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Abstract

The vasculature is a dynamic structure, growing and regressing in response to embryonic

development, growth, changing physiological demands, wound healing, tumor growth and

other stimuli. At the microvascular level, network geometry is not predetermined, but

emerges as a result of biological responses of each vessel to the stimuli that it receives.

These responses may be summarized as angiogenesis, remodeling and pruning. Previous

theoretical simulations have shown how two-dimensional vascular patterns generated by

these processes in the mesentery are consistent with experimental observations. During

early development of the brain, a mesh-like network of vessels is formed on the surface of

the cerebral cortex. This network then forms branches into the cortex, forming a three-

dimensional network throughout its thickness. Here, a theoretical model is presented for this

process, based on known or hypothesized vascular response mechanisms together with

experimentally obtained information on the structure and hemodynamics of the mouse cere-

bral cortex. According to this model, essential components of the system include sensing of

oxygen levels in the midrange of partial pressures and conducted responses in vessel walls

that propagate information about metabolic needs of the tissue to upstream segments of the

network. The model provides insights into the effects of deficits in vascular response mecha-

nisms, and can be used to generate physiologically realistic microvascular network

structures.

Author summary

During brain development, a two-dimensional mesh-like network of flowing blood vessels

spreads over the surface of the growing cortex. Branches from this network penetrate the

cortex and connect, forming a three-dimensional network throughout the tissue. Arterio-

venous connections on the surface regress, and flow is directed to the interior, so that the

cortex is well supplied with oxygen to meet the metabolic demands of neural function.

This study aims to better understand how vascular growth, structural remodeling and

pruning in response to local metabolic and hemodynamic stimuli generate microvascular

networks that meet functional demands. A theoretical model is used to simulate angiogen-

esis in three dimensions. In this model, a growth factor is generated in tissue at a rate that
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depends on local oxygen level, and diffuses to existing vessels, where it stimulates increase

in diameter and formation of new sprouts if its level is high enough. These mechanisms,

along with vascular responses to wall shear stress and pressure, result in networks with

similar structural and oxygen transport characteristics to experimentally observed net-

works. The model shows that vascular responses to metabolic signals, including con-

ducted responses propagated upstream along vessel walls, are essential for formation of

adequate network structures. Impairment of conducted responses may contribute to cog-

nitive decline with aging and neurodegenerative diseases.

Introduction

The effective functioning of the vascular system depends sensitively on its geometrical charac-

teristics. The rate of convective transport by blood depends on the rate of blood flow, which is

proportional to the fourth power of vessel diameter according to Poiseuille’s law, for a given

pressure gradient and viscosity [1]. Rates of diffusive transport of solutes between blood and

surrounding tissue are proportional to the gradients in solute concentration, and therefore

vary inversely with the distance that the solute must diffuse. In the case of oxygen transport,

the maximum diffusion distance is very short, generally less than 100 μm [2], and so blood

flow must pass very close to all parts of the tissue to ensure adequate oxygenation.

This sensitivity of mass transport to geometrical properties implies the need for tight con-

trol of vascular network structures in order to meet the functional needs of tissues. The ques-

tion arises: what are the biological mechanisms that control the geometry of vascular

networks? During embryonic development, the locations of the major arteries and veins are

under tight genetic control. However, the vascular system contains more than 109 vessel seg-

ments, and individual control of their characteristics is clearly not feasible [3]. Moreover, the

vasculature is capable of substantial growth and regression during a range of physiological pro-

cesses such as exercise training, female reproductive cycle, wound healing and tumor growth.

These considerations imply that blood vessels must exhibit a set of generic behaviors and

responses, enabling them to self-assemble into well-organized networks that meet the needs of

the tissue for transport of oxygen and other essential materials [3].

The overall goal of this work is to gain insight into these generic responses. The approach

used is to develop biologically plausible hypotheses for the underlying mechanisms, perform

theoretical simulations of angiogenesis and structural adaptation based on these hypotheses,

and compare the characteristics of the resulting networks with experimental observations.

Vascular structures vary greatly with tissue and species. Here, a specific observed network

structure in the cerebral cortex of the mouse is used as a basis for comparison [4]. Geometrical,

blood flow and oxygen transport properties of this network have been characterized [5], allow-

ing a stringent assessment of results of simulated angiogenesis in this tissue. In previous work

[6], we developed a model for angiogenesis in two dimensions based on observations of the rat

mesentery, a thin sheet-like tissue. The cerebral cortex vasculature is inherently three-dimen-

sional, and the development of a model for angiogenesis in three dimensions is an aim of the

present work.

During the prenatal development of the rodent brain, a vascular plexus spreads over the

surface of the neural tissue [7]. These vessels are referred to as the pial vasculature, because

they are adjacent to the pia mater, the innermost membrane surrounding the brain tissue.

Sprouting angiogenesis from this plexus generates vessels that invade the tissue, forming inter-

connections and providing perfusion to the developing brain. This begins around embryonic

PLOS COMPUTATIONAL BIOLOGY Simulation of angiogenesis: Application to cerebral cortex

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009164 June 25, 2021 2 / 22

https://doi.org/10.1371/journal.pcbi.1009164


day E9.5 in the mouse [8]. A notable aspect of this developmental process is the necessity for

regression and pruning of arterial-venous connections in the surface plexus, which would oth-

erwise shunt blood flow away from the interior of the tissue. In the present model, the initial

condition includes a single blood flow pathway on the outer surface of the cortex, and the pro-

cesses of sprouting angiogenesis, connection of sprouts to form new flow pathways, and prun-

ing of surface arterial-venous connections are simulated.

