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High Expression of long non-coding 
RNA PVT1 predicts metastasis 
in Han and Uygur Patients with 
Gastric Cancer in Xinjiang, China
Xianxian Ren1, Dongdong Cao1, Li Yang1, Xia Li1, Wei Zhang2, Yongbiao Xiao3, Yu Xi2, 
Feng Li1,4, Dongmei Li1 & Zemin Pan1

To analyze the level and diagnostic value of plasmacytoma variant translocation 1 (PVT1) in 
gastric cancer (GC) of Han and Uygur in Xinjiang, China, we collected 42 GC and 47 normal gastric 
tissues and performed tissue microarray. In situ hybridization was used to detect PVT1, while 
immunohistochemistry was used to analyze c-myc. The relationship between PVT1, c-myc and clinical 
pathological features was investigated. We then analyzed the expression of PVT1 in six GC cell lines. 
RNA interference was used to silence PVT1 in BGC823 and AGS cells. c-myc was detected by western 
blotting after silencing PVT1, while proliferation, invasion and migration ability were also analyzed. We 
found that PVT1 and c-myc were highly expressed in both Han and Uygur GC tissues. In Han GC, PVT1 
was correlated with lymph node metastasis and primary tumor site. In Uygur GC, both PVT1 and c-myc 
were correlated with lymph node metastasis and clinical staging. PVT1 was positively correlated with 
c-myc. BGC823 and AGS cells exhibited high levels of PVT1. When PVT1 expression was silenced, the 
expression of c-myc decreased, while migration and invasion ability were also decreased in cells. PVT1 
could therefore be a potential biomarker to predict the metastatic tendency of GC in both Han and 
Uygur patients.

Gastric cancer (GC) is the second most common cause of cancer death worldwide and GC mortality in China 
accounts for 42% of all GC deaths worldwide. The incidence and mortality rates of GC in 2006 were 35.02 and 
26.08 per 100,000 persons, respectively, in China1. Cancer statistics in 2015 showed 679,100 new GC cases and 
498,000 deaths. The incidence and mortality of GC in China is currently second only to lung cancer with the 
highest burden found in southwest China2.

Early symptoms of GC are not obvious. In most GC patients, the disease has progressed to the midor advanced 
stage when they are diagnosed. However, the prognosis of GC is closely associated with the TNM stage. The 
5-year survival rates of GC patients are 90%, 50–60%, and 10–15% in GC Stages I, II and III, respectively3; thus 
it is important to identify diagnostic and predictive markers of GC. This would help patients to select a suitable 
treatment method and carry out correlative checks to avoid the full extent of the risks. Therefore, tumor biomark-
ers would be a significant help in prolonging the life of GC patients. Several potential approaches have been used 
to identify suitable biomarker candidates4; however, their sensitivity and specificity are limited.

Long non-coding RNAs (lncRNAs) are greater than 200 nucleotides in length. They play roles in epi-
genetic gene regulation, transcriptional regulation and the gene expression process at transcription and 
post-transcription levels5. Thus they have several significant functions in the fundamental biological processes of 
cells and are emerging as new players in the tumorigenic process6. LncRNAs exhibit specific expression in tissues 
and can be detected easily. This property makes them ideal candidates for biomarkers7. Consequently lncRNAs 
such as H198,9, GAS510, and HOTAIRM111,12 have received significant attention for the early diagnosis of cancer. 
Plasmacytoma variant translocation 1 (PVT1) is a new lncRNA, located on chromosome 8q24 upstream of the 
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oncogene MYC. It has been reported that PVT1 maybe related to GC and could be a potential lncRNA biomarker 
for GC13,14.

Xinjiang is the largest autonomous region in northwestern China. The population in this region is composed 
of a number of ethnic groups. The major ethnic groups are the Han (39.7%) and the Uygur (45.7%). The inci-
dence rate of GC in Uygur is 12.76% (351/2751) and in Han people is 3.85% (92/2568)15,16. In Han and Uygur 
GC patients, the histopathologic features are the same, but whether the diagnostic parameters, especially some 
biomarkers at the genetic and molecular biology level, are suitable for both ethnic groups remain unknown. It 
is also not known whether the PVT1 expression level shows the same tendency in Han and Uygur GC patients.

