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Abstract. Myosin II heavy chain (MHC)-specific pro- 
tein kinase C (MHC-PKC) isolated from the ameba, 
Dictyostelium discoideum, regulates myosin II assembly 
and localization in response to the chemoattractant 
cAMP (Abu-Elneel et al. 1996. J. Biol. Chem. 271:977- 
984). Recent studies have indicated that cAMP-induced 
cGMP accumulation plays a role in the regulation of 
myosin II phosphorylation and localization (Liu, G., 
and P. Newell. 1991. J. Cell. Sci. 98: 483-490). This re- 
port describes the roles of cAMP and cGMP in the reg- 
ulation of MHC-PKC membrane association, phospho- 
rylation, and activity (hereafter termed MHC-PKC 
activities), cAMP stimulation of Dictyostelium cells re- 
sulted in translocation of MHC-PKC from the cytosol 
to the membrane fraction, as well as increasing in 
MHC-PKC phosphorylation and in its kinase activity. 
We present evidence that MHC is phosphorylated by 
MHC-PKC in the cell cortex which leads to myosin II 

dissociation from the cytoskeleton. Use of Dictyostel- 
ium mutants that exhibit aberrant cAMP-induced in- 
creases in cGMP accumulation revealed that MHC- 
PKC activities are regulated by cGMP. Dictyostelium 
streamer F mutant (stmF), which produces a prolonged 
peak of cGMP accumulation upon cAMP stimulation, 
exhibits prolonged increases in MHC-PKC activities. In 
contrast, Dictyostelium KI-10 mutant that lacks the nor- 
mal cAMP-induced cGMP response, or KI-4 mutant 
that shows nearly normal cAMP-induced cGMP re- 
sponse but has aberrant cGMP binding activity, show 
no changes in MHC-PKC activities. We provide evi- 
dence that cGMP may affect MHC-PKC activities via 
the activation of cGMP-dependent protein kinase 
which, in turn, phosphorylates MHC-PKC. The results 
presented here indicate that cAMP-induced cGMP ac- 
cumulation regulates myosin II phosphorylation and lo- 
calization via the regulation of MHC-PKC. 

C 
AMP stimulation of the ameba Dictyostelium gener- 

ates a number of responses such as increase in 
cGMP accumulation (26, 46), influx of Ca 2÷ (1, 6), 

production of inositol phosphates (13), changes in the 
amount of filamentous actin (15), changes in the phosphor- 
ylation rates of myosin II heavy chain (MHC) 1 and light 
chains (MLC) (4), and changes in cell movement and 
spreading (38, 43). 

Studies on mutants lacking normal myosin II have indi- 
cated that it is not required for cell motility. It is, however, 
needed for efficient chemotaxis, and myosin II is thought 
to be involved in the regulation of cell polarity (45). Sev- 
eral lines of evidence have shown a correlation between 
myosin II reorganization, phosphorylation, and Dictyostel- 
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ium chemotaxis (4, 24, 29, 47). In response to cAMP, the 
myosin II that exists as thick filaments translocates to the 
cortex (47). This translocation is correlated with a tran- 
sient increase in the phosphorylation rates of both MHC 
and MLC (3, 4). It has therefore been suggested that 
cAMP-induced myosin II phosphorylation responses are 
part of the chemotactic sensing mechanism (3, 29). 

In Dictyostelium, at least four different MHC kinase 
(MHCK) activities have been purified partially or almost 
to homogeneity (for review see 40). In vitro phosphoryla- 
tion of MHC by some of these kinases inhibits myosin II 
thick filament formation ( 8, 18, 33, 34). We have isolated 
a novel protein kinase C (MHC-PKC) that phosphorylates 
Dictyostelium MHC specifically (34, 35). In vitro phosphor- 
ylation of MHC by this kinase inhibits myosin II thick fila- 
ment formation by inducing the formation of a bent mono- 
mer of myosin II whose assembly domain is tied up in an 
intramolecular interaction that precludes the intermolecu- 
lar interaction necessary for thick filament formation (33, 
34). The MHC-PKC that is expressed during Dictyostel- 
ium development has been implicated in the observed in- 
crease in MHC phosphorylation in response to cAMP 
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(34). Recently, we found that elimination of MHC-PKC 
results in the abolishment of this cAMP-induced MHC 
phosphorylation, indicating that MHC-PKC is the enzyme 
that phosphorylates MHC in response to cAMP (2). 
MHC-PKC null cells exhibit substantial myosin II overas- 
sembly in vivo, as well as aberrant cell polarization, 
chemotaxis, and morphological differentiation. Cells that 
overexpress MHC-PKC contain highly phosphorylated 
MHC, exhibit impaired myosin II localization, and have 
no apparent cell polarization and chemotaxis (2). These 
findings establish that, in Dictyostelium, the MHC-PKC 
plays a critical role in regulating the cAMP-induced myo- 
sin II localization required for cell polarization and, conse- 
quently, for efficient chemotaxis. 

Recent studies have indicated that cAMP-induced accu- 
mulation of cGMP contributes to regulating myosin II phos- 
phorylation and localization (21, 22, 23). The Dictyostel- 
ium streamer F mutant (stmF) is defective in the structural 
gene for cGMP-specific phosphodiesterase and shows pro- 
longed cAMP-induced cGMP accumulation that corre- 
lates with a prolonged period of cell elongation during cell 
chemotaxis (9, 36, 42). A study of the cytoskeleton in this 
mutant revealed that association of myosin II with the Tri- 
ton X-100-insoluble cytoskeleton and phosphorylation of 
MHC were also prolonged (22, 23). Liu et al. (21) further 
investigated the effect of cGMP on MHC phosphorylation 
and association with the Triton-insoluble cytoskeleton in a 
Dictyostelium KI-10 mutant that lacks the normal cAMP- 
induced cGMP accumulation, and in which chemotaxis to- 
wards cAMP does not occur (19). It was shown that in this 
mutant the cAMP-induced localization and phosphoryla- 
tion of myosin II are absent (21). 

In the present study we investigated the possibility that 
cGMP regulates myosin II via the regulation of MHC- 
PKC. For this purpose we characterized the behavior of 
MHC-PKC in the cGMP-aberrant mutant cell lines stmF, 
KI-10, and KI-4. A comparison of the kinetics of the 
cAMP-induced changes in MHC-PKC membrane associa- 
tion, phosphorylation, and in activity of control and mu- 
tant cells revealed that these changes are prolonged in the 
stmF mutant and fail to occur in KI-10 and KI-4 mutants. 
We show further that MHC-PKC is phosphorylated by a 
cGMP-dependent protein kinase, which may regulate its 
activities. 

Materials and Methods 

Cell Culture and Development 
Growth and development in suspensions of Dictyostelium discoideum 
strain Ax2 cells were as described (4). Dictyostelium discoideum parental 
strain XP55, streamer mutants NP368 and NP377 derived from XP55 
(36), and the nonchemotactic mutants KI-10 and KI-4 (19) were grown in 
shaken suspension in association with Escherichia colt B\r in 17 mM Na+/ 
K + phosphate buffer, pH 6.0. Ameba were harvested from the bacterial 
growth flasks at a density of less than 5 x 106 cells/ml, washed free of bac- 
teria in MES buffer (20 mM MES [pH 6.8], 0.2 mM CaCI2, 2 mM MgSO4), 
and resuspended at a density of 2 X 107 cells/ml to initiate development. 
Cells were shaken at 100 rpm at 22°C for 3.5 hr and treated with caffeine 
(4) before use. 

