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A B S T R A C T

Tumor evolution is the accumulation of various tumor cell behaviors from tumorigenesis to tumor metastasis and
is regulated by the tumor microenvironment (TME). However, the mechanism of solid tumor progression has not
been completely elucidated, and thus, the development of tumor therapy is still limited. Recently, Tumor chips
constructed by culturing tumor cells and stromal cells on microfluidic chips have demonstrated great potential in
modeling solid tumors and visualizing tumor cell behaviors to exploit tumor progression. Herein, we review the
methods of developing engineered solid tumors on microfluidic chips in terms of tumor types, cell resources and
patterns, the extracellular matrix and the components of the TME, and summarize the recent advances of
microfluidic chips in demonstrating tumor cell behaviors, including proliferation, epithelial-to-mesenchymal
transition, migration, intravasation, extravasation and immune escape of tumor cells. We also outline the com-
bination of tumor organoids and microfluidic chips to elaborate tumor organoid-on-a-chip platforms, as well as
the practical limitations that must be overcome.
1. Introduction

Cancer continues to be a leading cause of death worldwide [1]. Based
on the most recent global cancer statistics, nine of the top ten cancers
with high mortality are solid malignant tumors [1]. The incidences of
various malignant solid tumors increase annually in both developed and
developing countries, resulting from more excessive exposure to some
risk factors, such as viruses [2], chemicals [3,4], radiation [5] and cig-
arettes [6]. Solid tumors can arise in almost all human organs and are
often considered abnormal organ-like structures mainly composed of
tumor cells [7]. The evolution of solid tumors refers to a complicated
process from tumorigenesis [8] to tumor growth and infiltration [9] to
tumor metastasis [10], which is achieved through a series of dynamic
tumor cell behaviors. As tumors evolve, the proliferation speed and
invasiveness of tumor cells tend to be accelerated [11,12], and the spread
of tumor cells into distant organs or tissues may occur, as well as immune
escape and drug resistance [13,14]. The multiple biological behaviors of
tumor cells ultimately cause tumor metastasis and the failure of tumor
treatment.
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To demonstrate the dynamic behaviors of tumor cells and elucidate
the mechanism of tumor evolution, researchers have developed many
tumor models. Animal models, which are often constructed by subcuta-
neously implanting tumor tissues or tumor cells in rodents, such as rats
and mice, have greatly advanced our understanding of complex tumor
progression [15–17]. However, there is a species difference between
humans and animals [15,18], and it is difficult to clearly visualize how a
single tumor cell behaves over time in tumor evolution for animal models
[18,19]. Compared to animal models, cell culture models have an
advantage in visualizing cell morphology, are cost-efficient and simple to
use [20,21]. However, two-dimensional (2D) cell monocultures fail to
replicate the cellular spatial arrangement of solid tumors [22,23],
resulting in the inconsistent morphology and behavior of tumor cells
compared to those in vivo [24,25]. Traditional three-dimensional (3D)
cell culture models (e.g. tumor spheroids) [26–28] can mimic solid tu-
mors in terms of the spatial structure of tumor cells [29]. However, they
lack some crucial components of the tumor's physicochemical environ-
ment, such as fluid shear force and perfusable vasculatures [30,31].

Organ chips have emerged as a novel in vitro research platform in the
Technology of China, Hefei, Anhui 230027, China.
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Fig. 1. Advantages of microfluidic chips in tumor research.

Fig. 2. Schematic of the main components of the TME.
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life sciences and engineering [32–34]. Organ chips focusing on tumor
research are referred to as tumor chips. Materials used to fabricate tumor
chips mainly include polydimethylsiloxane (PDMS) [35] and polymethyl
methacrylate (PMMA) [36]. These materials are optically transparent
and can be integratedwithmicroscopy imaging systems (Fig. 1), allowing
for easy visualization of a single tumor cell's behavior. The patterns and
sizes of tumor chips can be customized, enabling easy perfusion with
ultralow-volumes of culture medium [18,19]. Notably, the physi-
ochemical microenvironment of a solid tumor can be modeled on a tumor
chip. Currently, tumor chips have been widely applied to visualize the
dynamic process of tumor growth, infiltration and metastasis [37],
providing new insights into human cancer physiology. This review fo-
cuses on human solid tumors and outlines microfluidic chips designed to
model tumor cell behaviors in tumor evolution. We first described the
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methods of modeling human solid tumors on microfluidic chips, and then
elaborated on how microfluidic chips are employed to demonstrate
tumor cell behaviors. Finally, we evaluated the current challenges and
discussed the future opportunities of microfluidic chips in tumor
research.

2. Engineered solid tumors

In tumor evolution, the TME influences tumor growth, infiltration,
metastasis, drug resistance and recurrence [38,39]. The TME refers to
tumor cells and their surrounding microenvironment [40]. In the TME, in
addition to heterogeneous tumor cells, there are some stromal cells and
acellular components (Fig. 2). Stromal cells in the TME are mainly
endothelial cells [41], pericytes [42], fibroblasts [43] and immune cells
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[44], while the acellular components include blood vessels [45],
lymphatic vessels [46], the extracellular matrix (ECM) [47] and some
diverse soluble cytokines [48]. To replicate solid tumors in vitro, a
physiologically similar TME has been successfully created on micro-
fluidic chips over the past few decades.
2.1. Construction of on-chip solid tumors

Solid tumors with high incidence, such as lung, breast and liver
cancer, are frequently modeled on microfluidic chips [49,50]. Typically,
to develop an engineered solid tumor on a chip (Fig. 3), cell lines or
primary cells of tumor cells and stromal cells (e.g., endotheliocytes, fi-
broblasts and macrophages) are obtained from commercial cell banks or
isolated from the tumor tissues of cancer patients (Fig. 3A). Discrete
tumor cells, stromal cells or multi-cell spheroids of tumor cells and
stromal cells are mixed with a biocompatible hydrogel material [51]. The
mixture is manually loaded into the tissue culture zone of a microfluidic
chip, and the cell culture medium is driven into the chip using gravity
pumps, peristaltic pumps or syringe pumps to achieve dynamic long-term
culture [52]. During chip culture, the behaviors of tumor cells or stromal
cells can be observed or tracked momentarily using a microscope due to
the excellent transparency of the chip. In terms of the pattern of the
on-chip tumor cells (Fig. 3B), tumor chips can usually be classified into
discrete cell-based chips (tumor cells are directly cultured on a chip) [53,
54] and cell spheroid-based chips (cell spheroids are often preprepared
and cultured on a chip) [55–61].

