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Abstract: Drug-induced liver toxicity is one of the significant safety challenges for the patient’s
health and the pharmaceutical industry. It causes termination of drug candidates in clinical trials and
also the retractions of approved drugs from the market. Thus, it is essential to identify hepatotoxic
compounds in the initial stages of drug development process. The purpose of this study is to
construct quantitative structure activity relationship models using machine learning algorithms and
systematical feature selection methods for molecular descriptor sets. The models were built from
a large and diverse set of 1253 drug compounds and were validated internally with 10-fold cross-
validation. In this study, we applied a variety of feature selection techniques to extract the optimal
subset of descriptors as modeling features to improve the prediction performance. Experimental
results suggested that the support vector machine-based classifier had achieved a better classification
accuracy with reduced molecular descriptors. The final optimal model provides an accuracy of 0.811,
a sensitivity of 0.840, a specificity of 0.783 and Mathew’s correlation coefficient of 0.623 with an
internal validation set. Furthermore, this model outperformed the prior studies while evaluated in
both the internal and external test sets. The utilization of distinct optimal molecular descriptors as
modeling features produce an in silico model with a superior performance.

Keywords: drug-induced liver toxicity; feature selection; support vector machine; prediction; molec-
ular descriptors

1. Introduction

The liver is an indispensable organ of the body due to its crucial contribution in
metabolizing xenobiotics [1]. Drug-induced liver toxicity is one of the primary reasons
for drug failure in clinical cases and also leads to termination of approved drugs from the
market. Most commonly, drugs, herbals and other dietary products are responsible for
the uncertain adverse liver injury [2–5]. The idiosyncratic behavior of the drugs not only
caused by the dose level prescribed but also depends on the patient’s metabolic, genetic
and immunological factors [6]. Due to the unpredictable adverse hepatic effects on patient’s
health, drug-induced liver injury (DILI) risk assessment has become the most important
concern for safe drug development [7–10]. Hence, it is required to concentrate more on
identifying the potential hepatotoxic compounds in advance.

Animal studies for predicting DILI concerns in the preclinical assessment are not
reliable, as it provides a low correlation results in clinical trials and also in post-marketing
treatment [11,12]. In vitro and in vivo experiments for detecting DILI of large number
of substances are time-consuming and expensive. Additionally, most of the compounds
induce peculiar toxicity effects in human liver which cannot be discovered by the regulatory
system for new drugs [13–16]. To address the limitations of experimental approaches,
predictive computational modeling is taken into consideration for evaluating the DILI risk
of drug candidates. Moreover, computational studies are reasonably cheaper, allows rapid
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prediction in virtual screening of huge compounds and evade ethical challenges linked to
animal methods [17,18].

In recent years, computational predictive modeling approaches have been recognized
as an alternative by many research groups. Despite various data types, for example, chem-
ical structure and gene expression data, more number of computational models using
the molecular structure of the compounds have been reported [19–22]. In particular, in
silico studies are beneficial for filtering out molecular structures causing hepatotoxicity
in the early stages of drug discovery. However, expert-based models using structural
alerts are not successful predictors as they are defined according to experts’ experience
and knowledge about the drug toxicity mechanisms [23–25]. So, various machine learn-
ing algorithms based on statistical Quantitative Structure Activity Relationship (QSAR)
models have been developed by using the molecular structure features with the known
hepatotoxicity endpoint datasets. Ekins et al. developed a Bayesian model using extended
connectivity molecular fingerprints and interpretable descriptors based on a training set
composed of 295 compounds and a test set of 237 compounds. This Bayesian model had
a prediction accuracy of about 60% in external validation data [26]. Zhang et al. pre-
sented a naive Bayes classifier, which yielded an accuracy of 72.6% for the external test
set [27]. Although many machine learning-based statistical models have been reported
with sufficiently high accuracy, these models suffered from either imbalanced or small
datasets with unsatisfactory prediction performances [28–30]. Mulliner et al. published
Support Vector Machine (SVM) models combined with a genetic algorithm trained on
a large dataset of 3712 compounds related to human and animal liver toxicity data [31].
Ai et al. reported an ensemble learning model using molecular fingerprints based on 1241
diverse compounds [32]. Recently, He et al. built a large and chemically diverse balanced
training set of 1254 unique compounds as a result of system literature retrieval and con-
structed an ensemble model by integrating eight base classifiers to enhance prediction
performance using molecular descriptors given by Marvin [33]. They achieved an average
accuracy (ACC) of 0.783, sensitivity (SEN) of 0.818 and specificity (SPE) of 0.748 within a
10-fold cross-validation. Altogether, the prediction performance of the proposed models
are not satisfactory, and there is substantial room for enhancing drug-induced liver toxicity
predictions.

