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ABSTRACT: The cross-electrophile coupling of either twisted-
amides or heteroaryl halides with alkyl halides, enabled by ball-
milling, is herein described. The operationally simple nickel-
catalyzed process has no requirement for inert atmosphere or dry
solvents and delivers the corresponding acylated or heteroarylated
products across a broad range of substrates. Key to negating the
necessity of inert reaction conditions is the mechanical activation
of the raw metal terminal reductant: manganese in the case of
twisted amides and zinc for heteroaryl halides.
KEYWORDS: cross-coupling, nickel catalysis, mechanochemistry, ball-milling, solvent free

■ INTRODUCTION
Over the last half-century, transition-metal-catalyzed cross-
coupling reactions have been delivered from proof of concept
to a staple of organic synthesis, celebrated in 2010 with the
award of the Nobel prize to Heck, Suzuki, and Negishi, for the
development of palladium catalyzed methods.1 The develop-
ment of these processes has required many key breakthroughs
from the community to deliver a versatile methodology
platform capable of permitting the forging of C−C or C−
heteroatom bonds from a very broad selection of input starting
materials.2 In recent years, attention has somewhat shifted to
the implementation of more earth-abundant nickel catalyzed
versions of these reactions.3 Furthermore, in 2010, Weix and
his team pioneered and demonstrated the ability for nickel to
catalyze cross-electrophile coupling (XEC), a complementary
but distinctly different process from palladium-catalyzed cross-
couplings.4 This process involves two electrophilic substrates
such as a C(sp2) aryl halide and a C(sp3) alkyl halide, reacting
to selectively form the cross-coupled product (Scheme 1A). A
key attraction of this approach over traditional cross-coupling
is the avoidance of a nucleophilic reaction component, such as
boronic acids/esters, organozincs or Grignard reagents, which
can cause selectivity issues, reduced functional group tolerance
and often require point-of-use-preparation. However, these
XEC processes are not without their own drawbacks, such as
the need for activation of a reducing species, typically zinc or
manganese, the use of inert glovebox set-ups, the need for long
reaction times, and conditions for selectively forming the
desired heterocoupled rather than homocoupled product.
Mechanochemistry features the use of grinding jars and balls

to elicit chemical reactions and has seen accelerated interest in
recent years in several areas of organic synthesis.5 With regards
to cross-coupling, mechanochemistry has highlighted that

reactions conducted by this method are characterized by
reduced reaction times, reactivity of poorly soluble starting
materials, and circumventing the necessity for inert reaction
setups.6 Additionally, the simple and efficient mechanical
activation of zerovalent metals such as zinc and manganese by
ball-milling has also been demonstrated.7 Most recently,
combining these observations, XEC using zinc or manganese
metal as terminal reductant for a nickel-catalyzed process has
been established employing grinding techniques (Scheme
1B).8 This includes previous work from our group, where
XEC of aryl halides and alkyl halides was successfully carried
out in a mixer ball-mill (Scheme 1B). This work demonstrated
a dramatic reduction in reaction time (2 h vs >16 h in
solution) and the avoidance of both inert reaction conditions
and activation of the reductant (zinc). In addition, the process
is solvent minimized where N,N-dimethylacetamide (DMA) is
used in liquid-assisted grinding (LAG) quantities.9 Encouraged
by this early promise of XEC by ball-milling, we sought to
further elaborate the applicable substrate scope to twisted
amides, leading to the corresponding acyl product series and
heteroaryl halides leading to analogous heteroaryl products.
With regard to twisted amides, their nonplanar structure

allows for exquisite reactivity of an otherwise comparatively
inert carbonyl containing functional group. We note that use of
the term “twisted amides” is somewhat inaccurate for many
examples here which could be more accurately described as N-
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acyl imides. Pioneering work in 2015 by the groups of Szostak,
Garg and Zou demonstrated the powerful electrophilic
capability of a selection of twisted/activated amides for use
with nucleophiles in organic synthesis.10