Compared to discrete tumor cell-based chips, cell spheroid-laden
tumor chips have an advantage in replicating the spatial architectures,
gradients of metabolism and oxygen, and cell distribution of solid tumors
[18,62] since the cell spheroids can be prepared with tumor cells and
stromal cells, and thus possess a more biomimetic TME. Recently,
Yokokawa's group developed a vascularized tumor chip based on cell
Fig. 3. Schematic of developing engineered solid tumors on a microfluid
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spheroids of tumor cells and fibroblasts and evaluated the activities of
tumor cells after treatment with anticancer drugs on the chip [61]. They
found that a vascular network could guarantee long-term perfusion cul-
ture of the tumor cell spheroid, enhance the proliferation of tumor cells,
and suppress the death of cells in the spheroid [61]. The evolution of
typical tumor cell spheroid-based microfluidic chips is shown in Fig. 4.

2.2. Source of tumor cells

The choice of tumor cells for tumor chips varies from the established
secondary cancer cell lines to tumor cells extracted from surgically-
resected tumor tissues of cancer patients (Fig. 3A). The frequently used
tumor cell lines for different tumors on tumor chips are shown in Table 1.
Immortalized cancer cells have extensively promoted the understanding
of tumor biology [67]. However, it is difficult to comprehend the genetic
and epigenetic diversities of different patients using cancer cell lines, and
cancer cell lines often exhibit genetic aberrations with increasing passage
numbers [68,69]. Patient-derived tumor cells retain native genetic in-
formation and tumor heterogeneity, and thus have the potential to
replicate patient-dependent tumor variability. It should be noted that the
methods of tumor cell dissociation and culture need to be wisely chosen
to maintain the parental characteristics of primary tumor cells [70].

2.3. ECM used in tumor replication

The ECM is a 3D acellular network typically composed of collagen,
fibronectin, laminin, elastin, polysaccharide, and other proteins [119,
120], which provides necessary biochemical and structural support for
cellular constituents (Fig. 2). In particular, the structure of the ECM can
be remodeled during tumor evolution [121]. The degradation of ECM
components, such as collagens and proteoglycans, directly contributes to
the migration, invasion and metastasis of tumor cells [122].
ic chip: (A) the cell resource and (B) cell pattern of on-chip tumors.



Table 1
A summary of some on-chip engineered solid tumors.

Tumor type Cell line References

Lung cancer H1975 cell [71]
SPCA-1 cell [72–74]
A549 cell [73,75–78]
NCI–H1437 cell [79,80]
PC9 cell [81,82]

Colorectal cancer HCT-116 cell [83–86]
HT29 cell [55,87–89]
SW620 cell [90,91]

Liver cancer HepG2 cell [82,83,92,93]
C3A cell [94,95]

Gastric cancer SGC-7901 cell [96]
Breast cancer MCF7 cell [93,97–102]

DCIS cell [57,103]
T47D cell [58,59]
BT549 cell [59]
SK-BR-3 cell [104]
MDA-MB-231 cell [58,97,102,104–107]

Esophagus cancer JH-EsoAd1 cell [108]
KYSE-150 cell [109]

Pancreas cancer AsPC1 cell [110]
BxPC3 cell [110,111]

Prostate cancer PC-3 cell [112–114]
LNCaP cell [112,114,115]
C4-2 cell [112]

Cervical cancer HeLa cell [56,116]
CaSki cell [117,118]

Fig. 4. Development of the recent typical cell spheroid-based tumor chips (Reprinted with permission from Ref. [63], Copyright 2018 American Chemical Society;
Reprinted with permission from Ref. [64], Copyright 2019 American Chemical Society; Reprinted with permission from Ref. [61], Copyright 2020 Elsevier; Reprinted
with permission from Refs. [65,66], Creative Commons By 4.0 (https://creativecommons.org/licenses/by/4.0)).
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To model the ECM of solid tumors, some commercial biomaterials
with good biological compatibility and gelatinous capability, such as
collagen, Matrigel, GelMA, fibrinogen and Cultrex BME, have been
widely employed on tumor chips [123]. Collagen type I is a rich ECM
component [120], and it can be obtained from the tendon of the mouse
tail [124]. Collagen solution can form hydrogels at a neutral pH [125]
(Table 2). Matrigel is a temperature-sensitive hydrogel material con-
taining laminin, type IV collagen, heparan sulfate proteoglycan, nestin
and some growth factors, and is extracted from the soluble basement
membrane of mice with sarcoma [126]. Matrigel has been proven to
promote the adhesion and differentiation of cells, and it has been widely
used as the ECM in a variety of 3D cell culture models [127,128]. GelMA
4

is a photosensitive hydrogel biomaterial composed of methacrylate an-
hydride and gelatin [129]. Whenmixed with a photoinitiator, GelMA can
rapidly crosslink into a 3D hydrogel with a certain strength under blue or
ultraviolet light [130]. There are sites in GelMA hydrogel for cell adhe-
sion and matrix metalloproteinase, which can support the proliferation
and migration of different cells, such as tumor cells [131–133], endo-
theliocytes [126,134], cardiomyocytes [135,136] and chondrocytes
[114]. Fibrinogen is often sourced from mammals, such as bovines, pigs
and goats, and it participates in the process of blood coagulation [137,
138]. When mixed with thrombin, fibrinogen can form a 3D hydrogel at
room temperature [125]. Bovine fibrinogen is widely used in modeling
angiogenesis and self-assembled vascular networks on microfluidic chips
due to its good fiber structural support [139,140]. Cultrex BME is another
commercially soluble basal membrane material purified from mice with
synovial sarcoma [141,142]. Similar to Matrigel [143], it is liquid at 2–8
�C, and polymerizes at 37 �C. In addition to commercial hydrogel bio-
materials, decellularized matrix (dECM) prepared in the laboratory after
the decellularization of tissues and organs from mammals is also used as
the ECM to support cells on microfluidic chips [131,144,145]. The dECM
scaffold can preserve the biomolecular profile and composition of the
native organ microenvironment where solid tumors arise [146,147].
However, there is still a gap between the reported hydrogel materials and
the in vivo ECM of tumors in terms of the stiffness, topography and
viscoelastic properties [146,148], and the drawbacks of these materials
limit their application. The choice of more biomimetic ECM is still crucial
for the construction of on-chip tumors (Table 2).

2.4. Stromal cells used in tumor replication

In the TME, the dominant constituent of stromal cells mainly includes
fibroblasts, endotheliocytes, pericytes and immune cells. Fibroblasts are
often fusiform or spindle-like in shape and can synthesize collagens,
fibronectin, laminin and ECM-degrading proteases [171]. The activated
fibroblasts associated with tumors are called cancer-associated fibro-
blasts (CAFs) [172]. Several studies have demonstrated that CAFs can
promote tumor evolution and that transforming growth factor-β (TGFβ),
platelet-derived growth factor (PDGF) and fibroblast growth factor-2
(FGF2) are crucial mediators of fibroblast activation [171,173]. Endo-
thelial cells and pericytes are crucial for tumor angiogenesis [174,175].

https://creativecommons.org/licenses/by/4.0


Table 2
A summary of the ECM used on tumor chips.