In this present study, we propose a drug-induced liver toxicity prediction model using
an SVM classifier with optimal subset of numerically represented molecular structure
features. We worked on a variety of machine learning methods and feature selection
techniques to improve the liver toxicity prediction performance using molecular descriptors.
We computed different molecular descriptor sets from compounds’ Simplified Molecular
Input Entry System (SMILES) format using various open software such as PaDEL, Chemopy,
CDK and RDKit. We employed feature reduction techniques to remove redundant and
irrelevant features from high dimensional molecular descriptor sets. Then, we applied
feature selection techniques F-score algorithm for feature ranking followed by SVM linear
kernel-based Recursive Feature Elimination with Cross-Validation (RFECV) method to
select the optimal subset of features. Initially, we analyzed the performance of the SVM
classifier with the optimal features of each individual molecular descriptor sets. Next,
we investigated the prediction performance with different combinations of individual
descriptor sets. Finally, the combination of all descriptor sets was used to build binary
machine learning classifiers. The SVM-based classifier with reduced molecular descriptors
showed improved prediction performance within 10-fold cross-validation and external
validation set compared to the recently reported prior study. The overall workflow of the
proposed model is shown in Figure 1.
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Figure 1. Illustration of the overall workflow.

2. Materials and Methods
2.1. Datasets

We obtained the training dataset compounds to develop a drug-induced liver toxicity
prediction model from previously published work [33]. He et al. constructed a training
dataset by integrating most of the data from publicly available datasets, i.e., DILIrank [34],
LiverTox [35], and LTKB [36], and also performed an extensive study from the PubMed
database and various scientific publications [37,38] to retrieve new hepatotoxic and hep-
aprotective compounds. Furthermore, a crucial data filtering procedure was performed
to make a large scale and chemically diverse training set of 1254 compounds. The Sim-
plified Molecular Input Line Entry System (SMILES) for each compound was acquired
from the PubChem compound database [39]. We excluded a compound from the previous
study because it may create an outlier as most of the compounds have SMILES sequence
lengths of less than 150. Finally, our training set has 1253 compounds, consisting of 636
hepatotoxic and 617 non-hepatotoxic compounds. We collected drug compounds for the
test dataset from the literature [33,40]. After eliminating duplicate and structurally similar
compounds, we randomly selected 208 drug compounds, consisting of 94 hepatotoxic and
114 non-hepatotoxic compounds.The training and test datasets used in this study can be
found in the supplementary file (Tables S1 and S2).

2.2. Molecular Descriptors

Molecular descriptors are commonly utilized to quantitatively represent molecular
characteristics for drug compounds [41]. We can compute numerous descriptors from the
SMILES string format through various open source packages [42–45]. In this study, we
calculated four sets of descriptors (CDK, Chemopy, PaDEL and RDKit) using an integrated
publicly available web-based platform ChemDes [46]. We used individual descriptor sets
and their combinations as shown in Figure 2. The individual descriptor set count is shown
in Table 1. In total, 2648 descriptors were computed. In combined descriptor sets, the
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redundant descriptors which were calculated by more than one software were eliminated
in the data preprocessing phase as discussed in upcoming section.

Table 1. Details of the descriptor sets.