Expression of MHC-PKCAST 
All DNA manipulations were carried out using standard methods (37). 
Brief description of the plasmid construct is given below, full details will 

be given elsewhere (Dembinsky, A., H. Rubin, and S. Ravid, manuscript 
submitted for publication). The vector pDXA-HY contains the actin-15 
promoter and allows the expression of proteins carrying a NH2-terminal 
His-tag (25). pDXA-MHC-PKCAST was constructed as follows: the vec- 
tor pBS-MHCK (35) contains a 2.6-kb MHC-PKC cDNA clone was di- 
gested with Smal and SwaI that deleted a coding region at the 3' end of 
MHC-PKC resulting in the deletion of a cluster of 21 serine and threonine 
residues which are the MHC-PKC autophosphorylation sites (Dembinsky 
A., H. Rubin, and S. Ravid, manuscript submitted for publication), the re- 
suiting MHC-PKC fragment was named MHC-PKCAST. The MHC- 
PKCAST was cloned into pDXA-HY digested with SmaI. pDXA-MHC- 
PKCAST was used for the transformation of MHC-PKC null cells (2) us- 
ing calcium phosphate precipitate (12) and the clones were selected on the 
basis of their resistance to G418 (Boehringer-Manneim Biochemicals, Indi- 
anapolis, IN). 

Purification of His-tagged MHC-PKCAST 
50 ml of 2 x 10 ~ cells/ml expressing MHC-PKCAST were washed twice in 
20 mM phosphate buffer (pH 6.5) and the cells were lysed in 1 ml lysis 
buffer containing 20 mM Hepes (N-2-hydroxyethylpiperazine-N'-2- 
ethanesulfonic acid) (pH 7.5), 1% Triton, 0.2% NP-40, 200 mM KC1, 5 mM 
[3-mercaptoethanol, 2 mM PMSF, 200 p.M leupeptin, and 200 ~M pepsta- 
tin. The extracts were centrifuged in a microfuge for 15 min at 4°C and the 
supernatant was incubated with 50 ~l of a slurry of Ni+-agarose beads 
(Qiagen Inc. Chatworth, CA) in 20 mM phosphate buffer (pH 6.5) and 
200 mM KCI for 1 h at 4°C. The bead-protein complex was washed three 
times with lysis buffer, twice with lysis buffer containing 20 mM imidazole, 
and twice with lysis buffer containing 50 mM imidazole. The MHC- 
PKCAST was eluted with 100 }xl of lysis buffer containing 150 mM imida- 
zole and then eluted with 100 ~l of lysis buffer containing 250 mM imida- 
zole. 

Preparation of MHC-PKC Antibody-Staphylococcus A 
Cell Mixture 
50 Ixl of Staphylococcus A (Sigma Chemical Co., St. Louis, MO) that had 
been washed three times in 1x lysis buffer (see below) plus l mg/ml BSA 
were added to 50 ml MHC-PKC antibody (35) and incubated at 4°C on a 
rotator for at least 30 min before the addition of cell lysate. 

Phosphorylation 
32p labeling and cAMP stimulation of Dictyostelium amebas and immuno- 
precipitation of 32p-labeled MHC from cell lysates were carried out ac- 
cording to the method of Berlot et al. (4). To immunoprecipitate the 32p_ 
labeled MHC-PKC from cell lysates, developed cell suspension containing 
up to 5 × 106 cells/ml were added to an equal vol of ice-cold 2× lysis 
buffer (40 mM Tris-Cl [pH 7.5], 0.2% NP-40, 2 mM DTT, 10 mM EDTA, 
2 mM PMSF, 200 ~M leupeptin, 200 ~xM pepstatin, 50 mM sodium pyro- 
phosphate, 200 mM NaF, 2 mM ATP, and 200 mM potassium phosphate 
[pH 7.5]) and centrifuged for 5 min in a microcentrifuge at 4°C. The super- 
natants were added to preadsorbed MHC-PKC antibody-Staphylococcus 
A cell mixture prepared as described above and incubated for at least 1 h 
at 4°C with rotation. The samples were centrifuged in a microcentrifuge 
and the pellets resuspended in 1 ml of l x  lysis buffer with 1 mg/ml BSA. 
The pellets were washed twice with 1× lysis buffer with 1 mg/ml BSA and 
then once with 1 ml 1× lysis - BSA, resuspended in SDS sample buffer 
and boiled for 5 min. The supernatants from a microcentrifuge spin were 
loaded on sodium dodecyl sulfate-polyacrylamide gels (SDS-PAGE). 
Densitometric scanning of the Coomassie blue-stained gels was used to 
determine the relative amounts of immunoprecipitated MHC and MHC- 
PKC and the amounts of 32p incorporated into MHC and MHC-PKC were 
determined using autoradiography and Phosphorimaging with a bioimage 
analyzer (Bas2000; Fuji Co., Tokyo, Japan). Relative phosphorylation of 
MHC and MHC-PKC were determined by dividing the values obtained 
with the PhosphorImager by the values obtained by scanning of the Coo- 
massie blue-stained gels. 

Phosphorylation of MHC-PKCAST in response to cGMP stimulation 
was carried out as follows: cells were developed in MES buffer as de- 
scribed above, t00-1xl aliquots of developed cells were withdrawn and 
added to 100 Ixl of a reaction mixture containing 0.2% Triton X-100, 2 mM 
MgClz, 7.5 mM Tris-HC1 (pH 7.5), 20 p.M 3'-[3zp]ATP, and cGMP (20 
pmol per 107 cells), the mixture was incubated for 10 min at room temper- 
ature. Reactions were stopped by the addition of equal vol of 2x lysis 
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buffer and the phosphorylated MHC-PKCAST was isolated using Ni ÷- 
agarose beads as described above. The bead-protein complex was ana- 
lyzed by SDS-PAGE, autoradiography, and Phosphorimaging as de- 
scribed above. 

Triton-resistant Cytoskeleton Analysis 
Triton-insoluble cytoskeleton analysis was performed as described previ- 
ously (11). Supernatant and cytoskeletal pellet fractions were resuspended 
in SDS-PAGE sample buffer, boiled for 5 min, and electrophoresed on 
7% SDS-PAGE gels. The relative amounts of myosin II were determined 
by SDS-PAGE gel analysis as described above. 

Biochemical Analysis of MHC-PKC Distribution 
After resuspension of 107 developed cells in 1 ml of sonication buffer 
(10 mM Tris-HC1, pH 7.5; 50 mM KCI, 2 mM PMSF, 200 IxM leupeptin, 
200 IxM pepstatin), they were stimulated with 1 /J.M cAMP and lysed by 
sonication using an ultrasonic cell disruptor (XL; Misonix Inc. Framing- 
ton, NY) XL with a small-sized tip at 50% output power, and the extract 
was spun in a microcentrifuge for 20 min at 4°C. The soluble fraction im- 
munoprecipitated with MHC-PKC antibody as described above. MHC- 
PKC was extracted from the insoluble fraction using sonication buffer 
containing 0.5 M KCI, the extract was spun in a microcentrifuge for 10 min 
at 4°C, and the solubilized MHC-PKC was immunoprecipitated as de- 
scribed above. To quantify the amounts of MHC-PKC in the soluble and 
insoluble fractions the immunoprecipitated MHC-PKC from both frac- 
tions was electrophoresed on 7% SDS-PAGE gels and the Coomassie 
blue-stained gels were analyzed as described above. 