Category Gel condition Concentration
range

Advantages Disadvantages References

Rat tail
collagen
type I

At a neutral pH 1.3–10.0 (mg/
mL)

Similar to the ECM of tumors, biodegradability,
containing cell adhesive domains,
commercially available

Derived from animals, weak stability,
monocomponent

[55,
149–155]

Matrigel Above room temperature 2.5%–10% (v/
v)

A variety of protein components,
biodegradability, commercially available

Derived from animals, undefined compositions,
poor mechanical properties

[156–161]

Bovine
fibrinogen

Mixed with bovine
thrombin

2.5–10.0 (mg/
mL)

Promoting the self-assembly of HUVECs,
enzymatical degradability, occurring RGD
adhesion domains, commercially available

Risks of immunogen and pathogen,
monocomponent

[56,140,
162–165]

GelMA Exposure to light with
the assistance of a
photoinitiator

3%–10% (v/v) Customized components, easy to pattern, rapid
prototyping, good biocompatibility and
bioactivity, commercially available

Risk of cell death induced by photoinitiators,
lack of microscale pores to accommodate
tumor cell migration, difficult to degrade

[133,156,
166,167]

Cultrex BME Above room temperature 2.5%–10% (v/
v)

Similar to an early developmental basement
membrane, commercially available

Risks of immunogen and pathogen, undefined
compositions, poor mechanical properties

[168–170]

dECM Chemical, biological and
physical methods

– Reconstituted native ECM, customized
components

Expensive cost, risk of cytotoxicity, require a
different protocol to ensure efficient
decellularization

[145,155]
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To replicate stromal cells in the TME when developing an engineered
tumor on a microfluidic chip, human lung fibroblasts (HLFs) and human
umbilical vein endothelial cells (HUVECs) are widely used due to their
commercial availability [139]. HLFs are either cultured directly on tumor
chips [78,140] or mixed with tumor cells to prepare multicellular
spheroids [56,61]. HUVECs derived from the human umbilical cord have
the capacity to self-assemble into a vascular network under special cul-
ture conditions [139,176,177], and thus, they are frequently employed to
construct vascularized tumor chips [60,61,64]. In addition, CAFs [55],
pericytes [178], macrophages [179], dendritic cells [180], natural killer
cells [181,182] and T cells [183,184] have been loaded on tumor chips to
reveal the mechanism of tumor immunity and immunotherapy [185].
However, it remains a challenge to integrate all adaptive stromal cells to
build a biomimetic solid tumor on a chip, as it is still difficult to
co-culture tumor cells with these primary stromal cells in vitro [177].

2.5. Other components of the TME

There are blood vessels and lymphatic vessels in the TME. Similar to
human organs or normal tissues, tumors also need oxygen and nutrients
delivered by blood vessels for growth [186]. As early as 1971, Judah
Folkman proposed that the cascade events of tumor growth, infiltration
and metastasis are angiogenesis dependent [187]. According to this
concept of the “angiogenic switch”, tumor progression of solid tumors
can be mainly divided into two stages: avascular and vascular growth. At
the avascular growth stage, tumors grow slowly, and the tumor diameter
is typically within 2 mm [188]. When the oxygen and nutrients from
diffusion are no longer sufficient for tumor growth, tumor cells will
secrete some biochemical factors, such as hypoxia inducible factor and
vascular endothelial growth factor (VEGF), to induce the formation of
new blood vessels, namely, tumor angiogenesis [189]. Afterwards, the
tumor enters the vascular growth stage and grows quickly, benefiting
from the availability of oxygen and nutrients (Fig. 2); that is, in this stage,
the tumor spreads into surrounding tissues and even metastasizes to
distant sites through the vasculature [188].

Blood vessels not only supply oxygen and nutrients for the growth of
solid tumors, but they are also an important pathway for tumor metas-
tasis [190,191]. Lymphatic vessels contribute to the lymphatic invasion
and dissemination of tumor cells [192]. The blood vessels of solid tumors
are often unorganized and distorted, with variable vessel diameters and
abnormal blood flow [193,194]. To form a perfusable vascular network
on a microfluidic chip, HUVECs are often mixed with collagen type I or
bovine fibrinogen, and then loaded into a chip and dynamically cultured
using cell culture medium containing vascular endothelial growth factor
(VEGF) [139,140], which promotes the growth of blood vessels. In
addition, HFLs were also adopted to support HUVEC morphogenesis and
5

promote angiogenesis through the secretion of some angiogenic growth
factors [140]. Yuji Nashimoto et al. presented a tumor-on-a-chip with an
engineered tumor vascular network and evaluated tumor activity upon
administration of an anticancer drug, thus showing the importance of
vascular perfusion in cell proliferation and drug administration [61]. A
previous study conducted by our group demonstrated that tumor
angiogenesis could promote tumor growth and tumor cell migration in
tumor progression [56].

A lymphatic vessel model was developed by culturing lymphatic
endothelial cell lines on a microfluidic chip [195]. Immortalized
lymphatic endothelial cells were engineered to possess an elongated
lifespan with typical cellular morphology, the expression of special pro-
tein markers to form a perfusable vessel-like structure, and luminated
sprouts were induced by a gradient of lymphangiogenic factors. In
another work, a tumor-lymphatic microfluidic model was designed,
consisting of a lymphatic endothelial vessel cultured adjacent to breast
cancer cells [196]. They found that the vessel growth, permeability,
metabolism, hypoxia, and apoptosis of lymphatic endothelial cells were
influenced by breast cancer cells. Importantly, these changes in the gene
expression of lymphatic endothelial cells were related to the dysfunction
of the lymphatic vessels’ barrier. These studies collectively demonstrate
the utility of lymphatic vessels in studying tumor evolution.

3. Replication of tumor behaviors

The human body is composed of trillions of cells [197]. When cells
mutate and grow abnormally (e.g., unlimited proliferation and loss of
contact inhibition), tumors may occur (Fig. 5). It is believed that the
formation of solid tumors is similar to the process of human organo-
genesis built by normal stem cells [198]; that is, cancer stem cells (CSCs)
self-renew and differentiate into heterogeneous tumor cells, and then
these tumor cells continually proliferate and eventually form a solid
tumor.

Tumor evolution is the results of a series of dynamic behaviors of
tumor cells (Fig. 5). During tumor evolution, tumor behaviors vary with
the regulation of the TME. The TME is also constantly changed under the
influence of tumor growth and the cytokine secretion from tumor cells.
From tumorigenesis to metastasis, the behaviors of solid tumors are the
combined effect of tumor cells and their surrounding microenvironment.
Scientists and researchers have developed a variety of customized tumor
chips with discrete cell patterns and tumor spheroid structures to
investigate tumor behaviors in the avascular and vascular stages. The
combination of a single-organ chip/multiorgan chip and tumor chips has
also emerged, providing a better understanding of the mechanisms of
tumor progression.