This has since been applied to several reactions, including
transamidation,11a transesterification,11b and traditional cross-
coupling.11c−k Application of twisted amides to reductive XEC
using N-acyl glutarimide has emerged as a preferred twisted
amide motif owing to a near full orthogonal twist (up to τ =
89.1°) and its facile synthesis.12 However, conventional
solution methods are thus far limited to three studies,
including a photoredox (Ir)/Ni dual catalysis approach.13 A
more direct approach to this class of products could also arise
from the cross-electrophile coupling of acid chlorides or
anhydrides.14

Exploration of the use of twisted amides under ball-milling
conditions was first reported this year by Zhang and Szostak,
demonstrating their participation in palladium catalyzed
Suzuki−Miyaura cross-coupling with boronic acids.15 Upon
implementing our previously successful XEC ball-milling
conditions for both of the substrate classes of interest, it was
found that in the case of the twisted amides, the desired acyl
product could be formed in 10% yield with the major product
of this process returned as the self-coupled product derived
from homocoupling of the alkyl-halide (Scheme 1C). Whereas
for 2-bromopyridine, the desired cross-electrophile coupled
product was delivered in 34% yield, with only a minor amount
of the bipyridine dimer observed. The latter observations
correspond well with the solution processes explored by Weix
and co-workers, where heteroaromatic halides such as
pyridines are not well tolerated under these reaction conditions
and require subsequent and significant development of
different optimal reaction conditions.16 In order to deliver
these substrates as competent input starting materials for the
ball milling XEC process, we set out to develop conditions for
each substrate class, with a focus on the stoichiometry of the

electrophile, the ligand, the reductant, and the metal salt (I, II,
III, IV, Scheme 1C).

■ RESULTS AND DISCUSSION
Our studies into mechanochemical cross-electrophile coupling
of activated amides began by assessing model reaction of N-
benzoyl glutarimide and ethyl 4-bromobutyrate. Highlights of
the optimization studies (see Table S1 in the Supporting
Information for full details) revealed that (1) 2 equiv of alkyl
halide were required for effective cross-coupling, (2)
manganese rather than zinc was much more effective at
delivering cross-coupled product over self-coupled product,
and (3) inclusion of 1 equiv of NaCl was also a key difference
to enable high yields (Scheme 2A). While NaCl has previously
been demonstrated for use as a grinding auxiliary, in this case,
NaCl may have a less innocent role in the reaction with a
direct effect on the catalytic cycle.17 The use of 2 equiv of alkyl
halide was found to be optimal (compared to 1.5 and 2.5 equiv
early in the optimization, Table S1), affording a compromise
between desired cross-coupled product versus homocoupled
side product. The optimized conditions could be reliably
applied to the mechanochemical XEC process leading
selectively to the acylation product with little to no
decarbonylated product seen in any case. A scope of this
reaction process was then devised whereby the tolerance of
each of the reaction components could be explored (Scheme
2A). First, a range of alkyl halides were subjected to the
reaction conditions where simple chain alkyl halides (3b−d,
3f) along with a range functionality was tolerated, including
primary alkyl halides containing a carboxylic ester (3a), nitrile
(3d), protected amine (3e), and distal alkene (3h). Secondary
alkyl halides also proved to be successful under the reaction
conditions, although they required a longer reaction time of 3
h to achieve comparable yields (3i, 3j). Pleasingly, saturated
heterocyclic oxetane (3i, 84%) and piperidine (3j, 64%)
fragments could be introduced using this methodology.
Unfortunately, coupling of tertiary alkyl halides proved to be

Scheme 1. Cross-Electrophile Coupling. (A) Overview. (B) Prior Conditions Developed for Ball-Mill XEC. (C) This Work:
Heteroaryl Products and Acyl Products
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unsuccessful as discovered by the reaction of N-benzoyl
glutarimide with tert-butyl iodide, resulting in no desired
product. With regards to the backbone of the activated amides,
the reductive mechanochemical methodology was shown to be
effective across a range of electronics with electron-poor
amides (3q), electron-rich amides (3m), and electron-neutral
systems (3l, 3n, 3p, 3r) all tolerated in good to excellent yield.
Notably, the sterically hindered ortho-substituted acyl
glutarimide was coupled successfully affording the product in
good yield (3p, 72%). A small range of amides bearing alkyl
chains at the carbonyl were shown to successfully furnish
dialkyl ketones albeit in reduced yield (3t−x). A range of
twisted amides exhibiting a variety of out-of-plane “twist” (τ)