MHC-PKC Activity 
MHC-PKC activity was assayed by two methods. In the first method, 
MHC-PKC was immunoprecipitated from the soluble and insoluble frac- 
tions as described above and the immunoprecipitates were incubated with 
LMM58 (0.5-1 mg/ml), 6 mM MgCl2, 0.2 mM [-/-32p]ATP (500 cpm/pmol), 
1 mM DTT for 10 min at 22°C on a rotator. Reaction was initiated by the 
addition of ATP and stopped by spinning out the Staphylococcus A cell 
mixture containing the MHC-PKC and adding of 5% trichloroacetic acid 
to the supernatant to precipitate the LMM58. The precipitated LMM58 
were pelleted in a microcentrifuge after incubation for 10 min on ice, 
washed twice with 5% TCA, resuspended in 20 Ixl of SDS sample buffer, 
and electrophoresed on 7% SDS-PAGE gels. To determine incorporation 
of 32p into LMMSg, bands corresponding to LMM58 were cut out of the 
Coomassie blue-stained gels and counted in a scintillation counter in 5 ml 
of scintillation fluid. The amounts of MHC-PKC immunoprecipitated 
from the different cell fractions were determined using densitometric 
scanning of the Coomassie blue-stained gels and normalized to the total 
amount of protein determined as described (5). 

In the second method, MHC-PKC-specific activity was assayed directly 
on the kinase extracted from the insoluble cell fraction. After resuspen- 
sion of 107 developed cells in 1 ml of sonication buffer, cells were lysed by 
sonication as described above, and the extract was spun for 20 min at 4°C. 
MHC-PKC was extracted from the insoluble fraction using sonication 
buffer containing 0.5 M KCI, and the crude kinase was assayed for its ac- 
tivity as described above. Protein concentration was determined as de- 
scribed (5). The effect of cGMP on MHC-PKC activity was assayed after 
lysis of the cells using the Microson, as described above, in sonication 
buffer containing 20 pmoL cGMP per 107 cells. MHC-PKC was extracted 
from the insoluble fraction and assayed for kinase activity as described 
above. The effect of the cGMP-dependent protein kinase inhibitor KT5823 
on MHC-PKC activity was assayed as follows: Ax2 cells at lx106 cells/ml 
were grown in HL5 containing 12.5 nM KT5823 (Calbiochem Corp., La 
Jolla, CA) for 24 h. Cells were developed in MES buffer as described 
above in the presence of 12.5 nM KT5823, and MHC-PKC was extracted 
from the insoluble fraction of the cells and assayed for kinase activity as 
described above. 

Phosphorylation by cGMP-dependent Protein Kinase 
MHC-PKC was immunoprecipitated from 5 x 106 developed Ax2 cells, 
and the His-tagged MHC-PKCAST was purified as described. To block the 
autophosphorylation sites of MHC-PKC, the protein was preincubated in 
40 mM Tris-HCl [pH 7.5] containing 0.2 mM ATP and 6 mM MgCI2 for 30 
rain at 30°C in a shaking water bath. To this was added [~-32p]ATP (500 

cpm/pmol), 300 U cGMP-dependent protein kinase (Promega Corp., 
Madison, WI) and 2 IsM cGMP, and the mixture was incubated for 10 rain 
at 30°C in a shaking water bath. Samples were pelleted in a microcentri- 
fuge and resuspended in 1 ml of sonication buffer followed by three 
washes with 1 ml of sonication buffer. The pellets were resuspended in 
SDS-PAGE sample buffer and boiled for 5 min. The supernatants from 
a microcentrifuge spin were then loaded on SDS-PAGE gels. Gels were 
analyzed using autoradiography and Phosphorimaging, as described 
above. Phosphorylation of MHC-PKCAST by cGMP-dependent protein 
kinase was done with Ni+-agarose purified MHC-PKCAST (see above) 
and carried out as described for MHC-PKC except for the preincubation 
with ATP. 

Results 

MHC Is Phosphorylated at the Cell Cortex by 
MHC-PKC in Response to cAMP 

In previously reported experiments (4), cAMP stimulation 
of Dictyostelium Ax3 cells led to increases in phosphoryla- 
tion of MHC in vivo and in vitro. The observed rates of phos- 
phorylation coincided with the association of myosin II with 
the Triton-insoluble cytoskeleton (3). We have recently 
shown that MHC-PKC is the kinase that phosphorylates 
MHC in response to cAMP stimulation (2). To determine 
whether the effects of cAMP on MHC phosphorylation 
and localization are exerted via its regulation of MHC- 
PKC, we studied the kinetics of MHC phosphorylation 
and Triton insolubility in response to cAMP stimulation, 
and compared them with the kinetics of cAMP-induced 
MHC-PKC membrane association, phosphorylation, and 
kinase activity. To examine the phosphorylation of MHC 
in response to cAMP stimulation, we immunoprecipitated 
myosin II from caffeine-treated cAMP-stimulated 32P-labeled 
Dictyosteliurn Ax2 strain (see Materials and Methods). 
To examine the Triton-insolubility properties of myosin 
II, we isolated caffeine-treated, cAMP-stimulated, actin-en- 
riched Triton-insoluble cytoskeletons (see Materials and 
Methods). 

We found that in response to cAMP stimulation, MHC 
was transiently associated with the Triton-insoluble cy- 
toskeleton and phosphorylated (Fig. 1 A). These results 
are similar to those obtained for Dictyostelium Ax3 strain 
(3). The phosphorylation of MHC occurred later than the 
association of the myosin II with the cytoskeleton, so that, 
when the association was half completed (Fig. 1 A, 20 s 
point) the phosphorylation had scarcely begun. The peaks 
of phosphorylation and association are however coinci- 
dent (Fig. 1 A, 40 s point). These results may indicate that 
the MHC phosphorylation occurs in the cell cortex. Myo- 
sin II dissociation from the cytoskeleton is correlated with 
highly phosphorylated MHC; 50 s after cAMP stimulation, 
myosin II association with the cytoskeleton returned to its 
basal level, while the MHC contains 76% of the maximum 
amount of phosphate obtained 40 s after cAMP stimula- 
tion. These findings, along with our recent observation 
that the membrane-associated MHC-PKC phosphorylates 
MHC in response to cAMP (2), indicate that MHC is first 
associated with the cytoskeleton and is then phosphory- 
luted at the cell cortex by MHC-PKC which results in my- 
osin II dissociation from the cytoskeleton. 

In mammalian cells, activation of PKC results in its 
translocation from the cytosol to the particulate fraction, 
apparently as part of the activation process (31). It was 
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Figure 1. cAMP induces changes in myosin II and MHC-PKC 
behavior. In A, aliquots of a developed and caffeine-treated cell 
suspension were removed before and after stimulation with 1 ~M 
cAMP, added to ice-cold Triton mixture, and centrifuged as de- 
scribed in Materials and Methods. Percent of insoluble MHC was 
determined by quantitating the amounts of MHC in the pellets 
and in the supernatants using densitometric scanning of the Coo- 
massie blue-stained gels,  and calculating the ratio of the amount 
of MHC in the pellet to the total amount of MHC for each time 
point. The rate of MHC phosphorylation was determined by im- 
munoprecipitation of MHC from 32p-labeled cells and its quanti- 
tation using the Phosphorlmager as described in Materials and 
Methods. The relative phosphorylation rate is the ratio of the 
rate of MHC phosphorylation measured in vivo at a given time 
after cAMP stimulation to the mean rate of MHC phosphoryla- 
tion measured in vivo before cAMP stimulation. In B, aliquots of 
developed cell suspensions were removed before and after stimu- 
lation with l ~xM cAMP, lysed by sonication, and centrifuged as 
described in Materials and Methods. Percent of membrane-asso- 
ciated MHC-PKC was determined by quantitating the amounts 
of MHC-PKC immunoprecipitated from the pellets and from the 
supernatants using densitometric scanning of the Coomassie 
blue-stained gels, and calculating the ratio of the amount of 
MHC-PKC in the pellets to the total amount of MHC-PKC for 
each time point. The rate of MHC-PKC phosphorylation was de- 
termined by immunoprecipitation of MHC-PKC from riP-labeled 
cells lysed in NP-40 mixture as described in Materials and Meth- 
ods, and its quantitation by the Phosphorlmager. The relative 
phosphorylation rate is the ratio of the rate of MHC-PKC phos- 
phorylation measured in vivo at a given time after cAMP stimula- 
tion to the mean rate of MHC-PKC phosphorylation measured in 
vivo before cAMP stimulation. MHC-PKC-specific activity was 
determined by lysing cAMP-stimulated cells by sonication, ex- 
tracting of the MHC-PKC from the pellet and subjecting to kinase 