Fig. 5. Schematic of the evolution of in vivo solid tumors.
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3.1. Tumor cell proliferation

To study the proliferation of tumor cells affected by the ECM, an
automated microfluidic platform was designed to culture breast cancer
cell line (T47D cells) with human mammary fibroblasts using three
different proteins (i.e., collagen, fibronectin, laminin) [199]. They found
that components of the ECM could change the morphology of the T47D
cell clusters, the proliferation of T47D cells, and the enzyme expression of
several matrix metalloproteinases. In another work, some tumor cell
spheroids preparedwith human colorectal cancer cells were embedded in
collagen hydrogel and indirectly co-cultured with CAFs on a microfluidic
chip [55]. Through immunofluorescent staining and analyzing the
expression of some proteins, it was concluded that the growth of tumor
cell spheroids was positively simulated by CAFs [55]. Similarly, a
microfluidic chip with three layers was designed to study the effects of
macrophages on the proliferation of tumor cells [58]. Researchers
cultured some tumor cell spheroids prepared with different breast cancer
cell lines (T47D and MD-MBA-231 cells) on the chip. They found that
invasive MD-MBA-231 cells, rather than T47D cells, could polarize
monocytes into tumor-associated macrophages (TAMs) and that the
presence of TAMs could enhance the proliferation of tumor cells by
secreting the cytokine TGF-β1 [58], which was in accordance with the
results of an indirect contact culture of breast cancer cells and monocytes
on a chip with zigzag signal-blocking channels [200]. Microfluidic chips
allow the soluble cell factors secreted from stromal cells to be transported
across the microfluidic channel and thus produce local concentration
gradients, which can mimic the bidirectional interaction between tumor
cells and stromal cells in the TME. Some studies have focused on tumor
growth at an early stage. Choi et al. modeled early-stage breast ductal
carcinoma in terms of 3D structural organization and the microenvi-
ronment of breast cancer on a microfluidic chip with multiple layers by
coculturing the cell spheroids of breast cancer cells with human mam-
mary ductal epithelial cells and humanmammary fibroblasts [57]. In this
study, the enlargement of tumor cell spheroids was observed, and the
morphologies of the cell spheroids were not altered by the underlying
fibroblasts. The model also examined the contribution of the TME to the
progression of breast ductal carcinoma and evaluated the efficacy and
toxicity of the drug paclitaxel on tumor growth [57].

Some chemical factors in the TME, such as interferon, interleukin,
6

growth factors, chemokines, tumor necrosis factor (TNF) and trans-
forming growth factor (TGF), are known to mediate the proliferation and
chemotaxis of tumor cells [201]. Benefiting from the advantage of
microfluidic chips in manipulating trace amounts of liquid, the effects of
TNF-α [202,203], IL-1β [204], VEGF [205,206], EGF [101,207], and
hypoxic conditions [208,209] on the proliferation of tumor cells have
been widely studied. Specifically, a microfluidic tumor slice model was
developed to present the behaviors of tumor cells under metabolic star-
vation gradients [84]. In this study, when tumor cells were exposed to pH
gradients and low nutrient conditions, these cells showed multiple
changes in the gene expression profile. The cells located further from the
media channels upregulated several genes related to stress and survival
response and downregulated the genes related to cell proliferation and
DNA repair. In summary, the ability of microfluidic chips to directly
visualize the biological responses of tumor cells is significant for pre-
senting tumor cell proliferation.

3.2. EMT of tumor cells

Tumor infiltration describes the process by which tumor cells detach
from the primary tumor site, cross the structural barriers, including the
cell basement membrane and surrounding ECM, and infiltrate into the
adjacent tissues of the tumor (Fig. 2) [210]. Tumor infiltration is a pre-
requisite for the distant metastasis of tumors, and the infiltration degree
is regarded as a crucial indicator of malignant tumors. Tumor infiltration
is generally achieved through cell migration [211,212]. Two migration
patterns of tumor cells have been reported: individual migration and
collective migration. For individual migration [213,214], a single tumor
cell penetrates the ECM through epithelial-mesenchymal transition
(EMT), which is the transition of tumor cells from an epithelial state to a
mesenchymal state, facilitating the invasion of tumor cells into sur-
rounding zones or blood vessels [212]. For collective migration, a single
tumor cell leads other tumor cells in a manner of narrow lines or clusters,
which refers to tumor tissue pushing forward as a whole and displacing
the surrounding cells [215].

To in vitro capture the dynamic EMT process of tumor cells, tumor
cells are often labeled with green/red fluorescent protein or pre-stained
with a cell tracker. The morphology change of human lung cancer cells
(A549 cell line) in EMT was observed on a microfluidic chip [216]. On
the chip, EMT of A549 cells was induced by TGF-β1 and negligible shear
stress. It was clearly observed that A549 cells elongated with typical
spindle-shaped morphological changes under a high TGF-β1 concentra-
tion, suggesting that the chip is a powerful tool for monitoring EMT
induced by a variety of chemical factors. A multichannel microfluidic
chip was developed to evaluate the contribution of flow-induced hy-
drodynamic shear stress on EMT [217]. Morphological changes in A549
cells occurred under fluidic culture conditions. In particular, the dynamic
process of EMT in HeLa cells was for the first time presented on a
microfluidic chip through the direct-contact coculture of HUVECs and a
single tumor spheroid prepared with HeLa cells and HLFs [56]. Micro-
fluidic chips have also been used to detect the expression of EMT-related
proteins. EMT is classically characterized by changes in the protein
expression of E-cadherin and N-cadherin proteins since E-cadherin is
mainly expressed in epithelial cells, whereas N-cadherin is upregulated in
mesenchymal cells [218,219]. The soluble active fragments of the
E-cadherin and N-cadherin proteins were reported to be biomarkers for
cancer diagnosis and prognosis [220]. A microfluidic chip was developed
to simultaneously detect the soluble E-cadherin and N-cadherin proteins
for EMT monitoring [221]. The chip can accurately detect these proteins
at concentrations as low as 10 cells/mL, potentially providing early in-
dications of cancer invasion and metastasis to guide cancer treatment
management. More recently, a microfluidic chip integrated with a
micromixer was designed to exploit the EMT index based on
tumor-derived extracellular vesicles [222]. Using this chip, over 90% of
extracellular vesicles expressing the EMT index (i.e., epithelial and
mesenchymal biomarkers) can be selectively isolated from plasma
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samples of breast cancer patients. Compared with healthy people, the
EMT index is significantly higher in patients with aggressive breast
cancer subtypes. In addition, patients with a high EMT index showed
recurrence within 5 years after adjuvant treatment [222].