The development of theoretical models for angiogenesis has been the subject of numerous

previous studies. Much of this work has focused on the simulation of angiogenesis in solid

tumors [9–21] and wound healing [22–24]. While these are important cases, the high degree of

variability in the physiological environment and in the resulting network structures under

pathological conditions makes it difficult to calibrate and test the resulting models. With

regard to vascular growth in normal tissues, early development by vasculogenesis has been

modeled [25,26] but relatively few models have been developed for vascular growth by sprout-

ing angiogenesis in normal tissues [6,27,28]. Angiogenesis in the brain has been considered in

the context of models of tumor growth [29] but normal vascular development in the cerebral

cortex does not appear to have previously been modeled. The structure and hemodynamics of

the mouse cortex microvasculature have been studied in detail [4,5], providing a basis for

quantitative assessment of the models presented here.

The present approach is based on previously described concepts [6,30,31]. A dynamic

model is used to simulate the development of the cortical vasculature. At successive time steps,

the spatial distributions of oxygen and a diffusible growth factor are computed, where the pro-

duction rate of growth factor depends on the local oxygen level. The responses of the vessel

network to growth factor are simulated, including angiogenesis, structural adaptation and

pruning (Fig 1A). The initial condition consists of a single flowing vessel lying on the surface

of the cortex with two non-flowing sprouts (Fig 1B). This model provides insight into the roles

that various biological mechanisms play in the generation of stable, functionally adequate net-

work structures, and allows investigation of the effects of downregulating these mechanisms.

Methods

Tissue configuration and initial network structure

The simulated region of cortical tissue is a hexagonal prism with height 500 μm and width

300 μm, each side of the hexagon being 150 μm (Fig 1B). The shape is chosen to allow a hexag-

onally periodic network structure in the plane of the cortex. Any vessel that exits through one

side of the hexagon is continued by a corresponding segment entering on the opposite side.

Previous work [32] assumed cubic periodicity. The tissue volume (0.0294 mm3) is large

enough to include a representative vascular network including arterioles, capillaries and

venules, while small enough to allow fast computations; computation time increases rapidly

with the size of the domain. Parameter values are specified in Table 1.

The state of the system is computed at discrete time steps Δt. At each time step, the network

is represented as a set of connected straight segments with defined positions, lengths, diame-

ters and blood flow rates. In the initial configuration, blood flow across the upper surface of

the tissue is driven by fixed pressures of 100 mmHg at the inflow node and 20 mmHg at the

outflow node of a pial vessel. The partial pressure of oxygen (PO2) in the inflowing blood is set

to 100 mmHg. This vessel includes a narrow upstream segment with fixed diameter of 7 μm

and length 35 μm, to represent the flow resistance of upstream pial arteries and arterioles. The

resulting initial flow rate is 40.2 nl/min.

A distinctive feature of the cortical vasculature is the arrangement of the penetrating arteri-

oles and venules, which extend into the cortical tissue almost perpendicular to the pial surface
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[33]. Distal vessels have more random orientations. To incorporate these features in the

model, the initial condition includes two straight sprouts extending 400 μm into the tissue per-

pendicular to the pial vessel (Fig 1B).
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Fig 1. (A) Schematic representation of assumed mechanisms of vascular growth and adaptation. Vessels are

assumed to respond to local GF concentration in three ways. (a) Existing vessels may develop sprouts if the GF level is

above a threshold value. (b) Sprouts elongate with time and connect to other vessels to form flow pathways. The

growth direction of each sprout is biased towards regions with higher GF levels. (c) GF reaching a vessel generates a

metabolic stimulus that is distributed downstream along the vessel by convection and upstream by conducted

responses in vessel walls. (B) Definition of initial configuration. A hexagonal tissue region is simulated, with periodic

boundary conditions in the plane of the hexagon. The region forms part of a repeating structure to represent the

cerebral cortex. The initial vascular configuration consists of a single flowing segment representing a pial vessel, and

two perpendicular sprouts representing a penetrating arteriole and a penetrating venule. Flow direction in pial vessel is

indicated by arrow.

https://doi.org/10.1371/journal.pcbi.1009164.g001

PLOS COMPUTATIONAL BIOLOGY Simulation of angiogenesis: Application to cerebral cortex

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009164 June 25, 2021 4 / 22

https://doi.org/10.1371/journal.pcbi.1009164.g001
https://doi.org/10.1371/journal.pcbi.1009164


Table 1. Reference parameters.

Blood oxygen parameters Source

Maximal RBC oxygen concentration C0 = 0.516 cm3O2 cm−3 [36]

Effective oxygen solubility in blood αeff = 3.1 × 10−5 cm3O2 cm−3 mmHg−1 [36]

Hill equation parameter P50 = 40.2 mmHg [37]

Hill equation parameter n = 2.59 [37]

Tissue oxygen parameters

Krogh diffusion constant DO2 α = 9.375 × 10−10 cm3O2 cm−1 s−1 mmHg−1 [36]

Consumption rate M0 = 7.5 cm3O2 (100cm3) −1 min−1 [5]

PO2 at half-maximal consumption Pc = 10.5 mmHg [38]

Growth factor parameters

Diffusivity of GF DGF = 2 × 10−7 cm2 s−1 �

Tissue GF degradation rate constant KGF = 8 × 10−3 s−1 �

Maximal GF concentration CGF0 = 1 ��

Reference oxygen level for GF release PGF = 40 mmHg �

Exponent for GF release NGF = 2.5 �

Angiogenesis parameters

Time step Δt = 0.05 day

Diameter of new sprouts Ds = 8 μm [39]