values were examined for application to this newly developed
process (Scheme 2C). The results show a clear correlation
between torsional twist and product yield. Amides bearing
glutarimide functionality have a very high twist of 87.5° and
this affords the highest product yield (1aa, 72%). From here,
decreasing the N−C(O) bond twist gave decreasing yields
through di-tert-butylcarbonate amide 1ab (72.6°, 68%), N-acyl
succinimide 1ac (46.1°, 52%), TMP-amide 1ad (34.1°, 15%),
and N-Ph,Boc amide 1ae (31°, 12%).
N-Acyl imidazole 1af afforded no product upon attempted

coupling, suggesting oxidative insertion did not occur. While
the torsional twist for this amide is not exact, it is estimated to
be around 7°.18 From the results, it is clear that with a decrease

Scheme 2. Mechanochemical XEC of Twisted Amides, Optimization, Substrate Scope, and Scale-up
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in torsional twist, a decrease in activation occurs, and
subsequently, a reduction in yield is observed with a rotational
limit for this mechanochemical protocol lying between 7° (1af,
acyl imidazole) and 31° (1ae, N-Ph,Boc). An example of this
reaction was also scaled up to 6 mmol (12-fold), delivering the
cross coupled product with versatile carbonyl functionality on
a gram scale (3l, 75%, Scheme 2D).
Next, we turned attention to developing the avenue of ball-

milling enabled cross-electrophile coupling of heteroaryl
halides. Heteroaryl substrates present a particular problem
when they contain coordinating nitrogen atoms which can tie-
up/inhibit/slow-down catalysis. Our studies began by assessing
model reaction of 2-bromopyridine and 1-iodooctane. High-
lights of the optimization studies (see Table S3 in the
Supporting Information for full details) revealed that (1) 2
equiv of alkyl halide were required for effective cross-coupling,
(2) utility of amidine ligand (L1, Scheme 3A), led to
significantly improved performance,16,19 (3) alteration of the
workup process to incorporate 5% ammonium hydroxide was
imperative for reproducibility in product isolation. The use of 2
equiv of alkyl halide in this instance (compared to 1.5 and 3.0

equiv early in the optimization, Table S2), affords the best
conversion to cross-coupled product. Assessment of the metal
to ligand ratio identified that 1:2 rather than 1:1 or 1:4, led to
the greatest yields of the desired product (see Table S2). With
optimal conditions in hand, the model target product (5aa)
could be reliably prepared in 72% isolated yield, and so
application of these conditions to a broader substrate scope
was explored. Initially, a variety of pyridines, substituted at the
5-position were reacted with 1-iodooctane under the optimized
conditions, providing a total of nine further analogues (5ab−
5aj) to the model reaction product (5aa) in moderate to good
yields.
This included tolerance for electron-withdrawing trifluor-

omethyl (5ae) and cyano (5ad) groups, along with electron-
donating methoxy (5ah) and acetamido (5aj) groups. A
chloride-substituted bromopyridine was also tolerated (5af),
chemoselectively reacting at C−Br, opening the possibility for
further subsequent functionalization. Gratifyingly, a free
hydroxyl (5ag) and a free amine (5ai) were also tolerated,
albeit in lower yield. In lower yielding instances, such as these,
homocoupling and protodebromination of the heteroaromatic