In this study, we investigated the expression level of PVT1 and c-myc in GC tissues of Han and Uygur patients 
by in situ hybridization (ISH) and immunohistochemistry (IHC). We explored the relationship between the 
expression of PVT1 and c-myc and clinicopathological features. We further analyzed the effects of PVT1 on the 
proliferation, migration, and invasive ability of GC cells and analyzed the clinical value of PVT1 as a biomarker 
for the diagnosis and prognosis of Han and Uygur GC patients.

Results
PVT1 is over expressed in GC tissues and is closely related to lymph node metastasis in both 
Han and Uygur GC patients.  After ISH, taking into account samples which were lost from the slides, the 
remaining samples comprised 14 Han GC tissues, 15 Han normal gastric tissues, 15 Uygur GC tissues, and 16 
Uygur normal gastric tissues, all of which were analyzed for PVT1 expression. The results showed that PVT1 
was located in both cytoplasm and nucleus (Fig. 1A). The PVT1 expression level in normal gastric tissues was 
lower than that of GC tissues in both Han and Uygur patients (P < 0.005; Fig. 1A). The positive expression rate 
of PVT1 in Han GC was 71.42% (10/14), and 26.67% (4/15) in normal gastric tissues, a difference which was 
statistically significant (P < 0.05; Fig. 1A, Table 1). Meanwhile the positive expression rate of PVT1 in Uygur 
GC tissues was 53.33% (8/15), and in gastric tissues, it was 12.50% (2/16), which was also statistically significant 
(P < 0.05; Fig. 1A, Table 1). There were no significant differences in the expression of PVT1 between Han and 
Uygur patients (P = 0.268). Serum from four different ethnic populations showed that PVT1’s levels were highest 
in Uygur people (P = 0.0211). PVT1 serum levels in Uygur and Hui people were statistically significantly different 
(P = 0.0044) (Supplement Fig. 1).

For the analysis of clinicopathological characteristics, in Han GC patients, PVT1 expression levels correlated 
with lymph node metastasis and primary tumor site (P < 0.05). In Uygur GC patients, PVT1 expression levels 
were related to lymph node metastasis and clinical staging (P < 0.05; Table 2). No significant correlation was 
found between PVT1 expression and gender, age at diagnosis, or histopathological grade (Table 2).

C-myc is over expressed in both Han and Uygur GC tissues.  The expression levels of c-myc were 
analyzed in 22 Han GC tissues, 23 Han normal gastric tissues, 20 Uygur GC tissues, and 24 Uygur normal gastric 
tissues using IHC. The results showed that normal gastric tissues have a lower c-myc expression levels and GC 
tissues had higher levels in both Han and Uygur individuals (P < 0.05; Fig. 1B, Table 3). The positive expression 
rate of c-myc in the Han GC tissues was 59.09% (13/22), while it was 17.39% (4/23) in normal gastric mucosa 
(P < 0.05; Fig. 1B, Table 3). The positive expression rate of c-myc in Uygur GC tissues was 65% (13/20), and in 
normal gastric tissues it was 29.17% (7/24) (P < 0.05; Fig. 1B, Table 3). There were no significant differences in 
c-myc expression between Han and Uygur populations (P = 0.471).

Analysis of clinicopathological characteristics revealed that c-myc expression levels correlated with histo-
pathological grade in Han GC patients, while these levels were correlated with lymph node metastasis and clinical 
staging in Uygur GC patients (P < 0.05; Table 4). No correlation was found between c-myc expression and gender 
or age (Table 4).

PVT1 levels are related to c-myc expression.  The relationship between the expression levels of PVT1 
and c-myc were analyzed to identify possible mechanisms. We stratified the results of PVT1-positive cases and 
analyzed the c-myc expression levels in the corresponding site to see if there was any association between PVT1 
and c-myc. The results showed that PVT1 expression was associated with c-myc (r = 0.546, P = 0.005, Table 5).

PVT1 expression levels are higher in BGC823 and AGS GC cells.  To select a suitable cell line for 
further research, the basic expression level of PVT1 was analyzed in six GC cell lines: AGS, SGC7901, N87, 
MGC803, BGC823 and MKN45, and expression was found to differ between the cell types (Fig. 2A). Real-time 
PCR revealed higher levels of endogenous PVT1 in BGC823 and AGS cells. These two cell lines were therefore 
selected for subsequent experiments (Fig. 2A). Four PVT1 short hairpin RNA (shRNA) plasmids and a control 
plasmid were used to transfect BGC823 and AGS cells and the efficiencies of interference were analyzed with 
real time-PCR (Fig. 2B). The results showed that sh-PVT1-4 effectively down-regulated expression of PVT1. 
Consequently, we selected sh-PVT1-4 for subsequent studies.