therefore of interest to determine whether cAMP stimula- 
tion affects the cell localization properties of MHC-PKC. 
For this purpose, Ax2 cells were developed, treated with 
caffeine, stimulated with cAMP, and lysed by sonication, 
and MHC-PKC was immunoprecipitated from the soluble 
and the insoluble fractions using specific MHC-PKC poly- 
clonal antibody, as described in Materials and Methods. 
As shown in Fig. 1 B, before cAMP stimulation ,--~30% of 
the MHC-PKC was to be found in the insoluble fraction, 
whereas cAMP stimulation was followed by a rapid tran- 
sient association of up to 58% of the MHC-PKC with the 
membrane fraction. These results indicate that MHC-PKC 
translocated to the membrane in response to cAMP stimu- 
lation. The association of MHC-PKC with the membrane 
preceded the association of myosin II with the cytoskele- 
ton and its phosphorylation, such that, when the associa- 
tion of MHC-PKC was half completed (Fig. 1 B, 10 s 
point), the myosin II  cytoskeletal association and phos- 
phorylation had barely begun. Association of MHC-PKC 
with the membrane peaked ~40 s after cAMP stimulation, 
similar to myosin II cytoskeletal association and phosphor- 
ylation (Fig. 1 A). 

To determine the effect of cAMP stimulation on MHC- 
PKC phosphorylation, MHC-PKC was immunoprecipi- 
tated from cAMP-stimulated 32p-labeled Ax2 cells as de- 
scribed in Materials and Methods. MHC-PKC undergoes 
autophosphorylation as a result of an intramolecular 
event, with each mole of the kinase incorporating ~20 
mole of phosphate (34). Autophosphorylation of mamma- 
lian PKC, as well as of the Dictyostelium 130-kD-MHCK, 
has been shown to increase their activity (27, 28). In addi- 
tion to the autophosphorylation mechanism, it is apparent 
from the MHC-PKC sequence that it contains several po- 
tential phosphoryl ation sites for kinases such as cAMP- 
and cGMP-dependent protein kinases (35). The term 
MHC-PKC phosphorylation used here describes the sum 
of both types of phosphorylations. Fig. 1 C shows an im- 
age, obtained from the Phosphorlmager, of immunopre- 
cipitated 32p-labeled MHC-PKC from a typical experi- 
ment. The immunoprecipitated MHC-PKC migrated on 
SDS-PAGE gel as a band with an apparent molecular 
mass of 84-90 kD. The differences in MHC-PKC migra- 
tion rates reflect different extents of its phosphorylation, 
as shown in Fig. 1 B. In response to cAMP stimulation, 
MHC-PKC was transiently phosphorylated with a peak of 
phosphorylation at ~40 s. The membrane association of 
MHC-PKC (half-maximal, 10 s) preceded the phosphory- 
lation of MHC-PKC (half-maximal, 30 s). Thus, MHC- 
PKC phosphorylation takes place in the cell membrane. 

To determine whether MHC-PKC membrane associa- 
tion and/or phosphorylation are required for MHC-PKC 
activation, we examined the activity levels of MHC-PKC 
in soluble and insoluble fractions isolated from Ax2 cells 
stimulated with cAMP as described in Materials and Meth- 
ods. Since Dictyostelium contains several soluble MHCKs 
(for review see 40), we first immunoprecipitated the 
MHC-PKC from the soluble and insoluble fractions, de- 

assay as described (34). C, an image obtained by the Phosphor- 
Imager of MHC-PKC immunoprecipitated from cAMP-stimu- 
lated, 32p-labeled cells. (error bars equal _+SEM; n = 5). 
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termined its concentration, and then assayed it for kinase 
activity as described in Materials and Methods. The solu- 
ble MHC-PKC showed only 5% of the kinase activity 
present in the membrane-associated MHC-PKC (data not 
shown). These results suggest that the cytosolic MHC- 
PKC has greatly reduced activity, and that MHC phosphor- 
ylation by MHC-PKC takes place at the cell cortex. To de- 
termine the effect of cAMP on MHC-PKC specific activ- 
ity, we solubilized the kinase from cell membranes and 
assayed it for kinase activity as described in Materials and 
Methods. As mentioned above, Dictyostelium contains 
several MHCKs; however, all except MHC-PKC reside in 
the cytosol (for review see 40). Another indication that 
MHC-PKC is the only MHCK activity present in the 
membrane fraction comes from the observations that cells 
in which the MHC-PKC gene was disrupted exhibit no 
MHCK activity in the membrane fraction (2). Accord- 
ingly, all subsequent kinase assays were performed on 
MHC-PKC that was solubilized from the cell membrane 
fraction. Fig. 1 B shows that cAMP stimulation of Ax2 
cells resulted in a transient increase in membrane-associ- 
ated MHC-PKC kinase activity. The half-maximal MHC- 
PKC activity was obtained 10 s after cAMP stimulation 
and peak activity occurred at 40 s. The cAMP-stimulated 
increases in MHC-PKC activity coincide with the cAMP- 
stimulated membrane-association and phosphorylation of 
MHC-PKC, suggesting that these processes may be re- 
quired for activation of MHC-PKC. 

These results, along with the finding that MHC-PKC 
phosphorylates MHC in response to cAMP (2), may indi- 
cate that MHC-PKC is the mediator between the extracel- 
lular cAMP signal and MHC, and that the regulation of 
MHC by cAMP occurs via regulation of MHC-PKC. 

Mutants with Abnormal cAMP-induced cGMP 
Accumulation Exhibit Aberrant Myosin II and 
MHC-PKC Behavior 

As mentioned above, cAMP stimulaiion of Dictyostelium 
ameba generates a number of responses including in- 
creases in cGMP. cGMP has been implicated in the regula- 
tion of MHC phosphorylation and cytoskeleton associa- 
tion (21, 22, 23). We have postulated that one way for 
cGMP to exert its effect on myosin II is via the regulation 
of MHC-PKC activities. To investigate this possibility, we 
first examined the kinetics of MHC phosphorylation and 
cytoskeletal association both in Dictyostelium mutants 
that exhibit aberrant cAMP-induced increases in cGMP 
accumulation or have aberrant cGMP binding activity and 
in the parental strain XP55 (hereafter termed control 
cells), and compared them to the kinetics of the kinase ac- 
tivities of MHC-PKC in these cells (Fig. 2). The mutants 
used were the streamer mutants NP377 or NP368 (hereaf- 
ter termed stmF mutants) which exhibit a prolonged in- 
crease in cGMP in response to cAMP stimulation (30), the 
KI-10 mutant which lacks the normal cAMP-induced 
cGMP response (19), and the KI-4 mutant which has 
nearly normal cAMP-induced cGMP response but has ab- 
errant cGMP-binding activity (20). Newell and colleagues 
(21, 22, 23), in characterizing the MHC phosphorylation 
and cytoskeleton association in cGMP mutants, presented 
their results as percent changes in these parameters in re- 
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Figure 2. cAMP-induced changes in MHC membrane association 
and phosphorylation and in MHC-PKC activity in cGMP mutants. 
Conditions were as described in Fig. 1. (error bars equal -SEM; 
n = 4). - - I - ,  control; --O--, stmF; -&-, KI = 10. 