Scheme 3. Mechanochemical XEC of Heteroaryl Bromides, Optimization, Substrate Scope, Scale-up, Solution Comparisons,
and Reductants
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halide are observed as byproducts. Following this, a range of N-
heteroaromatic bromides were tested under the optimized
conditions; however, the alkyl halide coupling partner was
altered to ethyl 4-bromobutyrate to provide more synthetically
versatile products. In this case, it was found that 2 equiv of
sodium iodide were required to improve product yields (see
Supporting Information, Table S4 for details). To this end,
products of 3-bromopyridine (5l), 4-bromopyridine (5m), 5-
and 2-bromopyrimidine (5n and 5o), 2-bromopyrazine (5p),
3-bromoquinoline (5q), and a free indole (5r) were
successfully formed in moderate to good yields. The scope
of alkyl halides was also assessed, revealing that a wide variety
of functionalized alkyl bromides and iodides could be
tolerated. These include a fluorinated homobenzyl substrate
(5d), phthalimide (5i), cyclic alkyl halides including cyclohexyl
(5j) and oxetane (5f), terminal alkene (5e), and neopentyl
(5k), although in the latter two cases acetamido substituted
pyridine was used to combat volatility issues encountered with
2-bromopyridine. Synthetically useful benzoate ester substi-
tuted pyridine (5g) and N-tert-butyloxycarbonyl- (Boc)
protected amine (5h) were tolerated, albeit in reduced yields.
The latter of which is closely related to Betahistine, used to
treat Meńier̀e’s disease. It was also demonstrated that the
reaction could be scaled 20-fold (0.3 to 6 mmol), affording 730
mg of pyrimidine coupled product 5n in 62% yield (Scheme
3B). 2-Iodopyridine and 2-chloropyridine were also suitable
coupling partners, providing the cross-coupled product with
iodooctane in 36% and 31% (NMR yield); a marked
improvement on our previous attempts at aryl chloride
coupling.8a Additional studies included investigations into the
influence of the reductant form and comparison to solution

reaction conditions. Solution comparison studies included a
room temperature reaction under an air atmosphere for 16 h
(conditions A, Scheme 3C), room temperature reaction under
a nitrogen atmosphere for 16 h (conditions B, Scheme 3C),
and a 60 °C reaction under a nitrogen atmosphere for 16 h
(conditions C, Scheme 3C). Conditions A, the most
comparable to our ball-milled process, only led to 5% NMR
yield of 5aa product after 16 h. Conditions B led to 31% NMR
yield of product and conditions C, the most comparable to
Weix and co-workers’ conditions, led to 67% NMR yield of
product. While not a 1:1 comparison with solution-phase
reports, the comparable yield achieved with conditions C
validates these conditions as competent also for a solution-
phase approach.16,20 Notably, application of solvent conditions
C to N-acyl imide substrates led to relatively poor reaction
performance. These results highlight the potential operational/
protocol improvements that the ball-milled process can achieve
over solution-based processes. Applying the developed ball mill
conditions to a variety of zinc forms (including moss, flakes,
wire, and foil), identified that all forms could effectively
participate in this reaction process.
Equally, manganese could be utilized as the reductant, with

manganese pieces proving to be more successful than the
powder form. The organic reductant tetrakis(dimethylamino)-
ethylene (TDAE) was unsuitable in this process.
A summary of key control experiments are shown in Scheme

4A. In the case of N-acyl imide (1aa), the experiments show
that the nickel catalyst, manganese reductant, DMA LAG, and
sodium chloride are all imperative for effective reaction, and in
the absence of any of these, the reaction performance
significantly drops. Furthermore, 1 h reaction time is

Scheme 4. Control Experiments for the Mechanochemical XEC of Heteroaryl Bromides and N-Acyl Imides
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insufficient for complete consumption of starting materials.
Control experiments with 2-bromo pyridine (Scheme 4A), also
demonstrate that the nickel catalyst, zinc reductant, and DMA
LAG are essential for the reaction process. In the absence of
both DMA LAG or the ligand, the reaction is significantly
poorer for the desired product but also loses selectivity versus
homocoupling of pyridine, leading to 2,2’bipyridine. As an
additional control experiment, the reaction process was
reproduced in a planetary mill with jars and balls fabricated
from zirconia (ZrO2, Scheme 4B). In this experiment, the XEC
product was formed in 32% yield, which is a significant drop
from the stainless steel mixer mill protocol (72%); however,
given that planetary milling imparts reduced impact forces to
the reaction mixture, we interpret this as good evidence that
stainless steel is not critical for an effective reaction. We have
also explored the reaction under active heating (Scheme 4C).
Milling pyridine 4a and alkylhalide 2a at room temperature
(i.e., with no temperature control) for 30 min delivered the
product (5b) in 49% NMR yield, whereas milling for 30 min
with the heating device set to 80 °C returned a 60% NMR
yield.
From a mechanistic perspective the understood solution