Descriptor Set Descriptors Count

PaDEL 1&2D 1544
Chemopy 1&2D 633

CDK 275
RDKit 196

Total 2648

Chemopy

1&2D

RDKitCDK

Combined Descriptor Sets

Feature Reduction Methodology

Final Feature Subset

Molecular Structure Representation

PaDEL

1&2D

Figure 2. Combining individual descriptor sets.

2.3. Data Preprocessing and Feature Selection

Data preprocessing is an essential step in machine learning modeling as it improves
the quality of the data and impacts the learning capability of the model. The descriptor
preprocessing, reduction and selection methodology is shown in Figure 3.

ModelPreprocessing Reduction Selection

Cleaning

Normalization

Null
Zero

Variance

Wrappers

Learning 

Algorithms
RFECV

Filters

Correlation F-Score

Figure 3. Illustration of the phases to develop final descriptors subset.
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The main purpose of data cleaning is to identify and remove the noisy data by drop-
ping the missing and identical value features. A variance threshold algorithm was applied
to remove the zero variant features, i.e., the features with the same value in all drug com-
pounds. The selection of most important subset of features is the challenging optimization
step in machine learning-based model development. Feature selection techniques reduce
the computational cost and complexity of the model. There are several feature selection
techniques to select the best molecular descriptor subset for training the model [47]. We uti-
lized the feature selection algorithms implemented by open source machine learning library
Scikit-learn [48] in Python. Filter-based selection methods are faster and generally used in
the case of the high dimensional features. In filtering, the selection of features i performed
without considering the predictive model. The filter-based linear correlation method was
used to eliminate the redundant and irrelevant features by using the Pearson correlation
coefficient [49]. Molecular descriptors having a mutual correlation of more than 0.9 have
been reduced by dropping one of the highly correlated features. The F-score algorithm was
implemented to rank all the features according to the feature importance score. The feature
importance score was calculated based on the correlation value of each feature with the
target label and not considering the mutual information among the features [50].

In addition to filter methods, wrapper methods were proposed to search for the
best performing subset of features by iterative training of a supervised learning estima-
tor. Though wrapper-based selection methods are computationally expensive, it avoids
over-fitting and improves the learning accuracy of the predictive model. We applied the
Recursive Feature Elimination and Cross Validation (RFECV) technique to select the high
ranked features by training the SVM linear classifier while recursively eliminating the low
importance features [51–54]. The optimal feature subset of 155 molecular descriptors was
selected after eliminating 5% of less important molecular descriptors in each iteration using
10-fold CV method. The final optimized subset selected from the training set and external
test set was used for model development, internal validation and external validation,
respectively.

2.4. Model Building and Optimization

Machine learning models can be used to predict hepatotoxicity given the molecular
descriptor of a compound as input. We mainly focused on the following machine learning
algorithms to develop binary classification models, among several methods that have
been applied in QSAR modeling: Support Vector Machine (SVM), Multi-Layer Perceptron
(MLP), Logistic Regression (LR), Random Forest (RF), XG Boosting (XGB), K-Nearest
Neighbors (KNN), Naive Bayes (NB) and Decision Tree (DT) classifier [27,32,33,53,55,56].
These robust algorithms are highly efficient and can accommodate numerous features. We
implemented these machine learning algorithms by using the widely used library Scikit-
learn in Python [48]. The machine learning algorithms’ performances can be effectively
improved by tuning their parameter values. The hyper-parameters of the models were
optimized by the grid search method with cross-validation over a parameter grid. We
trained the optimized algorithms with the best selected molecular descriptors and known
hepatotoxicity labels. In this study, an SVM-based binary classifier was mainly used for
performance comparison.