sponse to cAMP stimulation. Here we further character- 
ized and quantified these changes. As demonstrated below 
such quantification is important for an understanding of 
the mechanism of MHC regulation by cGMP. 

cAMP stimulation of the control cells resulted in a tran- 
sient increase in myosin II association with the cytoskele- 
ton (Fig. 2 A), with a pattern similar to that exhibited by 
Ax2 cells (Fig. 1 A). cAMP stimulation of stmF mutants 
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also resulted in an increase in cytoskeletal myosin II, but 
the response was more prolonged than that of the control 
cells (Fig. 2 A), as reported earlier (22, 23). The percent of 
cytoskeleton-associated myosin II  40 s after cAMP stimu- 
lation was lower in stmF mutants than in control cells (45 vs. 
66% ; see Fig. 2 A). Also, the basal level of cytoskeletal 
myosin II was lower in stmF mutants than in control cells 
(26 vs. 35%). cAMP stimulation of KI-10 mutants did not 
affect the association of myosin II with the cytoskeleton, 
as also reported previously (21). Surprisingly, ~85% of 
the myosin II in these mutants was found to lie in the cy- 
toskeleton regardless of cAMP stimulation (Fig. 2 A). 

cAMP stimulation of control cells resulted in a transient 
increase in MHC phosphorylation (Fig. 2 B) similar to that 
in Ax2 cells (Fig. 1 A). cAMP stimulation of stmF mutants 
resulted in prolonged phosphorylation of MHC (Fig. 2 B), 
as found previously (23). The extent of cAMP-induced 
MHC phosphorylation was higher in stmF mutants than in 
control cells, with the peak of phosphorylation being 
about fourfold higher than that in controls. This is higher 
than reported by Liu and Newell (23) probably due to low 
basal levels of phosphorylation resulting from pretreat- 
ment of the cells with caffeine. Similar to control cells, the 
membrane association of myosin II occurred before MHC 
phosphorylation, indicating that MHC phosphorylation 
occurred at the cell cortex, cAMP stimulation did not af- 
fect MHC phosphorylation in KI-10 mutants (Fig. 2 B), as 
also reported by Liu et al. (21); only basal levels of MHC 
phosphorylation could be detected in these cells (Fig. 2 B). 

We then examined whether the aberrant cAMP-induced 
cGMP increases in the cGMP mutants had a similar effect 
on the behavior of MHC-PKC to that on myosin II. After 
cAMP stimulation, the patterns of MHC-PKC-specific ac- 
tivity bore a striking resemblance to those of MHC phos- 
phorylation (Fig. 2 C). Thus, in stmF mutants, stimulation 
by cAMP resulted in a prolonged increase in MHC-PKC-  
specific activity that was twice as high as in the control 
cells and preceded the pbosphorylation of MHC. KI-10 
mutants exhibited negligible amounts of MHC-PKC activ- 
ity regardless of cAMP stimulation. Similar results were also 
obtained for KI-4 mutants (data not shown). Furthermore, 
in cAMP-stimulated stmF mutants, both the patterns of 
prolonged phosphorylation and cytoskeletal association of 
MHC and the prolonged specific activity of MHC-PKC 
correlated well with the prolonged cGMP increase in these 
mutants (data not shown) (30). These results suggest that 
cGMP regulates MHC via the regulation of MHC-PKC. 

cAMP-induced Increases in cGMP Are Correlated 
with Increases in MHC-PKC Membrane Association 
and Phosphorylation 

Membrane-associated MHC-PKC in mutant and control 
cells was assayed by immunoprecipitation of MHC-PKC 
from the soluble and insoluble fractions of caffeine- 
treated cAMP-stimulated cells as described in Materials 
and Methods. Phosphorylation levels of MHC-PKC in 
these cells were determined by immunoprecipitation of 
MHC-PKC from caffeine-treated, cAMP-stimulated 32p_ 
labeled cells using specific MHC-PKC polyclonal antibody 
as described in Materials and Methods. As shown in Fig. 3, 
MHC-PKC in the control cells underwent rapid mem- 

brane association and phosphorylation, with a peak at 40 s 
after cAMP stimulation, as described for Ax2 cells (Fig. 1 A). 
In the stmF mutants, the membrane association of the 
MHC-PKC was prolonged by cAMP stimulation com- 
pared with the control cells. The cAMP-dependent MHC- 
PKC phosphorylation lasted longer and was 20% higher 
than that in control cells. In the KI-10 mutants, the MHC- 
PKC membrane association and phosphorylation were un- 
affected by cAMP stimulation. The amount of membrane- 
associated MHC-PKC after cAMP stimulation of KI-10 
cells was similar to basal levels in control cells (Fig. 3 A), 
while the level of MHC-PKC phosphorylation after cAMP 
stimulation was even lower than the basal phosphorylation 
in control cells (Fig. 3 B). Similar results were obtained for 
KI-4 mutants (data not shown). The patterns of MHC- 
PKC membrane association and phosphorylation exhib- 
ited by the stmF and KI-10 mutants resemble those of the 
cAMP-induced increases in cGMP in these mutants (30). 
These results support the idea that cGMP is involved in 
the regulation of MHC-PKC and suggest that cGMP is re- 
quired for MHC-PKC activation and translocation to the 
membrane. The similar behavior of MHC-PKC in KI-10 
and KI-4 mutants may indicate that cGMP regulates the 
MHC-PKC activities via a cGMP-binding protein. 

Addition of  cGMP to Extract of  Wild Type Cells Mimics 
the MHC-PKC Activity in stmF Mutants 

To examine whether the activity of MHC-PKC is affected 
by cAMP-induced increases in cGMP, we mimicked the 
stmF mutant phenotype by adding cGMP to a lysed ex- 
tract of control cells and assayed their membrane-associ- 
ated MHC-PKC activity as described in Materials and 
Methods. Newell and Liu (30) have reported that in re- 
sponse to cAMP stimulation the maximum amounts of 
cGMP were ~8  pmol per 10 7 cells in control cells and ~16 
pmol per 107 cells in stmFcells. We therefore used 20 pmol 
pe r  10 7 cells in our experiments. Addition of cGMP to ex- 
tracts of control cells resulted in MHC-PKC activities two 
to three fold higher than in control cell extracts without 
cGMP (Fig. 4). The MHC-PKC activity detected in the 
cGMP-treated extracts was similar to that observed in 
stmF mutants, and the enzyme remained active as long as 
cGMP was present in the extract (Fig. 4). These results 
suggest that cGMP is a regulator of MHC-PKC activation. 

cGMP-dependent Protein Kinase Inhibitor (KT5823) 
Inhibits MHC-PKC Activity 

We have previously shown that the effect of cGMP on 
MHC-PKC activity is not exerted directly (34). Further- 
more, our results with the KI-4 mutants indicate that 
cGMP-binding protein is involved in the regulation of 
MHC-PKC. We therefore investigated whether cGMP af- 
fects MHC-PKC via activation of a cGMP-dependent pro- 
tein kinase that phosphorylates MHC-PKC and thereby 
activates it. Control cells were incubated with the cGMP- 
dependent protein kinase selective inhibitor KT5823 (Ki, 
2.4 nM) (16) as described in Materials and Methods. The 
cells were then stimulated with cAMP and their mem- 
brane-associated MHC-PKC activity was determined. As 
shown in Fig. 4, no increase in MHC-PKC activity was ob- 
served in these cells. Moreover, the basal activity of MHC- 
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PKC in KT5823-treated cells was 2.5-fold lower than in 
untreated control cells (14 vs. 30 pmol/min/mg). Addition 
of cGMP to membrane isolated from KT5823-treated cells 
did not result in the activation of MHC-PKC (data not 
shown). To test whether the inhibition of MHC-PKC by 
KT5823 is exerted directly, we performed MHC-PKC ki- 
nase assay in the presence of KT5823, as described in Ma- 
terials and Methods. Addition of the inhibitor did not af- 
fect MHC-PKC activity (data not shown), indicating that 
its effect is indirect. These results suggest that a cGMP- 
dependent protein kinase is involved in the phosphoryla- 
tion and activation of MHC-PKC. 