based mechanism for both of the substrate classes describes a
single electron transfer for the activation of the alkyl halide (as

seen through much of Weix’s work).4g However, given the
change of reactor technology and absence of bulk solvent, in
situ generation of organozinc or organomanganese intermedi-
ates and subsequent reaction with active Ni(II) species may be
possible by the direct reaction of Zn(0) or Mn(0) with the
alkyl bromide partner. Previous work has shown that the
generation of organozinc reagents from alkyl halides and zinc
metal, using ball-milling, is possible (Scheme 4D).7d To
explore this for the use of manganese, milling just the alkyl
halide (2c) with Mn and DMA for 4 h followed by an acid
quench led to a 31% NMR yield of the hydrolyzed compound
(2ca, Scheme 4D).
This result demonstrates that the formation of an organo-

manganese intermediate is possible under these reaction
conditions, also, which is in agreement with previous
reports.6c,7a To probe this mechanistic aspect further, cyclo-
propylmethyl bromide (2l) was used as the alkyl halide
substrate, whereby formation of the rearranged product (i.e.,
ring-opened cyclopropyl) could suggest radical intermediates
are present, due to the large rate constant associated with this
process (Scheme 5A). In both systems presented here, the
rearranged products 3yb and 5t were formed exclusively (67%
for the N-acyl imide and 49% for the heteroaromatic
substrates) and none of the unrearranged products were

Scheme 5. Control Experiments for the Mechanochemical XEC of Heteroaryl Bromides and N-Acyl Imides
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observed. However, it should be noted that the rearranged
products could alternatively arise from ring opening of
cyclopropylmethyl bromide (2l) by action of activated zinc
metal.21 Such an intermediate could then participate in a
traditional Negishi cross-coupling process. Radical trapping
experiments using two equivalents of either 2,2,6,6-tetrame-
thylpiperidine-1-oxyl (TEMPO) or butylated hydroxy-toluene
(BHT) were carried out in both substrate sets (Scheme 5B). In
the experiments using TEMPO, the adduct arising from the
interception of the alkyl halide (from both 2a and 2b) could be
observed by low resolution-mass spectrometry (LR-MS,
included in the SI file). Perhaps even more significant was
the absence of any XEC derived product from these reactions,
suggesting that intercepting the alkyl radical shuts-down the
reaction process leading to the XEC product. However, it is
possible that these adducts could arise from single-electron
reduction of the TEMPO radical to the N-oxide species,
followed by an SN2 reaction onto the alkyl halides. The
experiments involving BHT led to reduced yields in both
systems (17% by NMR for twisted amides and 54% by NMR
for heteroaryl), which could suggest suppression of the radical
pathway of the reaction. It is noted that addition of either
TEMPO or BHT alters both the filling degree and the
rheology of the materials in the jar, and this could play a part in
rendering the process ineffective (specifically transmission of
mechanical energy). These combined observations suggest that
the mechanochemical protocol operates either via a radical-
chain mechanism analogous to that described for solution-
based XEC reactions, or a Negishi-type mechanism via organo-
zinc or manganese intermediates (Scheme 5C).

■ CONCLUSION
In conclusion, nickel catalyzed cross-electrophile coupling can
be readily achieved using ball-milling conditions, where the
mechanical action of impact and grinding of the balls and jars
against the sample, specifically the zero-valent metal reagent
(manganese or zinc), is sufficient for an operationally more
simplified process. In the case of twisted amides, optimal
conditions (those with minimized homocoupling) require
manganese, NaCl as a solid additive and are applicable to a
range of out of plane twists (τ > 31°). Whereas for the
heteroaryl halide coupling, an amidine ligand and zinc are
imperative for an effective protocol. Both sets of conditions can
be scaled to yield ∼1 g of product, and these reaction processes
appear to proceed either in a manner similar to that
rationalized in solution (i.e., via a single electron radical
pathway) or via a Negishi-type pathway.
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