Threshold GF concentration for sprouting Cth = 0.7 �

Constant in sprouting probability function Cth50 = 0.5 �

Maximum sprout formation probability kp = 0.22 μm−1 day−1 �

Sprout growth rate Vg = 333 μm day−1 �

Directional response to GF gradient kGF = 20 μm−1 �

Attraction constant to nearby vessels kV = 1 μm−1 �

Maximum vessel sensing distance Rmax = 25 μm [8]

Maximum vessel sensing angle θmax = π/3 [6]

Variance of growth direction randomization σs = 0.05 �

Vessel migration parameters

Threshold for migration λt = 0.25 �

Maximum migration velocity vmax = 80 μm day−1 �

Structural adaptation parameters

Structural adaptation time scale T = 1 day �

Reference wall shear stress τref = 0.01 dyn cm−2 †

Metabolic sensitivity km = 18 �

Shrinking tendency ks = 1.8 �

Vessel permeability to GF (or GF product) κGF = 1 ��

Reference flow rate for metabolic signal Qref = 0.1 nl min−1 †

Convected response saturation constant Cv
GF50

= 200 μm �

Conducted response saturation constant Jc50 = 500 μm �

Conducted response length constant Lc = 1.73 cm [40]

Relative strength of conducted response Smaxc = 1 ��

�See text for discussion.

��Arbitrary units; set to 1.

†Small constant to avoid singular behavior.

https://doi.org/10.1371/journal.pcbi.1009164.t001
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Flow rates

In the simulation of blood flow at each time step, the vessel network is represented as a set of

segments connected at nodes [34,35]. Each segment has a flow resistance

R ¼ DP=Q ¼ 128LZapp=ðpD
4Þ ð1Þ

where ΔP is pressure drop, Q is flow rate, L is length, D is diameter, and ηapp is apparent viscos-

ity of blood, which depends on diameter and hematocrit [1,34]. The condition that the sum of

the flows into each internal node is zero yields a set of linear equations for the nodal pressures

[41], which is solved iteratively. Effects of phase separation at diverging bifurcations, i.e.

unequal partition of hematocrit, are included [1,42]. Because this phenomenon depends on

the flow split at each bifurcation, flow resistances depend on flow rates. A further iteration is

therefore performed, until flows and hematocrits converge within a specified tolerance. The

wall shear stress in each segment is computed as

tw ¼ DDP=ð4LÞ: ð2Þ

Oxygen transport

At each time step, the transport of oxygen and its spatial distribution in vessels and in tissue

are simulated. The oxygen field is assumed to be quasi-steady, and is computed using the

Green’s function method [43,44]. In the tissue, the partial pressure of oxygen, PO2(x,y,z), satis-

fies

DO2ar
2PO2 ¼ MðPO2Þ ð3Þ

where DO2 and α are oxygen diffusivity and solubility. Michaelis-Menten kinetics are assumed

for oxygen consumption rate:

MðPO2Þ ¼ M0PO2=ðP0 þ PO2Þ ð4Þ

where M0 is oxygen demand and P0 is PO2 at half-maximal consumption. In blood, the convec-

tive oxygen flux is

f ðPbÞ ¼ Q½HDC0SðPbÞ þ aeff Pb� ð5Þ

where HD is discharge hematocrit, C0 is maximal RBC oxygen concentration, αeff is effective

oxygen solubility in blood,

S ¼ Pb
n=ðPb

n þ P50
nÞ ð6Þ

is oxyhemoglobin saturation and Pb is blood PO2.

In the Green’s function method, the oxygen field in the tissue is calculated by superposing

the fields resulting from arrays of sources and sinks representing oxygen released by vessels

and taken up in the tissue. The tissue is discretized as a cubic array of points spaced 20 μm

apart, resulting in 3675 points. The vessel network is discretized into segments with lengths

averaging about 20 μm, resulting in approximately 1000 segments in a typical simulation. The

source strength of a segment is equal to the decrease in f(Pb) from inlet to outlet. The source

and sink strengths are computed using an iterative algorithm such that intravascular and extra-

vascular oxygen levels match at each segment, taking into account the effects of intravascular

resistance to radial oxygen diffusion [45].
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Growth factor production and transport

Multiple agents are involved in angiogenesis and structural adaptation of blood vessels, includ-

ing several forms of vascular endothelial growth factor (VEGF), fibroblast growth factor,

tumor necrosis factor-α, transforming growth factor-β, and angiopoietins [46]. These factors

have several effects, including stabilization or destabilization of the vessel wall, modulation of

wall permeability, formation of sprouts, directional migration of endothelial cells, and differ-

entiation and proliferation of vascular cells. The production of growth factors is sensitive to

metabolic conditions in the tissue. In particular, VEGF is released in hypoxic regions, diffuses

through tissue, and stimulates growth of new vessels [47,48].

In the present model, a single growth factor (GF) is introduced to represent activities

needed for the development of functional vascular networks. Some of the assumed activities

align with those of VEGF, but the assumed parameter values are not specific to VEGF. The GF

represents in a simplified way the combined actions of the growth factors. It is assumed to be

released throughout the tissue depending on the local oxygen level, to diffuse through the tis-

sue and to be degraded with linear kinetics. Its concentration CGF(x,y,z) in tissue satisfies

DGFr
2CGF ¼ � MGF þ KGFCGF: ð7Þ

where DGF is diffusivity and KGF is degradation rate. Potential convection of GF by tissue fluid

[49] is neglected. The release rate in tissue is assumed to be a decreasing function of local PO2:

MGF ¼
KGFCGF0

1þ ðPO2=PGFÞ
NGF

ð8Þ

Here and elsewhere in the model, Hill-type functions are used to represent biological

responses. The constant PGF is the tissue PO2 at half-maximal release rate and the exponent

NGF controls the sensitivity of the response. From these definitions, CGF0 is the maximal GF

level that is reached when PO2 = 0. The Green’s function method [43] is used to compute CGF

in the tissue domain. The effect of GF uptake by vessels is neglected in the computation of the

tissue GF field.