Support Vector Machine

SVM is a powerful supervised learning method and widely used for solving classi-
fication problems. The algorithm performs the classification by identifying the optimal
hyper-plane using several kernel functions that discriminate between the positive and
negative class molecules in a high dimensional space. In this study, we used the most
popular radial basis function (RBF) as the kernel function which showed better perfor-
mance than the others (linear, sigmoid and polynomial). In addition, we optimized the
penalty parameter C and the kernel coefficient Gamma of the RBF kernel through the grid
search method with cross-validation. The regularization parameter C controls the trade-off
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between the smooth decision boundaries and correct classification [57]. The higher values
of kernel width parameter Gamma denotes an exact fit as per the training dataset and
causes an over-fitting problem. The optimal values of C and Gamma used in this study
were 100 and 0.01, respectively.

2.5. Model Training and Validation

In this study, the reliability and quality of the proposed model was evaluated by
performing external validation in addition to 10-fold cross-validation (CV). In the CV
method, the training dataset was randomly divided into 10 subsets. The optimized model
was trained with nine subsets and the remaining one subset as a internal validation set. The
training and validation procedure was repeated ten times with different training subsets
and internal validation sets, respectively. Finally, the performance of the binary classifier
was calculated by averaging the results of the 10 corresponding internal validation sets.

2.6. Performance Evaluation Metrics

To assess the predictive ability of the proposed model, we employed several statistical
metrics, including accuracy (ACC), the overall prediction accuracy; sensitivity (SEN), the
prediction accuracy of hepatotoxic compounds; specificity (SPE), the prediction accuracy of
non-hepatotoxic compounds; Matthew’s correlation coefficient (MCC); and F1-Score, which
are mathematically defined as follows:

ACC =
TP + TN

TP + TN + FN + FP
(1)

SPE =
TN

TN + FP
(2)

SEN =
TP

TP + FN
(3)

MCC =
(TP ∗ TN)− (FP ∗ FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(4)

F1-Score =
2 ∗ TP

(2 ∗ TP) + FN + FP
(5)

RndACC =
(TP + FN) ∗ (TP + FP) + (TN + FP) ∗ (TN + FN)

N2 (6)

∆ACC = 100 ∗ (ACC − RndACC)(%) (7)

where true positive (TP) denotes the number of hepatotoxic molecules that are predicted
correctly, true negative (TN) indicates the number of non-hepatotoxic molecules that are
predicted correctly, false positive (FP) is the count of non-hepatotoxic compounds that
are incorrectly predicted as hepatotoxic compounds, false negative (FN) is the count of
hepatotoxic compounds that are incorrectly predicted as non-hepatotoxic compounds. The
MCC is used to measure the balanced classification performance, the coefficient value
1 indicates perfect classification and −1 represents perfect misclassification [58]. The
statistical parameter F1-Score is calculated for estimating the quality of binary classification
models using an imbalanced dataset. The random accuracy (RndACC) and its difference
with real accuracy (∆ACC in %) can be estimated to rank the predictive quality of the
QSAR models [59]. The receiver operating curves (ROCs) and the precision recall curves
(PRCs) were plotted to summarize the binary classification performance. Additionally, we
calculated the area under the ROC curve (AUC-ROC) and the area under the PRC curve
(AUC-PRC) for classifier comparisons.
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3. Results and Discussion
3.1. Data Analysis

To estimate the chemical diversity of the dataset used in this study, we calculated the
Tanimotto similarity index [60] based on Morgan Fingerprint with radius 2. The majority
of the compounds in the training and test sets had similarity indices in the range below
0.30 and the mean value was only 0.0921. These results suggest that the chemical structures
used in our dataset were diverse. We plotted the heat map corresponding to the Tanimotto
similarity index of molecules from the entire dataset (Figure 4).
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Figure 4. Heat map showing the molecular similarity of the molecules used in the entire dataset
plotted by Tanimoto similarity index calculated using Morgan Fingerprints. The x-axis and y-axis
represent the number of molecules used in the whole dataset.