Addition of cGMP to an Extract of Cells Expressing 
MHC-PKCAST Leads to its Phosphorylation 

The detected phosphorylation levels of MHC-PKC de- 
scribed above were achieved mainly by autophosphoryla- 
tion (since MHC-PKC is heavily autophosphorylated 34); 
this cannot be distinguished from its phosphorylation by 
other kinases, such as cGMP-dependent protein kinase. 
To determine whether MHC-PKC is phosphorylated in a 
cGMP-dependent manner on sites that are different from 

150 

:E'~ too- 

0 
-50 

+cGMP 
T " ~  " r  - -  "1" 

, o - - - o - ~  . . . . . .  ~ - o  

w,,,- 

cAMP ?"/.~ . I  

x.¥ % 
• - • ~  - j  --~ . . . . . .  ~ - I  

+KT5823 • 
I ! I I 

0 50 100 150 200 

Time (sec) 

Figure 4. Effect of cGMP on MHC-PKC activity. Membrane- 
associated MHC-PKC activity was assayed as described in Fig. 1 
and Materials and Methods. MHC-PKC activity in the presence 
of cGMP was assayed after lysis of the cells by sonication in the 
presence of 20 pmol cGMP per 107 cells. MHC-PKC activity in 
the presence of the cGMP-dependent protein kinase inhibitor, 
KT5823 was assayed in cells grown for 24 h and developed in the 
presence of KT5823. (error bars equal _+SEM; n = 6). 

the autophosphorylation sites, we expressed in MHC-PKC 
null cells (2), a truncated MHC-PKC (MHC-PKCAST) in 
which the autophosphorytation sites were eliminated (see 
Materials and Methods). In in vitro studies using the 
MHC-PKCAST protein, we found that addition of ATP 
did not result in autophosphorylation of MHC-PKCAST 
(Dembinsky A., H. Rubin, and S. Ravid, manuscript sub- 
mitted for publication) in contrast to MHC-PKC (34). Fur- 
thermore, cAMP stimulation of cells expressing the MHC- 
PKCAST resulted in very low level of phosphorylation 
compared with wild-type cells (Dembinsky, A,, H. Rubin, 
and S. Ravid, manuscript submitted for publication). We 
used the MHC-PKCAST cell line to study the cGMP-de- 
pendent MHC-PKC phosphorylation. For this purpose, 
developed MHC-PKCRST cells were lysed in the presence 
of cGMP and [y-32p]ATP and the MHC-PKCAST was im- 
munoprecipitated as described in Materials and Methods. 
The addition of cGMP to an extract of MHC-PKCAST 
cells resulted in its phosphorylation (Fig. 5). Similar results 
were obtained for MHC-PKCAST isolated from cAMP- 
stimulated 32p-labeled cells (data not shown). The results 
indicate that MHC-PKCAST is phosphorylated in a cGMP- 
dependent manner on sites different from the autophos- 
phorylation sites. 

cGMP-dependent Protein Kinase Phosphorylates 
MHC-PKC and MHC-PKCAST 

We then addressed the question whether cGMP-depen- 
dent protein kinase phosphorylates MHC-PKC and MHC- 
PKCAST directly. To investigate this possibility, MHC- 
PKC and MHC-PKCAST were phosphorylated using a 
cGMP-dependent protein kinase isolated from bovine 
lung (10). Addition of cGMP stimulates an increase of ap- 
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pendent protein kinase is capable of directly phosphory- 
lating MHC-PKC on sites other than the autophosphory- 
lation sites. The differences in the extent of MHC-PKC 
and MHC-PKCAST phosphorylations are due to different 
amounts of protein used in these experiments. In vitro 
phosphorylation of MHC-PKC by cGMP-dependent pro- 
tein kinase resulted in 20% increase in its specific activity 
(data not shown). 

Figure 5. MHC-PKCAST phosphorylation in response to cGMP. 
Cells expressing the MHC-PKCAST protein were developed in 
MES buffer as described in Materials and Methods. 100-1xl ali- 
quots of developed cells were withdrawn and added to 100 ixl of a 
reaction mixture containing ATP and cGMP and the mixture was 
incubated for 10 rain at room temperature as described in Materi- 
als and Methods. The phosphorylated MHC-PKCAST protein 
was purified with Ni+-agarose beads and analysed using SDS- 
PAGE and autoradiography as described in Materials and Methods. 

proximately three-fold in its protein kinase activity (10). 
To test whether the cGMP-dependent protein kinase 
phosphorylates the MHC-PKC directly, we first added un- 
labeled ATP and MgCI2 to MHC-PKC immunoprecipi- 
tated from developed control cells, to avoid masking of 
cGMP-dependent protein kinase phosphorylation by MHC- 
PKC autophosphorylation. We then added [2,-32p]ATP 
along with cGMP-dependent protein kinase and cGMP, as 
described in Materials and Methods. To test whether 
cGMP-dependent protein kinase phosphorylates MHC- 
PKC on sites different from the autophosphorylation sites, 
we used purified MHC-PKCAST as a substrate for the 
cGMP-dependent protein kinase. Fig. 6 shows an autorad- 
iogram of immunoprecipitated MHC-PKC or Ni+-agarose - 
purified MHC-PKCAST phosphorylated by cGMP-depen- 
dent protein kinase. The MHC-PKC or MHC-PKCAST 
alone did not exhibit any phosphorylation. Some phosphor- 
ylation of MHC-PKC and MHC-PKCAST was observed 
upon addition of cGMP-dependent protein kinase (Fig. 6). 
When cGMP was added together with the cGMP-depen- 
dent protein kinase, the phosphorylation increased by 
5-10-fold (Fig. 6). These results suggest that cGMP-de- 

Figure 6. Phosphorylation of MHC-PKC and MHC-PKCAST by 
cGMP-dependent protein kinase. MHC-PKC was immunopre- 
cipitated from developed Ax2 cells and MHC-PKCAST was puri- 
fied using Ni+-agarose beads in Materials and Methods. The pro- 
teins were added to a reaction mixture containing cGMP- and 
cGMP-dependent protein kinase, as described in Materials and 
Methods. The phosphorylated proteins were then subjected to 
SDS-PAGE and analyzed using autoradiography (see Materials 
and Methods). 