Sprout formation

The network is assumed to grow by sprouting angiogenesis, represented using a previously

developed model [6,14]. At each time step, the GF concentration CGF at each segment is com-

puted. The assumed probability of sprout formation on that segment is

Psprout ¼
kplsegDt

CGF � Cth

Cth50 þ CGF � Cth
if CGF > Cth

0 if CGF � Cth

8
><

>:
ð9Þ

where kp is the maximal probability of sprout formation per length per time, lseg is segment

length, Δt is the time step, Cth is the threshold level of GF for sprout formation and Cth50 deter-

mines the GF level for half-maximal sprout probability. The location of a new sprout on the par-

ent segment is chosen randomly. If it is within 10 μm of a node, it is moved to that node, and if

it is at a network boundary node or an existing branch point, it is suppressed. These rules are

needed to avoid formation of very short segments and other anomalous structures. The direc-

tion of sprouting is chosen at random in the plane perpendicular to the parent segment.
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Elongation of sprouts

Sprouts grow at a rate Vg and maintain a fixed diameter Dnew until they connect with another

vessel. The growth direction varies at each time step in response to three types of input: (i) ran-

dom variation; (ii) “homing” to other segments; (iii) responses to GF gradients. These effects

are implemented as follows. (i) To simulate the stochastic nature of vessel growth, the growth

direction d at the previous step is rotated through a random angle in three dimensions with

variance σs, giving a new direction d’. (ii) To allow growing sprouts to detect and connect to

other segments, a homing mechanism is introduced, representing the activity of the filopodia

of the tip cells leading sprout growth, which explore the tissue ahead of the sprout and may

sense other vessels [50]. A conical region is defined that extends a distance Rmax from the tip at

angles up to θmax from the direction d’. A vector directed towards segments within this region

is defined:

dV ¼
PR

erf ðrÞgðyÞ ds ð10Þ

where the sum is over the segments within the sector, the integral is along each segment, er is a

unit vector directed from the tip to the segment, r and θ describe the positions of points on

each segment relative to the current tip position and orientation, and f and g are chosen to give

a weighting factor that decays to zero at the edges of the region:

f ðrÞ ¼
1 � r=Rmax if r < Rmax

0 if r � Rmax

;

(

ð11Þ

gðyÞ ¼
1 �

1 � cosy
1 � cosymax

if y < ymax

0 if y � ymax

:

8
><

>:
ð12Þ

(iii) To represent the tendency of sprouts to grow up gradients of GF [14], the vector gradient

rCGF at the sprout tip is computed. The updated sprout direction is

d} ¼ d0 þ kVdV þ kGFrCGF ð13Þ

where kV and kGF represent sensitivity of growth direction to existing vessels and to GF

gradients.

During one time step, each sprout grows a distance VgΔt, This is done in increments of

5 μm, and a connection is created if the tip comes within 5 μm of another segment. Other

adjustments are made as needed to avoid anomalous structures [6].

Tension-induced migration

The formation of sprouts as described above results in bifurcations with branching angles of

180˚ and 90˚, whereas observed networks show a smooth distribution of branching angles

clustered around 120˚. This discrepancy implies that vessels must migrate through tissue after

bifurcations form [6]. Blood vessels are under longitudinal tension in vivo [51,52] and collagen

and other interstitial components are subject to turnover [53], so that vessels may migrate

through the interstitium. To simulate this, the normalized force acting on each node in the net-

work is computed, assuming that the tension in each vessel is proportional to diameter:

f t ¼
X

Diei
� � X

Di

� �
=
X

liDi

� �
ð14Þ

where the sum is over the segments at the node, Di are diameters, li are lengths and ei are unit
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vectors parallel to the segments. This is a modified version of the previous model [6]. At an

unbranched node, |ft| gives a dimensionless estimate of vessel curvature. If |ft| exceeds a

threshold λt, the node migrates with velocity

v ¼ vmaxf tð1 � lt=jf tjÞ ð15Þ

where vmax is the maximum speed and λt defines the ratio of vessel diameter to threshold

radius of curvature. The threshold allows stabilization of curved vessels, which would other-

wise eventually straighten out.

Structural adaptation and pruning

Structural adaptation of vessel diameters is essential for the generation of functional and effi-

cient vascular networks [6]. The present model follows previous work [40,54], but with modifi-

cations to achieve stable network structures in three dimensions. It is based on the assumption

that structural change of vessel diameters occurs in response to the combined effects of four

types of signals: wall shear stress τw, intravascular pressure P, downstream convected metabolic

signal Sm and upstream conducted metabolic signal Sc. Each segment diameter D thus varies at

each time step according to

DD ¼ StotDDt=T ð16Þ

where Δt is the time step, T is a characteristic timescale, and Stot is the dimensionless total

adaptive signal:

Stot ¼ logðtw þ tref Þ � log teðPÞ þ kmðSm þ ScÞ=D � ks: ð17Þ

The logarithmic dependence on τw is included to ensure sensitivity over the observed wide

range of wall shear stresses [55], including the tendency of segments experiencing low levels of

wall shear stress to regress [56]. The small constant τref is included to avoid singular behavior.