t-distributed stochastic neighbor embedding (t-SNE) is a non-linear technique for
dimensionality reduction and it is used to create graphical representation of the chemical
space covered by the set of molecules [61]. It is recommended to reduce the number of
dimensions before performing the t-SNE algorithm, which will speed up the computation
and suppress some noise. In this study, principal component analysis (PCA) was performed
on 2048 bit Morgan fingerprints to obtain 100 principal components, which represent 56.76%
of the overall variance in the data. Figure 5 represents the chemical space visualization
of the entire dataset using t-SNE algorithm. Furthermore, we explored the chemical
space of the whole dataset using molecular weight and AlogP (octanol/water partition
coefficient) as demonstrated in Figure 6. The molecular weight values varied from 74 to
843.88 and AlogP values ranged from −7.88 to 15.61. The scatter diagram distributions
(Figures 5 and 6) illustrate that the hepatotoxic and non-hepatotoxic compounds shared
the same chemical space.
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Figure 5. Visualizing the chemical space coverage using t-distributed stochastic neighbor embedding
(t-SNE) on PCA output with 100 principal components (accounts for 56.76% of the overall variance)
of the entire dataset (training and test datasets). Red x markers represent the hepatotoxic compounds
and the green circle markers represent the non-hepatotoxic compounds.
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Figure 6. Chemical space defined by molecular weight and AlogP of the entire dataset (training and
test datasets). Red x markers represent the hepatotoxic compounds and the green circle markers
represent the non-hepatotoxic compounds.

3.2. Performance of Models Using Cross-Validation

Various machine learning methods were used to build prediction models based on
molecular descriptor subsets. Initially, we worked on individual descriptor sets and eval-
uated their performances with few machine learning models. Then, we made different
combinations of molecular descriptor subsets and found a good combination of the descrip-
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tor set that produced the best prediction results for the validation data. The best prediction
model was built based on the selected combination of the individual descriptor sets.

3.2.1. Experiments with Individual Descriptor Sets

We employed the experimental workflow approach on the four individual descriptor
sets such as CDK, Chemopy, PaDEL and RDKit. At first, empty valued and zero variant
features were removed from the original molecular descriptor set. After applying the
feature importance score-based ranking and RFECV techniques, we selected an optimal
subset of molecular descriptors from each set for model training and validation. The SVM-
based classification model was used to compare the 10-fold cross-validation performance
of the individual descriptor sets.

Table 2 shows the selected number of descriptors from each set and their prediction
performance results. It is evident that the PaDEL descriptor set performs better in terms of
accuracy (ACC), Sensitivity (SEN) and Mathews Correlation Coefficient (MCC) than the
other individual descriptor sets.

Table 2. The best performance of individual descriptor sets.

Descriptor Set Selected No. of Descriptors ACC SPE SEN MCC

CDK 77 0.771 0.772 0.773 0.545
Chemopy 104 0.766 0.763 0.773 0.536

PaDEL 91 0.781 0.749 0.815 0.565
RDKit 86 0.752 0.729 0.777 0.507

3.2.2. Experiments with Combined Descriptor Sets

We examined various combinations of the individual descriptor sets to improve the
model performance. Here, the similar experimental workflow, i.e., the preprocessing and
feature selection methods, were also applied for the combined feature sets to obtain the
low dimensional optimal descriptor subset. The PaDEL descriptor set was present in all
the combination groups as it computes a large number of descriptors and showed better
prediction performance compared to the other individual descriptor sets. The optimal
number of descriptors and their SVM classifier prediction outcomes for different possible
combinations are shown in Table 3.

Table 3. Performance details of best combination descriptor sets.

Best Combination Descriptor Sets Optimal No. of Descriptors ACC SPE SEN MCC

PaDEL-RDKit 132 0.796 0.784 0.809 0.593
PaDEL-RDKit-CDK 162 0.804 0.796 0.813 0.609

PaDEL-RDKit-CDK-Chemopy 155 0.811 0.783 0.840 0.623

From Table 3, it can be seen that every combined descriptor set showed improved
prediction ACC and MCC compared to the best performing PaDEL descriptor set with
91 optimal descriptors. The number of descriptors for each group has been obtained
as the result of optimizing the feature selection algorithms mentioned in the methods
section. The combined group of three descriptor sets with 162 optimal features gave
improved MCC over PaDEL-RDKit combination with 132 features. The combination of
all the individual descriptor sets selected less than 6% of features after feature reduction
and selection steps from the total number of 2648 original features. This combo showed an
improved prediction in 10-fold cross-validation compared to all other combinations with
respect to evaluation metrics ACC, SEN and MCC.