Discussion 

A central question for an understanding of the molecular 
basis of signal transduction mechanisms is how an external 
signal is transmitted to intracellular elements. In the case 
studied here, the question relates to how the extracellular 
cAMP signal is transmitted to myosin II which responds 
by translocating to the cortex, thereby initiating cell polar- 
ity and chemotaxis. In a previous report, we showed that 
MHC-PKC is the mediator of the cAMP signals (2); here 
we show that the extracellular cAMP regulates the MHC- 
PKC activities via cGMP-dependent protein kinase. The 
extracellular cAMP signal regulates myosin II assembly 
and localization by promoting intracellular cGMP accu- 
mulation which, in turn activates cGMP-dependent pro- 
tein kinase that phosphorylates MHC-PKC thereby regu- 
lating its activities. MHC-PKC phosphorylates MHC and 
affects myosin II assembly properties, with resulting af- 
fects on myosin II localization. 

cAMP stimulation results in translocation of MHC-PKC 
to the membrane (Fig. 1 B). Mammalian cell fractionation 
experiments have demonstrated that activation of PKC re- 
sults in translocation of PKC activity from the cytosol to 
the particulate fraction (17, 48). Our present findings also 
indicate that cAMP-induced MHC-PKC translocation to 
the membrane is part of the enzyme activation: MHC- 
PKC translocation coincided with increase in MHC-PKC 
activity, whereas cytosolic MHC-PKC showed greatly re- 
duced kinase activity, cAMP-induced increases in MHC 
cytoskeleton association were followed by its phosphory- 
lation but were preceded by the observed increase in 
MHC-PKC membrane association and activation (Fig. l). 
These findings, together with our recent finding that MHC- 
PKC phosphorylates MHC in response to cAMP (2), indi- 
cate that MHC is phosphorylated in the cell cortex by 
MHC-PKC in response to cAMP. 

Several lines of evidence emerging from this ~udy indi- 
cate that the extracellular cAMP affects the MHC-PKC 
via accumulation of cGMP and activation cGMP-depen- 
dent protein kinase: (a) the activity of MHC-PKC in stmF 
mutant is mimicked by the addition of cGMP to control cells 
(Fig. 4), yet the addition of cGMP to purified kinase does 
not alter its activity (34); (b) addition of the cGMP-depen- 
dent protein kinase inhibitor KT5823 to control cells in- 
hibits the MHC-PKC activity but addition of the inhibitor 
to the kinase alone does not affect its activity (Fig. 4); (c) 
cGMP-dependent protein kinase isolated from lung is ca- 
pable of phosphorylating MHC-PKC in vitro (Fig. 6); (d) 
MHC-PKC behavior is similar in the cGMP mutants, KI- 
l0 and KI-4. The former mutant lacks the cAMP-induced 
cGMP accumulation while the latter shows nearly normal 
cAMP-induced cGMP accumulation but has an aberrant 
cGMP binding activity, indicating that cGMP per se does 
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not affect the MHC-PKC but rather a cGMP-binding pro- 
tein which is possibly a cGMP-dependent protein kinase. 
The most direct evidence that cGMP-dependent protein 
kinase phosphorylates the MHC-PKC arises from our 
studies on the MHC-PKCAST: MHC-PKCAST is phos- 
phorylated in cGMP-dependent manner (Fig. 5) and is 
phosphorylated in vitro by cGMP-dependent protein ki- 
nase (Fig. 6). As well cGMP-dependent protein kinase was 
recently identified in Dictyostelium (44), although its sub- 
strate is unknown. MHC-PKC phosphorylation by cGMP- 
dependent protein kinase may play a role in the activation 
and translocation of the kinase to the membrane since, in 
KI-10 and in KI-4 mutants, the MHC-PKC resides in the 
cytosol in inactive form. Furthermore, phosphorylation of 
MHC-PKC by cGMP-dependent protein kinase increases 
its activity in vitro. Analysis of the MHC-PKC sequence 
reveals that it contains at least two sites for cGMP-depen- 
dent protein kinase phosphorylation (35). We are cur- 
rently attempting to express an MHC-PKC in which the 
putative cGMP-dependent protein kinase phosphorylation 
sites are converted to alanine residues. Experiments with 
this altered MHC-PKC protein will enable us to explore 
the in vivo role of MHC-PKC phosphorylation by cGMP- 
dependent protein kinase. 

Phosphorylation of PKC by a heterologous kinase and 
its involvement in the regulation of PKC has been re- 
ported previously for PKCc~ (7). Cazaubon et al. (7) re- 
ported that PKC-a activation depends not only on lipid ac- 
tivators but also on phosphorylation by PKC kinase. These 
authors presented evidence that PKC must itself be phos- 
phorylated before it can become catalytically active. Site- 
directed mutagenesis was used to identify phosphorylation 
of Thr497 as a critical event in PKC posttranslational mod- 
ification and activation of PKC-a (7). Since this is not an 
autophosphorylation site, it appears that a PKC kinase is 
required in order to generate a primed PKC, which can 
then be activated by second messenger molecules (7). 
Thr497 is conserved among all conventional members of 
the PKC family including MHC-PKC (35). The identity of 
this kinase, however, from the results of this study suggest 
that a plausible candidate for a PKC kinase is a cGMP- 
dependent protein kinase. 

The phosphorylation of MHC-PKC by cGMP-depen- 
dent kinase is the first of two stages of MHC-PKC phos- 
phorylation that plays a role in its regulation. The second 
stage is a cAMP-dependent autophosphorylation which 
accounts for most of the MHC-PKC phosphorylation in 
our experiments and is responsible for the electrophoretic 
mobility shift of MHC-PKC (Dembinsky, A., H. Rubin, 
and S. Ravid, manuscript submitted for publication). Our 
results indicate that the autophosphorylation occurs in the 
membrane since the cAMP-induced increases in MHC- 
PKC membrane association coincides with the increases in 
its phosphorylation. Consistent with this hypothesis is our 
finding that, in KI-10 and KI-4 cells, the enzyme does not 
translocate to the membrane (Fig. 3 A) and contains a neg- 
ligible amount of phosphates (Fig. 3 B). It is conceivable 
that the binding of MHC-PKC to the membrane provides 
the enzyme with the specific configuration that allows it to 
phosphorylate itself. 

Further indications that cGMP plays a regulatory role in 
MHC-PKC activity are the findings that cAMP-induced 

increases in cGMP accumulation correlate well with in- 
creases in MHC-PKC membrane association and phos- 
phorylation, and that these responses were also altered in 
cGMP mutants (Fig. 3). In the stmF mutant both the 
cAMP-induced MHC-PKC association with the mem- 
brane and phosphorylation were prolonged compared 
with control cells; the amount of MHC-PKC membrane 
association in the two cell lines was similar while the phos- 
phorylation of MHC-PKC in stmF mutant was 20% higher 
and its activity was twice than that in control cells (Fig. 2 C, 
and Fig. 3 B). In contrast, the absence of cGMP accumula- 
tion in KI-10 mutant or the aberrant cGMP-binding activ- 
ity in KI-4 mutant resulted in the absence of both MHC- 
PKC translocation to the membrane and its phosphoryla- 
tion in response to cAMP. A simple explanation of these 
results is that MHC-PKC is phosphorylated in the cytosol 
by a cGMP-dependent protein kinase and that this phos- 
phorylation is necessary for MHC-PKC activation and 
translocation to the membrane where autophosphoryla- 
tion takes place. In stmF mutant, the prolonged cGMP ac- 
cumulation prolongs the activation of cGMP-dependent 
protein kinase, leading to higher phosphorylated, more ac- 
tive MHC-PKC and its membrane association is pro- 
longed. These results are consistent with the findings that 
phosphorylation of MHC-PKC by cGMP-dependent pro- 
tein kinase increases its activity, and that addition of 
cGMP to an extract of control cells results in two to three- 
fold more MHC-PKC activity as compared with untreated 
cells (Fig. 4). On the other hand, there is no cGMP-depen- 
dent MHC-PKC phosphorylation in KI-10 and KI-4 mu- 
tants. Therefore activation and translocation of MHC-PKC 
to the membrane do not occur, and the kinase resides in 
the cytosol in unphosphorylated, inactive form. In vitro 
phosphorylation of MHC-PKC by cGMP-dependent pro- 
tein kinase resulted in only 20% increase in its acitivity 
compared with a two to threefold increase in strnF mutants 
(Fig. 2 A) and after the addition of cGMP to cell extracts 
(Fig. 4). Plausible explanations for these results are: the bo- 
vine cGMP-dependent protein kinase used in this study is 
not as efficient as the Dictyostelium cGMP-dependent pro- 
tein kinase and/or the phosphorylation of MHC-PKC by 
cGMP-dependent protein kinase is not the only mecha- 
nism of its activation, for example cofactors such as cal- 
cium and diacylglycerol are also required for its activation. 