The correlation of the expected shear stress τe (in dyn/cm2) with P (in mmHg) previously

reported [40] is here fitted using a Hill-type equation

teðPÞ ¼ 14þ 86
P5

P5 þ P5
t

ð18Þ

with Pτ = 36 mmHg. The present model differs from that used previously [6] in that the contri-

butions of Sc and Sm to Stot are assumed to vary inversely with D in Eq (17). Such dependence

was necessary to avoid excessive dropout of small vessels while also avoiding unrealistically

large diameters of main feeding and draining vessels.

Adaptive responses to metabolic needs are represented by the dimensionless signals Sm and

Sc, both of which depend indirectly on tissue oxygen levels, via GF that is generated in the tis-

sue and diffuses to vessels. The GF may enter vessels, where it is convected downstream, or it

may stimulate release of other signaling substances by endothelial cells in proportion to GF

level. The model is applicable to either situation. In the previous model [6], metabolic signals

depended on intravascular oxygen levels, whereas in the present model, metabolic signals are

generated in the tissue [57] and transmitted to the vessels by diffusion of GF (Fig 1A).

The steps in computing Sm and Sc in each segment are as follows. (i) Under the assumption

that GF diffuses into each segment at a rate proportional CGF, the convective flux of GF is

given by

dJGF
ds
¼ kGFCGF ð19Þ
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where CGF is the concentration in the adjacent tissue, κGF is a permeability coefficient and s is

downstream distance along each segment. The flux is initialized to zero at network inflows. (ii)

The vessel GF concentration is

Cv
GF ¼

JGF
Qþ Qref

ð20Þ

where JGF is evaluated at the midpoint of the segment, Q is flow rate in nl/min and Qref is a

small constant to avoid singular behavior. (iii) The downstream convected metabolic signal is

a function of concentration:

Sm ¼
Cv
GF

Cv
GF þ Cv

GF50

ð21Þ

(iv) The convected metabolic signal stimulates an upstream conducted response in the vessel

wall, denoted Jc, which decays with distance traveled:

dJc
ds
¼ Sm � Jc=Lc ð22Þ

where s here denotes upstream distance. The signal is initialized to zero at network outflows.

At converging bifurcations relative to direction of conduction, incoming signals are weighted

by the diameters of the vessels and summed. At diverging bifurcations, the outgoing signal is

divided among the upstream vessels in proportion to their diameters. (v) The conducted meta-

bolic signal is

Sc ¼ Smaxc
Jc

Jc þ Jc50

ð23Þ

where Smaxc controls the relative magnitudes of convected and conducted signals.

Pruning of redundant vessels is simulated by assuming that a vessel drops out if its diameter

drops below 3 μm, the approximate minimum for passage of red blood cells [58]. Any other

segments whose flows cease as a result are also pruned.

Parameter values

Table 1 gives parameter values. Precise values are stated for computational reproducibility, but

the number of decimals shown does not imply a corresponding precision in their estimates.

Oxygen transport parameter values for blood and tissue are from previous studies [5,36,37].

Parameter values for GF transport, angiogenesis and structural adaptation are not generally

available a priori. A feasible set of values (the reference parameter set) was obtained by per-

forming many simulations to explore the parameter space and applying the following criteria.

(i) The simulation converges to a stable final state within the simulation period of 10 days,

which represents the time for development of cortical microcirculation [7]. Stability requires

that CGF< Cth throughout the domain, so that no further sprouts are formed. (ii) In the final

state, tissue PO2 > 20 mmHg throughout the domain [5]. (iii) The initial A-V connection on

the pial surface is pruned [7]. (iv) The final vessel length density matches that in the experi-

mental network [5]. (v) The final oxygen extraction matches that computed for the experimen-

tal network [5]. An objective function was defined as:

E ¼ FGF
2 þ FH

2 þ ðLt � L0Þ
2
þ ðEOX � EOX0Þ

2
ð24Þ

where FGF and FH are the percent of tissue points with CGF> Cth and PO2 < 20 mmHg respec-

tively, Lt and EOX are the total vessel length in mm and the percent oxygen extraction, and L0 =
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19.2 and EOX = 26.2 are the target values based on experimental data [5]. Minimization of this

objective function strongly restricts allowable parameter sets, but the available experimental

data do not permit unique identification of the unknown model parameters.

Some parameters can be fixed without loss of generality. GF concentrations are stated in

arbitrary units, and the maximal concentration CGF0 is set equal to 1. The model results

depend on the ratio of the diffusion constant DGF and the degradation rate KGF, and not on

their individual values. The length scale defined by LGF = (DGF/KGF)1/2 must be large enough

that vessels are responsive to nearby hypoxic tissue, but short enough that vascular responses

are localized to the region of hypoxia. The reference parameter values correspond to LGF =

50 μm. Because JGF in Eq (19) is expressed in arbitrary units, κGF is set to 1.

A time step of 0.05 day is used for simulations. The maximal probability of sprout forma-

tion (0.22 μm−1 day−1) gives a probability less than 0.22 for sprout formation in each time step

by a 20-μm segment. The assumed growth rate of sprouts corresponds to 16.65 μm per time

step, and the maximum rate of migration of nodes due to vessel tension corresponds to 4 μm

per time step. The characteristic time scale for structural adaptation (Eq (16)) is set to T = 1

day. This gives faster remodeling than the value of 4.5 days estimated for remodeling in the

adult mouse [59]. These parameters values result in development of a stable network in about

5 days, comparable to the rapid development of the cerebral microcirculation in the prenatal

mouse. However, the assumed timescale is not inherent in the model. Identical results on a dif-

ferent timescale would be obtained with a simple rescaling of the abovementioned parameters.