The details of 155 best selected descriptor subsets from combination of all the de-
scriptor sets are given in the supplementary file (Table S3). Most of the selected features
were from the PaDEL descriptor set and belong to auto-correlation, E-state and topological
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descriptors (Table 4). From Chemopy 1&2D, most of the descriptors are E-state and MOE
(Molecular Operating Environment) descriptors. For CDK, topological and Kappa descrip-
tors represented the major part. At last, all the selected RDKit descriptors are constitutional
descriptors.

Table 4. Details of the selected optimal descriptor subset.

Descriptor Set Descriptor Type Total-Type Total-Set % of Selection

PaDEL 1&2D

Autocorrelation Descriptors 46

83 54
E-state Descriptors 13

Topological Descriptors 11
Constitutional Descriptors 11

Others 2

Chemopy 1&2D

MOE-type descriptors 11

37 24E-state Descriptors 11
Autocorrelation Descriptors 10

Others 5

CDK

Topological Descriptors 17

28 18Kappa Descriptors 5
Autocorrelation Descriptors 3

Others 5

RDKit Constitutional descriptors 7 7 4

The Shapeley Additive Explanations (SHAP) technique is adopted to understand the
most important descriptors and their contribution to the model prediction [62,63]. The
SHAP technique is based on the game theory approach and was developed using Python.
Figure 7 shows the summary plot of top 20 descriptors used for training the proposed
SVM model. The SHAP summary plot indicates the relationship between the descriptor
value and its impact on the model prediction. In the violin plot, the red color indicates the
higher feature values and the blue color indicates the lower feature values. The descriptors
are ordered based on their importance. The E-state descriptor “minHsOH” is the primary
feature and it causes either a large positive or large negative in the model outcome and
“maxHBint5” is the next most important descriptor.
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Figure 7. SHAP summary plot displays the distribution of top 20 important descriptors used for
training the proposed model for hepatotoxicity prediction.

3.2.3. Comparison of SVM with Other Classifiers

We evaluated the performance of the SVM classifier built on the final selected optimal
descriptors subset with other conventional supervised learning methods such as Multi-
Layer Perceptron (MLP), Logistic Regression (LR), Random Forest (RF), XG Boosting
(XGB), K-Nearest Neighbor (KNN), Naive Bayes (NB) and Decision Tree (DT) classifier.
The performance evaluation metrics comparison of all classifiers using a 10-fold cross-
validation is shown in Figure 8. The comparison results confirm that the SVM-based
binary classification model is performing better for drug-induced liver toxicity prediction.
Particularly, the accuracy of SVM is 14.2% more than DT, 13% more than NB, 6% more
than KNN, 4.8% more than XGB, 4.3% more than RF, 3.3% more than LR, 2% more than
MLP. The MCC value of the SVM-based model is above 0.6. In addition, the F1-score value
of the proposed SVM-based model is above 0.8, which shows the quality of the binary
classification model using imbalanced data.
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Figure 8. Performance comparison of various classifiers using 10-fold cross-validation.

The most probable random accuracy (RndACC) is calculated from confusion matrix
values for all the models used for performance comparison and all the models reported
in this study have a maximum random accuracy of value 0.5. The difference (∆ACC in
%) between the real model accuracy (ACC) and the random accuracy was also calculated
and used for ranking the models. The descending order ranking of the models based on
this values is SVM, MLP, LR, RF, XGB, KNN, NB, DT classifier. The proposed SVM-based
model has the highest accuracy difference value among all the models used for comparison.
The confusion matrix values (TN, FP, FN & TP) and other evaluation parameter values
(ACC, SPE, SEN, MCC, F1-Score, RndACC& ∆ACC) of the 10-fold cross-validation for
each model used in the comparison is provided in the supplementary file (Table S4).