3.3. Tumor cell migration

Tumor cell migration refers to the morphological transition and
locomotion of tumor cells [223]. The migration capability of tumor cells
varies with their type. In one study, breast cancer cells with mild, mod-
erate and severe phenotypes were modeled on a microfluidic chip [105].
It was found that the migration ability of severe breast cancer cells
(MDA-MB-231) increased with the secretion of IL-6 by breast cancer cells
[105]. Furthermore, IL-6 contributes to the invasiveness of breast cancer
cells [106]. Stromal cells in the TME, such as endothelial cells, fibroblasts
Fig. 6. The migration of tumor cells on microfluidic chips: (A) migration of MDA
microfluidic device (Reprinted with permission from Ref. [228], Copyright 2022 Else
from Ref. [229], Copyright 2019 American Chemical Society), and (C) representat
channel (Reprinted with permission from Ref. [232], Copyright 2021 Spring Nature).
referred to the Web version of this article.)
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and macrophages, also regulate the aggressiveness of tumors even at the
early stage of tumor evolution [43,224,225]. On a vascularized tumor
chip, when HeLa cells were co-cultured with endothelial cells and fi-
broblasts, they tended to migrate more [56]. By analysis of the paracrine
loop between lung cancer cells and fibroblasts on a microfluidic chip, it
was found that the cytokines secreted from lung cancer cells stimulated
the fibroblasts into myofibroblasts, and that TGF-β1 secreted from
myofibroblasts promoted the migration speed of lung cancer cells [226].
Indeed, macrophages and fibroblasts have been proven to produce syn-
ergistic effects in accelerating the migration of lung cancer cells [227]. In
addition, the migration of MDA-MB-231 cells mediated by mesenchymal
stem cells (MSCs) was recently monitored on a microfluidic-based 3D
co-culture device [228]. It was observed that MSCs guided cancer cell
migration in a “cluster-sprout-infiltrating” mode (Fig. 6A), and the
migration of both MDA-MB-231 cells and MSCs was significantly
-MB-231 cells (red) mediated by MSCs (green) under hypoxic conditions on a
vier), (B) nutrition-induced migration of HeLa cells (Reprinted with permission
ive time-lapse images of human glioblastoma cells migrating in a microfluidic
(For interpretation of the references to colour in this figure legend, the reader is
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accelerated under nutrient-deficient hypoxic culture conditions. A
microfluidic plate containing 96 chambers connected by a microchannel
was developed for visualizing and quantifying the migration of HeLa cells
[229]. In the experiments, the microchannel was perfused with Matrigel,
and HeLa cells migrated along the Matrigel-filled microchannel under
presupposed stimulation. By visualizing the process of cell migration and
counting the migration speed [229], researchers found that HeLa cells
migrated toward the chamber with a high nutrient concentration (high
fetal bovine serum in cell culture medium), indicating that tumor cell
migration is nutrition dependent (Fig. 6B). Yuan et al. adopted collagen
hydrogel as the ECM of breast tumors on a microfluidic chip and pre-
sented the migration of MD-MBA-231 cells [58]. They observed that
tumor cell migration decreased when the concentration and stiffness of
collagen-ECM increased. In addition, it was also found that cell spheroids
of T47D and MDA-MB-231 cells could cause monocytes to polarize into
tumor-associated macrophages, and the migration ability of T47D and
MDA-MB-231 cells was enhanced by these macrophages. The bidirec-
tional crosstalk between tumor cells and macrophages was presented on
another microfluidic chip [230]. The invasion of breast cancer cells was
promoted by tumor-associated macrophages while the phenotype of
macrophages was maintained by cancer cells. Microfluidic chips aimed at
generating an oxygen gradient have also been used to reveal the effects of
oxygen concentration on tumor cell migration [118,208,231]. Tumor
cells showed a migration directionality toward higher oxygen [231].

The quantification of the migration of primary glioblastoma cells to
predict progression-free survival and recurrence time of glioblastoma
patients was conducted on a microfluidic chip (Fig. 6C) [232]. In this
study, the widths of the microchannels on the chip ranged from 3 μm to
20 μm. Glioblastoma cells preferentially entered the narrower 3-μm-wide
branches of microchannels and were called highly motile cells. Based on
live-cell imaging, researchers calculated the percentage of these highly
motile cells and analyzed the ability of cells to deform their cytoskeleton
and migrate in confining microenvironments. The ability of glioblastoma
cell migration was correlated with its aggressiveness and invasiveness
[232], suggesting that cell migration and proliferation levels can predict
patient-specific clinical outcomes.

3.4. Intravasation of tumor cells

Tumor metastasis is the main cause of cancer mortality in humans. It
is a cascade of steps involved in the infiltration of tumor cells into blood
vessels and/or lymphatics and the colonization of distant organs/tissues
(Fig. 2) [9,10]. The tumor cells that enter blood vessels or lymph vessels
are known as circulating tumor cells (CTCs), a few of which can escape
the monitoring of host immune cells [52]. After CTCs arrive at a new
organ/tissue, they proliferate and form a metastatic tumor [52]. Blood
vessels are a crucial barrier to tumor metastasis. A perfusable vascular
network was typically constructed on a microfluidic chip based on the
spatially controlled 3D co-culture of HUVECs with fibroblasts and peri-
cytes [140]. On the chip, the developed blood vessels possessed the
characteristic morphology and biochemical markers compared with in
vivo blood vessels and exhibited strong barrier function and long-term
stability. This study provides an on-chip angiogenesis method for vas-
cularized organs and tumors. Lee's group presented the process of vas-
culogenesis, sprouting angiogenesis, and anastomosis in sequential
order, which simulated the interconnected perfused vessels from artery
to vascularized tissue to vein on a microfluidic chip [139]. The formed
perfusable microvascular network connected to the microfluidic chan-
nels without appreciable leakage enables the physiological vascular
interconnection of multiple tissue constructs on microfluidic chips. The
construction of on-chip perfusable blood vessels paves the way for the
study of tumor metastasis.