The threshold concentration for sprout formation is a critical parameter. If it is too low,

network structures are unstable due to GF levels above threshold. If it is too high, tissue is not

well oxygenated. The effects of varying this parameter are discussed below. The maximum ves-

sel sensing distance (Rmax = 25 μm) is similar to the observed length of endothelial tip cell filo-

podia in mouse brain [8]. The attraction constant for tip cells to nearby vessels is set to a high

value (KV = 1 μm−1) to ensure efficient formation of connections. The threshold (λt) for vessel

migration gives an equilibrium radius of curvature of 40 μm for a 6-μm diameter vessel.

Sensitivity analysis

The sensitivity of three key output variables (total vessel length, total blood flow rate and oxygen

extraction) to the values of several model parameters was analyzed. Each parameter was varied

to values above and below its reference value, by increments of between 5% and 50%. The sensi-

tivity of output variable X on parameter p is defined as (ΔX/Xref) / (Δp/pref), where Δp is the dif-

ference between the high and low tested values of the parameter, ΔX is the corresponding

change in the output variable, and pref and Xref are the values under reference conditions.

Computational procedures

The simulation is implemented using the C++ language on personal computers. The most

computationally demanding aspect is the calculation of the oxygen and GF fields at each time

step using the Green’s function method. A system with graphical processor units (Pascal

Quadro GP100, NVIDIA, Santa Clara, CA) was used to accelerate this computation. Due to

the randomization of sprout formation and growth direction, the simulation results vary with

the seed used for the random number generator. For reported quantitative results, simulations

with 8 seeds are averaged, except where otherwise noted. The execution time per time step var-

ies from about 1 s to several minutes depending on the network complexity. A simulation with

200 time steps takes 2 hours or more. Thousands of such simulations were performed in the

process of developing and refining the model. Computer codes and data files are available at

https://github.com/secomb.
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Results

An example of simulated network development is illustrated in Fig 2. During the initial phase,

non-flowing sprouts branch off the preexisting arteriole and venule. The first connections

between the arteriole and venule (A-V) form at about 0.5 days and start to flow. The A-V con-

nection on the pial surface shrinks and is pruned by 1.5 days. The length of vessels in the

domain reaches a maximum at about 1.5 days, declining thereafter due to pruning. A steady

state of the network is achieved by 5 days.

To give a more complete view of the network geometry, four replicates of the domain are

combined in Fig 3. Numerous vessels cross the boundaries of each domain, forming a

Fig 2. Example of simulated angiogenesis, remodeling and pruning. Network structure within a single hexagonal unit is

shown at several time points, indicated in days. Flowing vessels are color-coded by intravascular oxygen level according to the

color bar. Non-flowing sprouts are shown as purple, with tips shown as dark purple. Apparently disconnected segments are

actually connected via adjacent hexagonal units. Asterisk (�) shows position of initial pial connection between arteriole and

venule, illustrating shrinkage and eventual pruning of this connection, such that flow is redirected to the interior of the cortical

tissue.

https://doi.org/10.1371/journal.pcbi.1009164.g002
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continuous mesh-like network that extends throughout the cortical layer. This structure

appears similar to observed networks in the cortex of mouse [5,60] and human [33,61].

Fig 4A shows the time course of parameters describing vessel length in the simulated net-

works. The total length of flowing vessels starts to increase at about 0.5 days, due to the forma-

tion of A-V connections, reaching a maximum and then declining to approach a steady state.

Model parameters were adjusted so that the final total length (averaged over 8 runs) corre-

sponds to a vascular density of 658 mm−2, close to the experimental value [5]. Flowing vessel

segments are classified according to the types of bifurcations at their upstream and down-

stream ends, as “arteriolar” (diverging to diverging), “venular” (converging to converging),

“capillary” (diverging to converging) and “mesh” (converging to diverging) [55]. The total

lengths of all types of flowing segments reach maximal values at about 1.5 days and then

decline. At steady state, mesh segments then represent about 8% of the total vascular network.

Although the network appears mesh-like, this statistic indicates that the structure consists

mainly of a diverging arteriolar tree connected by capillaries to a converging venular tree.

Fig 4B shows the behavior of parameters describing blood flow and oxygen transport.

Blood flow rate increases initially, reaching a maximum at about 1 day, and then declines

Fig 3. Final vessel configuration. Four adjacent identical hexagonal units are illustrated, to show continuity of network structure across

boundaries of the hexagon. A: Penetrating arteriole. V: Penetrating venule. Arrows indicate flow direction.

https://doi.org/10.1371/journal.pcbi.1009164.g003
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slightly. The hypoxic fraction of the tissue is defined as the fraction of tissue points with PO2 <

20 mmHg. This criterion is chosen to reflect the sensitivity of neural tissue to even moderate

hypoxia. In the initial configuration, nearly all the tissue is hypoxic. When A-V connections

start to form at 0.5 days, the hypoxic fraction declines, reaching zero at about 1.5 days. Oxygen

extraction is defined as the A-V decrease of oxygen concentration in blood as a percent of the

concentration in the inflowing arteriole. This quantity fluctuates during the initial phase, then

approaches 26.27 ± 1.06% (mean ± s.d). Model parameters were adjusted to give agreement

with the value 26.2% obtained from oxygen transport simulations for the experimentally

observed network [5].