PVT1 regulates c-myc expression in GC cells.  To determine whether the expression levels of the 
lncRNA PVT1 caninfluence the expression of c-myc in GC cells, c-myc protein was analyzed with western blot-
ting in the PVT1 down-regulated BGC823 and AGS cells (Fig. 2C–F). The results showed that, compared with 
normal BGC823 and AGS cells, c-myc protein expression was reduced in cells with knockdown of PVT1. This 
indicates that the lncRNA PVT1 contributes to the regulation of c-myc expression in GC cell lines (Fig. 2C–F).

PVT1 down-regulation inhibits the invasion and migration ability of GC cells.  To explore the 
potential effects of the lncRNA PVT1 on the pathogenesis of GC, the proliferative ability of PVT1 down-regulated 
BGC823 and AGS cells was analyzed with the Cell Counting Kit-8 (CCK8) assay. The invasion and migration 
abilities were analyzed by Transwell assay with or without Matrigel. The results of the CCK8 assay showed that 
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interference with the expression of PVT1 in BGC823 and AGS cells does not obviously affect their proliferation 
ability (Fig. 3A,B, P > 0.05). Cell migration assays showed that down-regulation of the lncRNA PVT1 inhibited 
the migration ability of BGC823 and AGS cells compared with the sh-NC group (Fig. 3, P < 0.05). Furthermore, 
the Matrigel invasion assay showed that down regulated lncRNA PVT1 inhibited cell invasion compared with the 
sh-NC group (Fig. 3, P < 0.05).

Figure 1.  Comparison of the expression of lncRNA PVT1 and c-myc in GC and normal tissues by ISH and 
IHC. (A) Comparison of the expression of lncRNA PVT1 in GC and normal tissues by TMA and ISH. PVT1 
staining was stronger in GC tissues. (a) PVT1 staining in Han GC tissues (40×); (b) PVT1 staining in Han 
GC tissues (200×, 400× in the lower right corner); (c) PVT1 staining in Han normal gastric tissues (40×); 
(d) PVT1 staining in Han normal gastric tissues (200×, 400× in the lower right corner); (e) PVT1 staining in 
Uygur GC tissues (40×); (f) PVT1 staining in Uygur GC tissues (200×, 400× in the lower right corner); (g) 
PVT1 staining in Uygur normal gastric tissues (40×); (h) PVT1 staining in Uygur normal gastric tissues (200×, 
400× in the lower right corner). (B) Comparison of c-myc expression in GC and normal tissues by TMA and 
IHC. Staining of c-myc was stronger in GC tissues. (a) c-myc staining in Han GC tissues (40×); (b) c-myc 
staining in Han GC tissues (200×, 400× in the lower right corner); (c) c-myc staining in Han normal gastric 
tissues (40×; (d) c-myc staining in Han normal gastric tissues (200×, 400× in the lower right corner); (e) c-myc 
staining in Uygur GC tissues (40×); (f) c-myc staining in Uygur GC tissues (200×, 400× in the lower right 
corner); (g) c-myc staining in Uygur normal gastric tissues (40×); (h) c-myc staining in Uygur normal gastric 
tissues (200×, 400× in the lower right corner).

Group n

Han

Positive rate P n

Uygur

Positive rate Pnegative positive negative positive

Normal 15 11 4 26.67%
0.027

16 14 2 12.50%
0.023

GC 14 4 10 71.42% 15 7 8 53.33%

Table 1.  The expression of PVT1 in normal gastric mucosa and gastric cancer (GC) tissues in Han and Uygur.
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Discussion
GC is a major cause of cancer-related mortality in China17. The patient’s genetic background, bacterial virulence, 
environmental and many other factors have been implicated in affecting the gastric oncogenic process, but the 
underlying molecular mechanism remains poorly understood18. Many patients are diagnosed with advanced GC 
and the prognosis is poor. Screening for a sensitive biomarker for the diagnosis and prognostic estimation of GC 