To simultaneously investigate the invasion and intravasation of breast
cancer cells, a microfluidic chip composed of three cell-laden hydrogel
channels was designed (Fig. 7A) [97]. The intravasation of breast cancer
cells into blood vessels following their invasion into the ECM was
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visualized (Fig. 7B). The presence of the vasculature enhanced the in-
vasion of MDA-MB-231 cells into the stroma. The diameters of blood
vessels were significantly reduced after the intravasation of the tumor
cells. In contrast, the permeability of blood vessels increased (Fig. 7C),
which was consistent with previous in vivo studies. This study provided
unique insights into intravasation events of the metastatic cascade.
Zhang et al. constructed a self-assembled microvascular network on a
microfluidic chip (Fig. 7D) [233], which could be maintained for up to 13
days with the assistance of fibroblasts, and the invasion ability and
intravasation behavior of breast cancer cells were observed (Fig. 7E).
Several key steps of tumor metastasis in blood vessels were recapitulated
on a microfluidic vessel-on-a-chip platform [234]. A cluster of PC3 cells
was seeded on the chip to mimic the primary tumor. Cell culture medium
was perfused through vessel lumens to induce tumor cell migration. A
few PC3 cells gradually shed from the PC3 cell cluster and migrated to-
ward the vessels. After a period of migration, some tumor cells intra-
vasated into the vessel. In another study, the clustered CTCs of breast
cancer cells displayed a higher shedding rate and metastasis formation,
and tumor metastasis could be restrained through prevention of CTC
cluster generation [235]. In addition, a tissue-engineered micro-
vasculature-on-a-chip system was developed (Fig. 7F) [236], and the
dynamic microvessel colocalization of brain tumor stem-like cells from
glioblastoma patients was demonstrated on a microvasculature chip
(Fig. 7G). These platforms provide new ideas for the study of tumor
metastasis.

3.5. Extravasation of tumor cells

Some tumors tend to metastasize to specific sites; for example, breast
cancer cells preferentially metastasize to the lung, liver, and bone [237,
238]. Studies have shown that tumor metastasis is not entirely deter-
mined by the TME of the primary tumor location but is also closely
related to the microenvironment of the metastatic site [38,239].
Organ-specific tumor cell extravasation has been modeled on micro-
fluidic chips [53,240]. Jeon et al. developed a microfluidic model with a
perfusable microvascular network to analyze the extravasation rate of
human breast cancer cells and the permeability of microvasculature after
tumor extravasation [53]. They found that a higher extravasation rate of
cancer cells was achieved after A3 adenosine receptor was blocked. Chen
et al. described a detailed protocol for how to recapitulate the discrete
cascades of early metastatic sites of breast cancer on a microfluidic chip
[214]. The extravasation events were tracked over 72 h via fluorescence
confocal microscopy (Fig. 8A). Compared with most in vivo extravasation
assays, microfluidic chips integrated with a high-resolution imaging
system allow the visualization of the morphological dynamics of both
tumor cells and endothelial cells. An organotypic microfluidic model was
developed to investigate the interactions between human breast cancer
cells and vasculature generated from induced pluripotent stem cells
[240]. On the chip, the dynamic extravasation behavior of breast cancer
cells and cancer-vascular interactions were recorded using a microscope
(Fig. 8B). In addition, the secretion of IL-6, IL-8 and MMP-3 increased,
especially when breast cancer cells were of a highly invasive phenotype.
The molecular mechanism of tumor cell extravasation was investigated
on microfluidic chips. Gilardi et al. exploited a vascularized microfluidic
chip to study the role of the Cdk5/Tln1/FAK axis in the extravasation of
breast cancer cells [241]. The integrated results showed that the phos-
phorylation of FAK serine 732 was a promising target of the metastatic
cascade. In addition, the upregulation of cancer-vascular paracrine
signaling, such as IL-6, IL-8 and MMP-3, promoted the extravasation of
breast cancer cells [240], as well as the early metastatic niche [242].

The construction of vascularized tumor-spheroid-on-a-chip models is
an alternative approach to study tumor metastasis. Recently, some
microfluidic chips with vascularized tumor spheroids have been reported
[64]. For example, some multicellular spheroids of lung cancer cells were
co-cultured with HUVECs and HFLs on a microfluidic chip to develop a
vascularized lung tumor (Fig. 9A and B) [64], a single pre-vascularized



Fig. 7. Intravasation of tumor cells on microfluidic chips: (A) the real picture and the structure of the chip, (B) fluorescent images of the vascular network and (C)
permeability of blood vessels after intravasation of breast cancer cells (Reprinted with permission from Ref. [97], Copyright 2018 Wiley); (D) chip structure and (E)
confocal images of breast cancer cells intravasated into blood vessels (Reprinted with permission from Ref. [233], Copyright 2022 AIP Publishing); (F) the cell-laden
chip and (G) tumor cells derived from glioblastoma patients in the microvasculature (Reprinted with permission from Ref. [236], Creative Commons By 4.0 (https
://creativecommons.org/licenses/by/4.0)).

C. Li et al. Materials Today Bio 21 (2023) 100724
multicellular spheroid of breast cancer cells was seeded on a chip to
achieve perfusable blood vessels (Fig. 9C and D) [61], and a single
multicellular spheroid of HeLa cells and HFLs was on-chip cultured with
HUVECs to model early-stage tumor angiogenesis (Fig. 9E) [56]. Jeon
and his colleagues adopted a 3D printer to create a cell spheroid culture
platform based on a standardized 96-well plate with a user-friendly
interface [60]. Based on the culture platform, some events of vasculo-
genesis, tumor infiltration and tumor angiogenesis were modeled [60].
The approach presented in this study provides a new idea to model
human solid tumors as well as the tumor metastasis process. In addition,
since solid tumors have a leaky vasculature, the characteristics of the
on-chip blood vessels may affect the extravasation process of tumor cells.
9

Therefore, preparation of pre-vascularized tumor spheroids, custom-
ization of the structures of microfluidic chips, optimization of the
vascular structure and adjustment of fluid flow provide avenues to model
the behaviors of tumor metastasis on-chip.

3.6. Immune escape of tumor cells

Solid tumors often possess an immunosuppressive microenvironment
that imposes an overwhelming burden on the immune system. Micro-
fluidic chips are a novel platform to reveal tumor-immune crosstalk and
present the behaviors of the immune escape of tumor cells. A microfluidic
device mimicking nutrient, pH, proliferation, and necrosis gradients of

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0


Fig. 9. Vascularized tumor-spheroid-on-a-chip models: (A) structures of the chip and (B) tumor spheroids of human lung adenocarcinoma cells with a perfusable
vascular network on the chip (Reprinted with permission from Ref. [64], Copyright 2019 Elsevier); (C) schematic of the chip and (D) tumor spheroids of human breast
cancer cells, HUVECs and fibroblasts with the vasculature (Reprinted with permission from Ref. [61], Copyright 2020 Elsevier); (E) a single vascularized tumor
spheroid prepared with human cervix cancer cells and fibroblasts (Reprinted with permission from Ref. [56], Copyright 2021 American Chemical Society).