Quantitative comparisons of simulated network properties with those of the experimentally

observed network [5] are presented in Table 2. The perfusion (flow per volume) values match

closely, as a consequence of matching oxygen extraction values and assuming the same oxygen

Fig 4. Dynamics of network generation. Results are the average of 8 simulations with different initial seeds for the

random number generator. Vertical bars show ±1 standard deviation. (A) Vessel length. Total length includes flowing

vessels and non-flowing sprouts. Flowing vessels are further classified as arterioles capillaries, venules and mesh

segments. Red line (Exp.): Expected vessel length based on experimentally observed length density in mouse brain

cortex [5]. (B) Flow and oxygen transport parameters. Results for blood flow rate to the network, oxygen extraction

and hypoxic fraction are shown. Red line (Exp.): Expected extraction based on simulations of oxygen transport in an

experimentally observed network [5].

https://doi.org/10.1371/journal.pcbi.1009164.g004
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demand. The distribution of distances of tissue points to the nearest flowing vessel strongly

influences the distribution of oxygen levels. As indicated by Table 2, the simulated networks

have broader distributions of this parameter (i.e. higher mean and s.d.) than the observed net-

work, despite having the same vascular density. This may be a consequence of the relatively

sparse network in the lower part of the domain (Fig 3), which results from the lack of connec-

tions to deeper vasculature. Average vessel and tissue oxygen levels are slightly higher for the

simulated networks than for the observed network. Overall, the oxygen transport characteris-

tics of the simulated networks agree approximately with those of the observed network [5].

Results of the sensitivity analysis are shown in Table 3. Because oxygen extraction varies

inversely with flow rate for a given oxygen consumption rate, extraction and flow rate have

approximately opposite sensitivities to each parameter. Total vessel length shows a different

pattern of parameter sensitivities, with highest sensitivity to the GF threshold for sprouting

(Cth). The value of this parameter was determined as follows. For Cth values below 0.6, regions

with GF above threshold persisted and stable networks could not be achieved. Conversely, val-

ues above 0.8 led to persistent tissue hypoxia (PO2 < 20 mmHg). An intermediate value of 0.7

was assumed.

Table 2. Comparison of simulated networks with experimentally observed network properties.

Observed network

[5]

Simulated networks: mean ± s.d.

(n = 8)

�Total vessel length density (mm−2) 658.6 658.0 ± 64.8

�Oxygen extraction (%) 26.2 26.27 ± 1.06

Effective perfusion (cm3 (100cm3)−1 min−1) 110.4 114.5 ± 5.3

Mean distance of tissue points to nearest vessel

(μm)

15.061 19.04 ± 1.51

S.d. of distance of tissue points to nearest vessel

(μm)

9.365 13.44 ± 1.99

Mean vessel PO2 (mmHg) 54.53 61.02 ± 0.56

S.d. of vessel PO2 (mmHg) 14.07 11.16 ± 0.55

Mean tissue PO2 (mmHg) 47.28 49.81 ± 1.76

S.d. of tissue PO2 (mmHg) 12.17 9.32 ± 0.84

�The model parameters were adjusted to fit these two model outputs to values for the observed network

https://doi.org/10.1371/journal.pcbi.1009164.t002

Table 3. Sensitivities of total vessel length, total flow and oxygen extraction to model parameters.

Parameter Vessel length Total flow Extrac-tion

Cth, threshold GF concentration for sprouting −1.080 −0.432 +0.369

kp, maximum sprout formation probability +0.384 +0.173 −0.155

kGF, directional response to GF gradient −0.009 −0.004 +0.006

PGF, reference oxygen level for GF release +0.703 +1.054 −0.962

NGF, exponent for GF release +0.130 −0.143 +0.144

λt, threshold for migration +0.171 +0.104 −0.106

km, metabolic sensitivity −0.222 +0.948 −0.888

ks, shrinking tendency +0.364 −1.245 +1.212

Cv
GF50

, convected response saturation constant −0.025 −0.549 +0.499

Jc50, conducted response saturation constant −0.097 −0.282 +0.253

Smaxc , relative strength of conducted response −0.281 +0.422 −0.416

Sensitivity values with magnitude greater than 0.7 are shown bold.

https://doi.org/10.1371/journal.pcbi.1009164.t003
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Two parameters whose values sensitively influence model results are the reference oxygen

level for GF release (PGF) and the overall metabolic sensitivity (km), indicating that responses

to tissue metabolic status are an important component of the model. Previous studies indicate

that tissue oxygen levels in the cortex under normal conditions are generally above 20 mmHg

[5,62]. For the model to give this behavior, GF production rate must be sensitive to oxygen lev-

els well above 20 mmHg. A relatively high value for the tissue PO2 for half-maximal GF release

is therefore required, and PGF = 40 mmHg is assumed in the reference parameter set.

The results are insensitive to the value of kGF, which defines the directional response of

sprout growth to GF gradient. Directional guidance of sprout growth by VEGF gradients has

been considered an important factor in angiogenesis [14], but the current simulations do not

suggest a role for such guidance in the vascularization of the brain cortex.

To examine the role of metabolic responses in angiogenesis, further simulations were per-

formed with reduced values of km, which determines the metabolic response including con-

vected (downstream) and conducted (upstream) responses, and Scmax, which determines the

strength of the conducted response relative to the convected response. As indicated in Table 3,

decreasing these parameters reduces total blood flow. To compensate for this, the parameter ks
giving the shrinking tendency of vessel diameters was adjusted in each case, so that the flow at

the end of each run was within 8% of the reference value. Maintaining total flow in this way

allowed assessment of the role of metabolic responses in determining the distribution of flow

in the region.