Group n

Han

P n

Uygur

Pnegative positive negative positive

Sex
male 7 3 4

0.559
10 5 5

1.000
female 7 1 6 5 2 3

Age (years)
≤55 6 1 5

0.580
4 3 1

0.282
➢55 8 3 5 11 4 7

T
T1−2 3 3 0

0.033
2 1 1

1.000
T3–4 11 1 10 13 6 7

N
N0 4 3 1

0.041
6 5 1

0.041
N1−3 10 1 9 9 2 7

Stage
I II 3 2 1

0.176
6 5 1

0.041
III IV 11 2 9 9 2 7

Histopathological grade
Well + Moderately 
differentiated 6 2 4

1.000
6 1 5

0.119
Poorly differentiated 8 2 6 9 6 3

Table 2.  The relationship between the expression of PVT1 and clinicopathological features of GC patients. 
Note: aFisher’s exact probability test. T: the primary tumor site; N: the involvement of regional lymph nodes; M: 
the presence of distant metastases; *P < 0.05.

Group n

Han

Positive rate P n

Uygur

Positive rate Pnegative positive negative positive

Normal 23 19 4 17.39%
0.006

24 17 7 29.17%
0.032

GC 22 9 13 59.09% 20 7 13 65%

Table 3.  The expression of c-myc in normal gastric mucosa and GC in Han and Uygur.

n

Han

P n

Uygur

Pnegative positive negative positive

Sex
male 15 6 9

1.000
13 6 7

0.329
female 7 3 4 7 1 6

Age (years)
≤55 7 3 4

1.000
8 1 7

0.158
>55 15 6 9 12 6 6

T
T1–2 6 3 3

0.655
2 2 0

0.111
T3–4 16 6 10 18 5 13

N
N0 7 3 4

1.000
7 5 2

0.022
N1–3 15 6 9 13 2 11

Stage
I II 8 5 3

0.187
5 4 1

0.031
III IV 14 4 10 15 3 12

Histopathological grade
Well + Moderately 
differentiated 10 7 3

0.027
6 2 4

1.000
Poorly differentiated 12 2 10 14 5 9

Table 4.  The relationship between the expression of c-myc protein and clinicopathological features of patients 
with GC. Note: aFisher’s exact probability test. T: the primary tumor site; N: the involvement of regional lymph 
nodes; M: the presence of distant metastases; *P < 0.05.

c-myc− c-myc+
Correlation 
coefficient P value

PVT1− 7 2
0.546 0.005

PVT1+ 2 14

Table 5.  Correlation analysis between PVT1 and c-myc.
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would help to prolong survival19. Han and Uygur people in Xinjiang, China, have different genetic backgrounds, 
and their characteristics of morbidity and mobility in GC are also different20. Whether these biomarkers are as 
effective for diagnosis or prognosis estimation in the different ethnic groups is unknown.

In recent years, the results of transcriptomics studies have indicated that only approximately 2% of the genes 
comprising the human genome are protein-coding genes. The remaining 98% are transcribed into non-coding 
RNAs (ncRNAs). Among ncRNAs, 80% are lncRNAs21. Many studies have shown that lncRNAs are frequently 
deregulated in various cancers and that they exert multiple functions in cell proliferation, migration and invasion. 
Interestingly, lncRNAs could also be important biomarkers for clinical diagnosis and drug targeting in cancer22.

PVT1 is a 1957 bp linear lncRNA23 which consists of nine exons. Abnormal PVT1 expression has been shown 
to be a powerful predictor of cancer progression and patient survival in colorectal cancer, hepatocellular carci-
noma and lung cancer24. Research has also shown that PVT1 is linked to GC. Cao et al.13 analyzed GC tissues 
using a microarray and found that the lncRNA PVT1 was up-regulated in tumor tissues25. Kong et al.26 further 
confirmed that PVT1 was up-regulated in GC tissues using real time-PCR. The results suggested that PVT1 
silencing may be able to block the G1 phase of the cell cycle. Knockdown of PVT1 was reported to cause G1 phase 
arrest in clear cell renal cell carcinoma27 and melanoma cells28. PVT1 silencing decreases cyclin D1 expression. 
Also, PVT1 maybe associated with enhancer of zeste homolog 2, a histone methyltransferase and mediate epige-
netic regulation. Similarly, PVT1 can repress members of the INK family p15 and p16. Zhang et al.29 found that 
PVT1 promotes multidrug resistance in GC cells. These results indicate that PVT1 is closely related to the mech-
anism and treatment of GC. However, its precise functions and underlying molecular mechanisms remain to be 
determined. We are also eager to assess whether PVT1 expression plays a significant role in the carcinogenesis of 
GC in patients of different races.