The phosphorylation of MHC-PKC by cGMP-depen- 
dent protein kinase plays an important role in the regula- 
tion of MHC-PKC and, thereby, in the phosphorylation 
and localization of myosin II as shown by the cGMP mu- 
tants. In cGMP mutants the cAMP-induced association of 
myosin II with the Triton-insoluble cytoskeleton is abnor- 
mal (Fig. 2 A). cAMP stimulation of KI-10 mutants does 
not affect the localization of myosin II. Interestingly, 
~85% of the myosin II in these mutants was to be found in 
the cytoskeleton regardless of cAMP stimulation (Fig. 2 
A). On the other hand, in control cells, the basal level of 
Triton-insoluble myosin II was ~30% and this increased 
to 65% upon cAMP stimulation. Our interpretation of 
these results is that the absence of cGMP accumulation in 
response to cAMP stimulation in KI-10 mutant results 
from the absence of MHC-PKC translocation to the mem- 
brane (Fig. 3 A) and hence inactive MHC-PKC (Fig. 2 C). 
The absence of active MHC-PKC drives myosin II mole- 
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cules into filaments in vivo and these filaments have high 
affinity for the cortical cytoskeleton. Therefore, in the ab- 
sence of cGMP accumulation, most of the myosin II is as- 
sociated with the cytoskeleton. Similar results were ob- 
tained for MHC-PKC null cells (2). 

In strnF mutant the association of myosin II with the Tri- 
ton-insoluble cytoskeleton is more prolonged than in con- 
trol cells. Yet only 50% of the myosin II was Triton-insolu- 
ble compared with 65% in control cells (Fig. 2 A). A simple 
explanation for this finding is that translocation of myosin 
II to the cortex and removal of myosin II from the cortex 
are two separate processes, both of which may be affected 
by cGMP. Silveira et al. (Mol. Biol. Cell. 5:152a) have 
shown that addition of cGMP to Dictyostelium lysates re- 
sults in an increase of at least fivefold in MLCK activity. 
cGMP does not act directly on the kinase, as shown by the 
fact that addition of cGMP to purified kinase does not al- 
ter its activity (41). It is possible that cAMP-induced 
cGMP accumulation first activates MLCK, which phos- 
phorylates MLC, thereby increasing the ATPase activity 
of myosin II (14), and thus enabling myosin If to move on 
actin filaments and to reach the cortex. In strnF mutant the 
process of cGMP accumulation is more prolonged than in 
control cells (36) and therefore more myosin II is activated 
by MLCK and the association of myosin II with the Tri- 
ton-insoluble cytoskeleton is prolonged. On the other 
hand, the prolonged accumulation of cGMP also results in 
prolonged MHC-PKC activation. Consequently, more of 
the MHC is phosphorylated and the amount of myosin II 
associated with the Triton-insoluble cytoskeleton is less 
than in control cells. Indeed, the cAMP-stimulated MHC 
is two to five times more phosphorylated in stmF mutants 
than in control cells, while KI-10 mutant contains no 
cAMP-induced MHC phosphorylation (Fig. 2 B). It is pos- 
sible that the amount of cytoskeletal myosin II in wild- 
type cells represents the balance between MLC and MHC 
phosphorylation. 

Ostrow et al. (32) studied the role of the regulatory 

MLC (RMLC) phosphorylation in the function of myosin 
II in Dictyostelium cells. They found that RMLC is phos- 
phorylated on serine 13 both in vivo and in vitro by MLCK 
(41). They further demonstrated that RMLC bearing a 
ser13ala substitution was not phosphorylated in vivo and 
in vitro by MLCK (41). Although this mutant RMLC had 
reduced actin activated ATPase activity, it rescued the de- 
fects of RMLC null cells (32). These results seems to indi- 
cate that RMLC phosphorylation does not play a role in 
the regulation of myosin II in vivo. However, it should be 
noted that the in vivo phosphorylation studies were done 
on vegetative cells (32). It is therefore possible that during 
Dictyostelium development, RMLC is phosphorylated on 
site(s) different than serine 13 and this phosphorylation is 
important for the regulation of myosin II during Dictyoste- 
lure chemotaxis. Consistent with this hypothesis are Sil- 
veira et al. (MoL Biol. Cell. 5:152a) findings that Dictyoste- 
lium contains multiple MLCKs that respond differently to 
external stimuli. Furthermore, it has been proposed that 
RMLC can be phosphorylated by kinases other than the 
MLCK, including PKC and p34 cat2 kinase (40). It is there- 
fore possible that, during Dictyostelium chemotaxis, RMLC 
is phosphorylated by an MLCK different from that used 
by Ostrow et al. (32) or by another kinase and this phos- 
phorylation affects myosin II localization during directed 
cell movement. 

Based on the above results, we propose the following 
model for the role of cGMP in MHC-PKC activation and 
hence in myosin II localization, cell polarization, and 
chemotaxis (Fig. 7). An unstimulated cell is rounder be- 
cause of a contractile shell formed by an actin-myosin II 
network in the cortex. This network presumably inhibits 
events necessary for pseudopodial projection, cAMP stim- 
ulation of one edge of the cell results in increased cGMP 
accumulation, cGMP activates MLCK (presumably via a 
cGMP-dependent protein kinase), which in turn phosphor- 
ylates MLC that drives myosin II movement on actin fila- 
ments to the cell cortex (Fig. 7). Concomitantly, cGMP 

cAMP ~ I "~ ~JTranslocatlon p~ P.p 

P* p ~ ~ * P P Figure 7. A model showing 
the role of cGMP in the in- 
teraction between myosin II 
and MHC-PKC, leading to 
chemotaxis. See Discussion 
for more details. MHC- 
PKC, MHC-specific PKC; 
MLCK, myosin II light chain 
kinase; PKG, cGMP-depen- 
dent protein kinase; MHC, 
myosin II heavy chain; P*, 
MHC-PKC phosphorylation 
by PKG; P, MHC-PKC auto- 
phosphorylation. 

The Journal of Cell Biology, Volume 134, 1996 920  



activates a cGMP-dependent protein kinase, which phos- 
phorylates the inactive MHC-PKC in the cytosol causing it 
to translocate to the membrane where it is localized at the 
site of cAMP stimulation in an active form. Active MHC- 
PKC phosphorylates the cortical MHC at the anterior part 
of the cell, causing disassembly of myosin II thick filament 
by inducing the formation of a bent monomer of myosin 
II. In this way, the cAMP- cGMP-dependent interaction 
between myosin II and MHC-PKC may play a major role 
in the generation of cell polarity for efficiently directed 
migration. 
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