factors that protect the kidney, such as lower plasma glucose lev-

els. We cannot exclude that there are also other, yet unknown factors that contribute to the

renoprotective effect of the GCKR effect allele. Further research is needed to identify these fac-

tors as it may have important clinical implications.

The present study may provide a glimpse into the future of what the cardiorenal effects of

small-molecule disruptors of the glucokinase-GKRP complex will be as a potential new glu-

cose-lowering drug. Although the protective effect on eGFR and CKD appears to be promising

at first sight, it may be outbalanced by an increased risk to develop CAD. Furthermore, a syn-

ergistic effect between GCKR and type 2 diabetes on CAD risk cannot be ruled out. We previ-

ously demonstrated that the effects of the GCKR effect allele on plasma lipid levels were more

pronounced in patients with type 2 diabetes when compared to healthy individuals [52]. A

Table 2. Characteristics of included studies on eGFR and CKD.

Author Year Ancestry Population

type

Number of

cases�
Number of

controls

Adjusted covariates SNP EAF Definition of

outcome

eGFR

(creatinine-

based)

Bonetti [38] 2011 European T2D 474 - Age, sex, BMI rs780094 0.47 MDRD

Deshmukh

[39]

2013 European T2D 2,970 - Age, sex, BMI, SBP,

HbA1c, T2DM duration

rs1260326 MDRD

Hishida [40] 2014 Asian General 3,324 - Age, sex rs1260326 0.61 Modified MDRD

Okada [41] 2012 Asian General

+ hospital

42,451 - Age, sex, alcohol,

smoking, BMI

rs1260326 0.52 Modified

CKD-EPI

Pattaro [42] 2016 European General

+ T2D

133,413 - Age, sex rs1260326 0.42 MDRD

Yamada [36] 2013 Asian Hospital 12,563 - Age, sex rs1260326 0.57 Modified MDRD

eGFR (cystatin

C-based)

Köttgen [15] 2010 European General

+ T2D

20,907 - Age, sex rs1260326 0.41 76.7 × (serum

cystatin c)−1.19

CKD Hishida [40] 2014 Asian General 578 2,746 - rs1260326 0.61 eGFR < 60 ml/

min/1.73m2

Pattaro [42] 2016 European General

+ T2D

12,385 104,780 Age, sex rs1260326 0.42 eGFR < 60 ml/

min/1.73m2

Svein-

Bjornsson

[37]

2014 European Hospital 15,594 291,428 Age, sex rs1260326 0.35 eGFR < 60 ml/

min/1.73m2

Yamada [36] 2013 Asian Hospital 3,085 9,478 Age, sex rs1260326 0.57 eGFR < 50 ml/

min/1.73m2

�Number of cases for the eGFR trait refers to the overall population.

Abbreviations: SNP: single nucleotide polymorphism; EAF: effect allele frequency; BMI: body mass index; SBP: systolic blood pressure; MDRD: modification of diet in

renal disease; CKD-EPI: chronic kidney disease epidemiology collaboration.

https://doi.org/10.1371/journal.pone.0206174.t002
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similar interaction between GCKR and type 2 diabetes on CAD risk would seriously decrease

the applicability of small molecule disruptors of the glucokinase-GKRP complex as new antidi-

abetic drug. Unfortunately, there were too few studies that were specifically conducted in type

2 diabetes to formally investigate such an interaction in the current meta-analysis.

This study has several strengths and limitations. First, the meta-analysis of the association

of GCKR with CAD depends to a large extent on the the combined UK Biobank, CARDIo-

GRAMplusC4D 1000 genomes-based GWAS, and Myocardial Infarction Genetics and CAR-

DIoGRAM Exome dataset, which is actually a meta-analysis by itself [31]. In subsequent

sensitivity analyses we replaced this large dataset by other CARIoGRAMplusC4D-based stud-

ies that–despite a substantial overlap with the original study–included a large number of inde-

pendent samples [32–34]. Although similar effect sizes were observed, statistical significance

was not reached. The positive association between the GCKR effect allele and CAD in the pri-

mary analysis should therefore be interpreted with some caution.

Second, the definition of CKD was only based on eGFR–not the presence of albuminuria–

in all of the included studies. Both factors are part of the classification of CKD as defined by

the Kidney Disease Improving Global Outcomes (KDIGO) [53]. The CKD Genetics Consor-

tium recently reported that the GCKR variant that protects from deterioration of renal func-

tion is associated with an increased urine albumin-creatinine ratio [51]. These findings

emphasize the need for further research on the pathophysiological mechanisms relating GKRP

to the kidney.

Third, it is not entirely clear whether the effects of genetic variants in GCKR and small mol-

ecule disruptors of the glucokinase-GKRP complex are truly comparable. This is one of the

Fig 2. Meta-analysis of the relationship between the GCKR effect allele and creatinine-based estimated glomerular filtration rate (eGFR).

https://doi.org/10.1371/journal.pone.0206174.g002
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general limitations of the Mendelian randomization approach in which genetic variants are

used as an instrument to study the effects of a specific drug of interest. However, previous

experimental studies have shown that both the product of the GCKR minor allele and glucoki-

nase-GKRP disruptors cause an increased translocation of glucokinase from the nucleus

towards the cytosolic space in the liver [9, 17].This explains the reduced plasma glucose levels

that have been associated with both the GCKR minor allele and treatment with glucokinase-

GKRP disruptors [9, 54].

Another aspect that deserves consideration is the moderate-to-high heterogeneity that was

observed in some of the meta-analyses. This could be the result of genotyping errors or differ-

ence in methodology, such as discrepancies in outcome measures (particularly for CAD) or

study populations (e.g. population-based versus hospital-based). Although ancestry did not

account for the moderate-to-high heterogeneity, the number of studies was too small to make

strong inferences. Furthermore, differences in diet could contribute to the observed heteroge-

neity given the previously reported GCKR-diet interaction on plasma triglycerides levels [55,

56]. It is, however, unlikely that these factors truly account for the opposing effect sizes that

were present in the individual studies, e.g. GCKR seemed to protect from CKD in one Japanese

cohort [36, 41] whereas a predisposing effect appeared to be present in one other [40]. These

opposing effects could simply be the consequence of chance, especially in small-sized studies

with few events. Alternatively, GCKR could theoretically be in linkage disequilibrium with a

gene that exerts an opposing effect on cardiorenal risk in certain but not all populations. These

opposing effects could have important therapeutic implications if they would be inherent to

GKRP function and therefore deserve further attention.

Fig 3. Meta-analysis of the relationship between the GCKR effect allele and chronic kidney disease (CKD).

https://doi.org/10.1371/journal.pone.0206174.g003
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A final limitation was that we were forced to exclude a considerable amount of studies, and

hence a substantial number of subjects, from the meta-analyses because of partial overlap of

individual study cohorts. Yet, we were still able to include a high number of individuals, rang-

ing from ~200,000 to 400,000 in the three meta-analyses, which can be attributed to our search

strategy that was not confined to studies specifically reporting on GCKR. We correctly

assumed that GWAS were likely to include our variants of interest without reporting in the

manuscript’s title or abstract.

Conclusions

The present study extends our knowledge on the systemic effects of enhanced disruption of

the glucokinase-GKRP complex by demonstrating that the GCKR effect allele is associated

with a better eGFR. A disadvantageous effect on CAD risk can, however, not be ruled out.

These findings question the benefits and applicability of small molecule disruptors of the glu-

cokinase-GKRP complex as a potential new class of antidiabetic drugs. Further studies are

warranted toidentify the factor that mediates the renoprotective effects of enhanced disruption

of the glucokinase-GKRP complex.
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