Figure 2.  Decreased c-myc expression in BGC823 and AGS cells after interference with PVT1 expression. (A) 
Real time-PCR results show the endogenous PVT1 expression levels in the six GC cell lines BGC823, MGC803, 
MKN45, SGC7901, AGS and N87. (B) RNAi was used to interfere with the expression of PVT1 in BGC823 
and AGS cells, and then the efficiencies of PVT1 knockdown were investigated using real time-PCR. (C,D) 
Detection of c-myc protein expression levels by western blotting in BGC823 and AGS cells after silencing of 
PVT1. *P < 0.05.
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To answer these questions, in the present study, we collected tissues from Han and Uygur GC patients and 
normal persons. We aimed to investigate whether PVT1 is over-expressed in GC tissues from the two different 
ethnic groups. We also wanted to compare whether there are any significant differences between the cancer tis-
sues of these two groups. Our results confirmed that PVT1 is up-regulated in GC tissues compared with normal 
gastric tissues in both Han and Uygur patients based on ISH, but there is no significant difference between the 
two groups. The PVT1 serum levels in four different ethnic groups were higher in Uygur than in the other groups. 
Additionally, we analyzed the relationship between expression of PVT1 and the clinical pathological character-
istics, and the results suggest that PVT1 could be a marker for the diagnosis and assessment of the tendency for 
lymphatic metastasis of GC patients.

Metastasis and invasion are important factors and are responsible for most cancer-associated deaths. The 
5-year survival rate of metastatic or advanced GC is only 5–15%. The median overall survival for these patients is 
less than 1 year. Many studies have elucidated the pathogenesis of primary tumor formation, but the metastatic 
mechanisms remain poorly understood30. Recently, there have been increasing reports demonstrating that lncR-
NAs are emerging as critical biomolecules for tumor metastasis. Meng et al.31 found that the lncRNA CRNDE 

Figure 3.  Down-regulation of PVT1 inhibited the invasion and migration ability of GC cells. (A,B) The 
results of CCK8 assay showed that knock down of PVT1 had no obvious effect on cell proliferation in BGC823 
and AGS cells (P > 0.05). (C,D) Cell migration assays showed that interference with the expression of PVT1 
suppressed the cell migration ability of BGC823 and AGS cells, *P < 0.05. (E,F) Matrigel invasion assays showed 
that interference with the expression of PVT1 suppressed the cell invasion ability of BGC823 and AGS cells. 
*P < 0.05.
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promoted the cell growth and stimulated the metastasis of cervical cancer cells. Gao et al.32 investigated the func-
tional role of GAS5 in pancreatic cancer metastasis and found that GAS5 positively regulated the PTEN-induced 
tumor-suppressor pathway. Jiang et al.33 indicated that HOTAIR was related to the metastasis of non-small cell 
lung cancer via regulation of miR-613 expression. However, no biomarkers for early detection and prediction 
of lymph node metastasis have yet been well established for GC34. Our results from Han and Uygur GC tissues 
indicated that PVT1 correlates with lymphatic metastasis. In a further assay at the GC cell level, we also demon-
strated that interference with the expression of PVT1 increased cell metastasis and invasion ability. There have 
also been some other reports suggesting that PVT1 is related to metastasis in some cancers. Lan et al.35 found 
that PVT1 serves as a competing endogenous RNA for miR-186-5p, promoting the tumorigenesis and metasta-
sis of hepatocellular carcinoma. Zhou et al.36 reported that PVT1 is involved in the epithelial-to-mesenchymal 
transition (EMT) of digestive system cancer. All of these observations mean that PVT1 is closely related to the 
metastasis and invasion ability of GC cells. GC patients who have a high PVT1 level in their tissues need to be 
vigilant regarding lymphatic metastasis.