Fig. 8. On-chip visualization of the dynamic extravasation process of tumor cells: (A) the extravasation behaviors of breast cancer cells (Reprinted with permission
from Ref. [214], Copyright 2017 Spring Nature), and (B) cancer-vascular interactions (Reprinted with permission from Ref. [240], Copyright 2021 Elsevier).
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breast cancer was designed to evaluate NK cell biology [181]. In this
study, 1.5 million MCF7 cells/mL were seeded on the device to induce an
immunosuppressive environment, and the interaction of NK-92 cells and
MCF7 cells was observed. The cytotoxicity of NK cells decreased in the
10
tumor-induced suppressive microenvironment. After NK cells were
removed from the device, NK cell exhaustion remained for a period.
Checkpoint inhibitors and immunomodulatory agents can alleviate NK
cell exhaustion. Pavesi et al. reported a customizable microfluidic
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platform [243], in which human cancer hepatocytes were cultured as a
single cell or tumor cell aggregates under different oxygen levels, as well
as human T cells engineered to express tumor-specific T-cell receptors
(TCR–T cells). In the presence of inflammatory cytokines, the ability of
TCR–T cells to migrate and kill the tumor target and the profile of soluble
factors were investigated. They concluded that tumor growth was related
to the function of TCR–T cells, oxygen levels and inflammatory envi-
ronment that affected the function of TCR–T cells. For tracking the
behavior of dendritic cells (DCs) toward tumor cells, a microfluidic de-
vice mimicking the TME of colorectal cancer and immune systems with
advanced microscopy was described [91]. Interferon-α-conditioned DCs
tended to migrate toward drug-treated cancer cells, largely guided by the
CXCR4/CCL12 axis. Notably, IFN-DCs were found to modify their
migration to recognize tumor cells and take up tumor antigens. Overall,
microfluidic chips allow crosstalk between tumor cells and immune cells
and thus possess the potential to visually reveal the mechanism of im-
mune escape of tumor cells during tumor development.

4. Challenges

Tumor cells become more aggressive, and metastasis often occurs
during tumor progression. It remains a challenge to capture the dynamic
behaviors of tumor cells from tumorigenesis to tumor metastasis due to
the complexity and variability of tumor evolution. Advances in micro-
fluidic technologies and tissue engineering have made tumor chips an
attractive visualized platform for demonstrating tumor cell behaviors
from tumor growth to infiltration to metastasis. However, some obstacles
remain in fully replicating human solid tumors on chips.

Currently, some solid tumors with high mortality, such as lung,
breast, colorectal and liver cancer, have been widely modeled on
microfluidic chips based on the diverse sources of related tumor cells.
Since intrinsic heterogeneity exists in solid tumors [244], tumor cell lines
are not optimal for replicating tumor heterogeneity. With the develop-
ment of the isolation of primary cells from cancer patients, more types of
heterogeneous tumors can be expected to be modeled on chips. To mimic
the structure of solid tumors, monocellular tumor spheroids (prepared
with tumor cells only) and multicellular tumor spheroids (prepared with
tumor cells and stromal cells) have been widely generated using different
methods [245,246]. To facilitate the study of the cellular behaviors of
solid tumors, cells within tumor spheroids should not be restricted to a
confined space (e.g., cell spheroids prepared with calcium alginate
hydrogel), and the self-assembly of tumor spheroids with multiple cell
types is recommended. The size and cell types in tumor spheroids also
need to be considered when using them to study different stages during
tumor progression.

The tumoral ECM is constantly reshaped during tumor evolution, and
its variable structure often affects tumor behaviors such as the migration
Table 3
A summary of in vitro tumor models for tumor evolution.

Category Modeling methods Advantages

Monolayer
culture

Cells are cultured on cell culture
plates/dishes/bottles or glass

Cost-efficient, simple to use, high

Tumor
spheroids

Cells are cultured on the ultralow
attachment surfaces to form cell
aggregation

Similar to the architecture of soli
gradients of oxygen and nutrition
interactions

Tumor chips Cells or cell spheroids are mixed with
biocompatible hydrogels and cultured
on a chip

Easy to control the TME, fluid flo
forces, dynamic cell-cell and cell-
situ monitoring tumors, easy to in
imaging and sensing platforms

Tumor
organoids

Cells from cancer patients are mixed
with Matrigel hydrogel and cultured
on the ultralow attachment surfaces

Preserve cell phenotypes, genetic
heterogeneity of the original tum
of oxygen and nutrition

Tumor
organoid
chips

Tumor organoids are cultured on a
microfluidic chip

Preserve genetic diversity and he
original tumors, produce gradien
nutrition, fluid flow and mechani
potential for perfusable blood ves
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and infiltration of tumor cells [247]. The ECM is composed of multi-
component proteins; however, the current on-chip ECM is simple in
composition and far from the in vivo ECM of tumors. In the future, new
matrix biomaterials with good biocompatibility need to be explored.
Most solid tumors contain regions of hypoxia because tumor cells are
typically farther from the nearest capillary than cells in normal tissues,
the blood vessels of solid tumors are abnormal, and hypoxic regions of
tumors are likely to have a decreased supply of nutrients such as glucose
and essential amino acids, leading to low interstitial pH [39]. Therefore,
blood vessels are prominent for on-chip tumors. The engineered vascular
network has been achieved on microfluidic chips; however, perfusable
blood vessels for an on-chip solid tumor are still a challenge. The con-
struction of the tumor spheroids with inner biomimetic ECM may facil-
itate the penetration of new blood vessels into the spheroids and the
formation of a perfusable vascular network. In addition, the fabrication
materials of microfluidic chips remain to be optimized to meet the de-
mands of the hypoxic microenvironment of human solid tumors.

Immune cells play both tumor-promoting and tumor-inhibiting roles
in tumor evolution [248]. Despite the dynamics of tumor-immune in-
teractions, such as the tumor killing of tumor-infiltrating lymphocytes
[249,250], the cytotoxicity of NK cells [251] and the bidirectional
crosstalk between tumor cells and macrophages [230], have been
examined on tumor chips [164,252], the incorporation of various types
of immune cells on a tumor chip has been a big challenge due to the
complexity of human immune system. Long-term maintenance of the
function of immune cells on chips still needs further exploration espe-
cially when immune cells are cocultured with other cells. In the light of
the importance of the immune cells in tumor evolution, if immune
components are fully integrated into tumor chips successfully, the pro-
motion on the mechanism discovery of tumor progression and the de-
velopments of tumor vaccines and immunotherapy will be greatly
expected.