The comparison of receiver operating characteristic (ROC) curves and precision recall
curves (PRCs) with area under the curve (AUC) values for all the models are shown in
Figures 9 and 10. As depicted from the results, SVM with the Radial Basis Function (RBF)
kernel achieved AUC-ROC of 0.811 and AUC-PRC of 0.860, which are relatively better than
all other methods.
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Figure 9. ROC comparison of different classifiers with corresponding AUC values using 10-fold
cross-validation.
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Figure 10. PRC comparison of different classifiers with corresponding AUC values using 10-fold
cross-validation.

3.3. Performance Comparison with Previous Work

Various QSAR models have been published for drug-induced liver toxicity prediction
by using machine learning algorithms [27–29,31,32,37]. We only selected computational
models that were cross-validated [27,28,32,33] for comparing with our proposed model.
Although the proposed prediction model showed good performance in internal validation,
it is required to perform the external validation to determine the robustness of the SVM-
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based model. In particular, the external validation dataset used in this study did not have
any identical or high structural similarity compounds with the training dataset.

Table 5 shows that the results of cross-validation and external validation set com-
parison between proposed model with the previously published models. The accuracy
of the proposed model is better than the other methods considered for comparison. The
recently published ensemble model [33] yielded an ACC of 0.783, SPE of 0.748, and SEN of
0.818 with the 10-fold cross-validation. These results were improved with our proposed
model, ACC by 2.8%, SPE by 3.5%, SEN by 2.2% and with a good MCC value of 0.623
(MCC was not given in the prior work). The SVM-based proposed model also achieved
good performance compared to the ensemble model in external validation. Thus, the pro-
posed SVM-based model is a promising hepatotoxicity predictor compared to the ensemble
model.

Table 5. Proposed model performance compared with the previously published literature.

Model Name No. of Compounds Test Method ACC SPE SEN

Proposed Model 1253 10-fold CV 0.811 0.783 0.840
208 External Validation 0.756 0.708 0.807

Ensemble Model [33] 1254 10-fold CV 0.783 0.748 0.818
204 External Validation 0.730 0.658 0.773

Ensemble-Top5 [32] 1241 5-fold CV 0.711 0.603 0.799

SVM [27] 978 5-fold CV 0.797 0.585 0.948
88 External Validation 0.750 0.379 0.932

RF [28] 996 10-fold CV 0.65 0.62 0.68
966 External Validation 0.58 0.38 0.75

4. Conclusions

Drug-induced liver toxicity estimation is one of the significant safety related chal-
lenges in the pharmaceutical industry. In this study, we focused on the prediction of
liver toxicity based on computational models using a large and diverse dataset of 1253
unique compounds. We used a total of 2648 molecular descriptors calculated from four
different descriptor sets as modelling features. Initially, null values and highly correlated
features were dropped from the high dimensional feature space, and then feature selec-
tion techniques were applied to select the optimal subset of molecular descriptors for
effective model training. Eight different supervised learning models were constructed
and optimized with the best selected final features and their cross-validation prediction
performance was analyzed. The SVM-based binary classification models utilizing less than
6% of the original features achieved improved performance compared to the other machine
learning models. Moreover, the proposed model demonstrated better performance than
the previous study in 10-fold cross-validation and external validation. It was observed
from the comparison that the extended molecular descriptor feature space could improve
the prediction performance. Meanwhile, the selection of discriminating model features is
also a challenging task to obtain good prediction results. In the future, with great under-
standing of drug-induced liver toxicity mechanisms, we intend to investigate deep learning
architectures using improved dataset considering biological data along with the chemical
structure for improving the hepatotoxicity prediction. Additionally, a large-scale dataset
with standard DILI definition and dose-level information will aid to build an efficient
models for DILI assessment.
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