Fig 5A illustrates the effects of decreasing the metabolic sensitivity km from its reference

value (km = 18). These results are for a single run at each parameter setting. When km decreases

below 12, mean tissue PO2 declines. When km� 7, the pial A-V connection is not pruned, and

oxygenated blood is shunted away from the underlying cortical tissue. The tissue hypoxic frac-

tion rises sharply, and network structure does not approach a stable state. These simulations

show that a structural response to metabolic signals is necessary in order to generate network

structures that provide adequate tissue oxygenation to brain cortex.

The effects of decreasing Scmax from its reference value (Scmax = 1) are shown in Fig 5B. The

resulting behavior is similar to that when km is reduced. The pial A-V connection is retained,

mean tissue PO2 declines, and network structure is unstable. According to these results, local

and downstream convected metabolic responses are not able to maintain adequate network

structures. Conducted responses propagated upstream along arterioles are essential for main-

taining tissue oxygenation, as shown previously for mesenteric networks [54].

Discussion

The generation of functional microvascular networks requires angiogenesis, remodeling and

pruning, which generally occur in parallel [63]. In previous work [6], we demonstrated theo-

retically how these processes, occurring in response to local metabolic and hemodynamic sig-

nals, can generate stable, functionally adequate structures in two dimensions, with properties

matching those of observed microvascular networks in the mesentery. The present work

extends the previous approach to a three-dimensional microvascular network, the vasculature

of the brain cortex.

The criteria used to determine the reference parameters restrict their values but do not

uniquely define them. As shown in Table 3, parameters have overlapping effects on key output

variables, and equivalent results could be obtained using other combinations of parameter val-

ues. The reference parameters for angiogenesis and structural adaptation do not represent

accurate estimates of actual biological effects. Indeed, such effects can be assumed to have sig-

nificant natural variability. However, the objective of this work is not to determine values of
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parameters describing angiogenesis and structural adaptation, but rather to demonstrate that

networks with characteristics matching those of observed networks can be simulated by a theo-

retical model including the assumed set of biologically plausible mechanisms.

In the early development of the cortical microcirculation, a notable feature is the transition

from a nearly two-dimensional network on the pial surface to a three-dimensional network

extending through the cortical layer [7]. The present model simulates this behavior, including the

loss of A-V connections on the pial surface that would otherwise shunt blood away from the inte-

rior of the cortex. The model shows the development of a continuous mesh-like network of

capillaries within the cortical layer, similar to observed microvascular structures. The hexagonally

periodic geometry allows the model to represent this continuous network structure (Fig 3).

Fig 5. Effects of reduced metabolic responses. Graphs show values of mean tissue PO2 and hypoxic fraction at end of simulation at 10 days (2 days

for the case Scmax = 0.1). Examples of final network structures, color-coded for vessel PO2, are shown at left of each graph. Asterisk (�) indicates

retention of pial A-V connection. (A) Effect of reducing strength of metabolic response (km) while holding total flow nearly constant. (B) Effect of

reducing relative strength of upstream conducted response (Scmax) while holding total flow nearly constant.

https://doi.org/10.1371/journal.pcbi.1009164.g005
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The simulations permit investigation of the roles played by various response mechanisms,

by varying the parameters controlling the strengths of these responses. The results confirm the

importance of responses to metabolic signals in order to ensure that tissue is adequately sup-

plied with blood flow [6]. Downregulation of these responses while maintaining overall perfu-

sion results in impaired flow to the deeper part of the cortex, with the development of hypoxia

(Fig 5A). Contributing to this behavior is the retention of the pial A-V connection under this

condition. Similar behavior is predicted when only the upstream conducted response is down-

regulated (Fig 5B). This result indicates the essential role of conducted responses in maintain-

ing functionally adequate network structures in the brain.

Experimental evidence supports the concept that conducted responses play an important

role in the maintenance of vascular structures throughout the body. The role of conducted

responses in coordinating acute vasomotor responses (i.e. flow regulation) is well established

[64]. Conducted responses generated in venules have been observed to traverse the capillary

bed and affect vascular tone in upstream arterioles [65]. Furthermore, chronic changes in vas-

cular tone have been shown to lead to corresponding changes in structural vessel diameters

[66,67], which implies a role for conducted responses in structural remodeling. Conducted

responses are transmitted via gap junctions that connect endothelial cells. Genetic ablation of

gap junction proteins in mice has been shown to affect vascular structures [68,69], a finding

consistent with an essential role for conducted responses in structural adaptation.

Theoretical simulations are used to study various aspects of microcirculatory function in

the brain, such as neurovascular coupling [70]. Some of these studies have been based on com-

puter-generated synthetic capillary network structures [32,71,72], because structural informa-

tion at capillary scales is difficult to obtain experimentally. Generally, these synthetic

structures have been shown to be consistent with experimentally observed networks with

regard to parameters such as vessel diameter and length, and surface and length densities.

However, the approach presented here has advantages over previous methods for producing

synthetic microvascular structures. (i) Networks are generated by algorithms that simulate

known mechanisms of angiogenesis. (ii) Networks include hierarchical, tree-like arteriolar

and venular structures in addition to capillaries. (iii) Blood flow and oxygen transport charac-

teristics match predictions based on observed network structures in the mouse cortex.

The vascular component of neurodegenerative diseases is increasingly recognized but

remains poorly understood [73]. Development of hypoxic micro-regions may contribute to

cognitive decline in elderly people [74]. We previously proposed that the highly heterogeneous

tissue oxygenation typically observed in solid tumors results from impaired conducted

responses [75]. Because conducted responses depend on intact gap junctions between endo-

thelial cells forming a continuous pathway for propagation of signals, they may be vulnerable

if endothelial cells are dysfunctional. The results of the present model support the concept that

reduction in conducted responses in age or disease may contribute to cognitive impairment in

humans.
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