5. Opportunities

Rapid technological advances have facilitated the development of
tumor organoids [253–255]. Tumor organoids are spherical, 3D cell
clusters cultured on an ultralow attachment surface based on cells
derived from patient cancer tissues (Table 3) [256]. Biopsies or surgically
resected tumor tissues are cut and digested to obtain cells. The cells are
mixed with Matrigel material and cultured in the customized cell culture
medium using cell culture plates, allowing the cells to self-assemble into
organoids [257]. In recent years, some living biobanks of tumor orga-
noids have been established, such as breast cancer organoids [258] and
colorectal cancer organoids [259]. Compared to engineered tumors on
microfluidic chips, tumor organoids preserve characteristics of the orig-
inal tumors in cancer patients in terms of cell phenotype, genetic
Disadvantages References

throughput Lack of the ECM, the spatial arrangement of
tumors and cellular interactions

[18,273]

d tumors, it produces
and preserves cellular

Lack of biomimetic mechanical forces,
dynamic fluid flow and blood vessels

[28,65,245]

w and mechanical
ECM interactions, in
tegrate microscopic

Lack of hypoxic microenvironment and
tumor heterogeneity

[72,73,85,
274]

diversity and
or, produce gradients

Stochasticity and variability, fail to long-term
tumor organoid cultures, absence of immune
cells and perfusable blood vessels

[260,275,
276,277]

terogeneity of the
ts of oxygen and
cal forces, have a
sels

Need to customize chip pattern, weak in
reliability, robustness and consistency

[253,278,
279]



Fig. 10. Tumor organoid chips and organ-chip system: (A) microfluidic platform for tumor-organoid culture (Reprinted with permission from Ref. [279], Creative
Commons By 4.0 (https://creativecommons.org/licenses/by/4.0)), (B) human pancreatic tumor organoid-on-a-chip model (Reprinted with permission from
Ref. [157], Copyright 2020 Wiley), and (C) multi-organ human-body-on-chips (Reprinted with permission from Ref. [284], Copyright 2020 Spring Nature).
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composition, morphological and mutational signatures [260,261], which
is of significance for researchers to dissect tumor biology on a person-
alized level [262–264], as well as precision medicine for patients [265,
266]. Recently, the initiation and growth of breast cancer [267], EMT of
breast cancer cells [268] and T-cell-mediated cytotoxicity in breast
cancer have been reported based on tumor organoid platforms [269].
Additionally, organoids of colorectal cancer [270], gastric cancer [255]
and liver cancer [271] have been developed to analyze tumor genomic
evolution, oncogenic pathogens related to tumor origin, and the in-
teractions between cancer genotypes and phenotypes [272].

Despite some advantages of tumor organoids, certain obstacles still
exist. It remains a challenge to develop a highly vascularized tumor
organoid. Due to the lack of perfusable blood vessels, oxygen and nu-
trients hardly diffuse into the interior of tumor organoids as they grow
larger [280], leading to the loss of cell viability at the inner core of
organoids [275]. Some efforts have been made to promote the vascu-
larization of tumor organoids [278,281]. However, a biomimetic per-
fusable vascular network of tumor organoids has still not been achieved
[282]. In addition, there is no fluid flow within tumor organoids. These
drawbacks hamper the application of tumor organoids in the modeling of
tumor metastasis, as well as precision in drug testing and screening.

The combination of organoid tumor technology and organ chip
technology to develop organoid-on-a-chip or organoid chips opens up
new frontiers of tumor chips. The synergistic integration of these two
technologies can be expected to bridge the enormous gap between
engineered and in vivo solid tumors [254,269], thus broadening the de-
ployments of tumor chips in tumor research (Fig. 10A). By culturing
tumor organoids in microfluidic chips (Fig. 10B), the lack of perfusable
vasculatures and biomimetic fluid flow in tumor organoids may be
overcome. Furthermore, some innate immune populations that are pre-
served in tumor organoids [261] may improve the immune microenvi-
ronment of tumor chips and thus promote the application of tumor chips
in immunotherapy. The human colon tumor organoid-on-a-chip model
mimicking peristalsis was recently developed by culturing human colon
tumor organoids on a microfluidic chip [283]. The microfluidic chip was
composed of hundreds of semi-open microwells interconnected by a
channel for medium flow, which can supply nutrition/oxygen and
remove waste, and a surrounding parallel pressure channel providing
rhythmic contraction and relaxation. Decreased drug uptake and
anti-tumor efficiency of colon tumor cells were observed on the chip. The
advancement of the human body-on-chips also promotes the develop-
ment of tumor organoid chips (Fig. 10C) [284]. However, efforts still
need to be made to design more physiologically similar tumor organoid
chips.

6. Summary and prospects

After a decade of development, there have been many reports of
microfluidic chips with multicellular tumor spheroids and discrete tumor
cells, allowing the visualization of tumor behaviors in tumor evolution,
resulting in different implementations and a surge in the understanding
of tumor progression. Here, we review the most recent advances in
modeling solid tumors on microfluidic chips. This includes the con-
struction of engineered tumors and the on-chip modeling of the TME,
such as the ECM, stromal cells, blood vessels and lymph vessels, outlining
stages in tumor evolution and discussing certain characteristics of tumor
cell behaviors in different stages. We also focus on replicating tumor cell
behaviors on microfluidic chips, such as proliferation, EMT, migration,
intravasation, extravasation and immune escape. These advancements
have led to the creation of tumor chips with biomimetic structure and
broad application, enhancing the benefits of demonstrating how a single
cell behaves in tumor progression and treatment. Additionally, we
described recent advances in tumor-organoid chips.

Tumor chips have seen tremendous progress since the inception of
organ-on-a-chip, but many challenges and opportunities still lie ahead.
Almost all tumor chips can precisely control the biochemical and physical
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microenvironments of solid tumors. Few can replicate the tumor het-
erogeneity and multi-tissue interfaces because complicated dynamic in-
teractions regulate tumor cell behaviors. To encourage the adoption of
tumor chips as more versatile and predictive preclinical platforms for
efficient and safe drug discovery and personalized medicine, more future
research should be directed toward tumor organoid chips. Since tumor
organoids preserve genetic and phenotypical stability and tumor het-
erogeneity, the combination of tumor organoids and microfluidic chips
facilitates the capture of tumor-specific genetic alterations and histopa-
thology, visualizing the behaviors of patient-derived tumor cells, and
discovering new spatiotemporal dynamics of tumor evolution. Then,
more mechanisms of tumor evolution can be uncovered based on tumor
organoid chips and new targets for tumor therapy may be developed. In
practice, tumor organoid chips can be constructed using the patient-
derived tumor tissues and thus, the personalized medication advice for
cancer patients can be reached.

We believe that combining organoids and microfluidic chips, along
with integrating biosensors and electronic systems into tumor-organoids-
on-chip platforms coupled with handled real-time imaging devices, will
revolutionize tumor chips. Definitely, the announcement of the Food and
Drug Administration (FDA) Modernization Act on alternative in vitro
models is of great benefit to translate tumor chips to the clinic and drug
development industry [285]. However, standards of organ chips still
need to be developed. It is foreseeable that with the advancement of
standardization and industrialization of organ chips [286], the applica-
tion fields of organoid/organ-on-chip models will be greatly extended. In
addition, in the future, the integration of tumor chip systems to the
health/medical network with the advances made in other fields of sci-
ence and technology, such as artificial intelligence and big data man-
agement strategies [287,288], may accelerate the innovative
development and clinical application of tumor chip platforms in
revealing the mechanism of tumor evolution and exploiting new strate-
gies for tumor treatment.
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