In addition, lncRNAs can regulate the transcription of adjacent genes by combining with transcription fac-
tors or polymerases. PVT1 is located in the cancer-related region, chromosome 8q24, upstream of the oncogene 
MYC. PVT1 function may thus be closely related to c-myc. Our IHC analysis also showed that PVT1 expression 
is related to c-myc and showed that they have the same expression tendency. In PVT1-silenced GC cells, c-myc 
was also down regulated. Dysregulation of c-myc is a common feature in cancer, and recent studies have shown 
that c-myc has important roles in GC development and progression37. High expression of c-myc is correlated 
with advanced disease stage, lymph-node metastasis and poor survival rates38. Knockdown of c-myc inhibited the 
invasion and metastasis of GC cell lines in vitro39. MYC was also found to be an indirect regulator of metastasis 
in a c-RAF-driven mouse model of non-small cell lung cancer40. Another study found that functional inactiva-
tion of MYC in human breast cancer cells specifically inhibited distant metastasis in vivo and invasive behavior 
of these cells in vitro41. MYC sometimes helps other molecular pathways to promote cancer metastasis. Notch1 
was reported to regulate invasion and metastasis of head and neck squamous cell carcinoma by inducing EMT 
through c-myc42. Yang et al. also found that PVT1 knockdown down regulated the expression of c-myc in pros-
tate cancer cell lines43. PVT1 may act through up-regulation of the expression of c-myc to promote lymph-node 
metastasis and progression of GC.

In this study, c-myc was correlated with lymph node metastasis only in Uygur GC patients and not in Han GC 
patients. This may have been due to the different genetic backgrounds in different ethnic groups. The molecular 
mechanism of lymph node involvement and metastasis maybe different in these two ethnic groups. PVT1 was 
reported to regulate some molecules to promote involvement and migration. PVT1 can promote EMT and migra-
tion by down regulating p21 in pancreatic cancer cells44. EMT in cancer cells leads to the acquisition of invasive 
and metastatic properties. In prostate cancer, PVT1 can act as a sponge for miRNA-186-5p and positively regu-
lates Twist1 to promote EMT45. PVT1 also decreases miR-195 expression by enhancing histone H3K27me3 and 
by direct sponging of miR-195 to modulate EMT in cervical cancer cells46. In gastric cancer cells, whether PVT1 
is related to these molecules and its functions are undefined. PVT1 also encodes a wide variety of non-coding 
RNAs, including a cluster of six annotated microRNAs: miR-1204, miR-1205, miR-1206, miR-1207-5p, miR-
1207-3p, and miR-1208. miR-1204 targets VDR to promote EMT and metastasis in breast cancer47. The molecular 
functions and effects of PVT1 in GC require further investigation. Further studies of these transcripts may pro-
vide novel insights into the functions of PVT1 in lymph node involvement.

Taken together, our findings reveal that PVT1 has a high expression level in the GC tissues of both Han and 
Uygur patients. The level of PVT1 in tissues can help to assess the risk of lymphatic metastasis in GC patients. It is 
also known to correlate with expression of c-myc. PVT1 can be a potential biomarker to predict the tendency for 
metastasis in both Han and Uygur GC patients.

In future research, because the exact regulatory mechanism for metastasis of PVT1 needs to be explored, we 
plan to analyze the PVT1-protein interaction networks in an attempt to identify the transcription factors or pol-
ymerases that are involved in the mechanism of PVT1 in GC cells.

Materials and Methods
Sample collection.  We collected 42 GC tumor tissues from 22 Han and 20 Uygur patients, and 47 nor-
mal gastric tissues, from 23 Han and 24 Uygur. We also collected 95 serum samples from four different ethnic 
groups, including 54 Han, 21 Uygur, 14 Kazak and 6 Hui people. The samples were collected at the First Affiliated 
Hospital of Shihezi, Xinjiang, China and the First Peoples’ Hospital of Kashi, Xinjiang, China. Clinical data of GC 
patients and normal people were obtained by medical record review. The patient records and information were 
anonymized and de-identified prior to analysis. Details of the investigation and the required informed consent 
were reviewed and approved by the Ethics Committee of the First Affiliated Hospital of Medicine School, Shihezi 
University.

GC TNM staging was according to the AJCC/UICC7th edition staging system48,49. T1 represents tumor inva-
sion of the lamina propria, muscularis mucosae or submucosa; T2 represents tumor invasion of the muscularis 
propria; T3 representstumor penetration of subserosal connective tissue without invasion of visceral perito-
neum or adjacent structures; T4 represents tumor invasion of the serosa (visceral peritoneum) or adjacent struc-
tures. GC in situ was categorized as stage 0; stage I includes T1N0M0 and T2N0M0; stage II includes T3N0M0, 
T2N1M0, T1N2M0, T4N0M0, T3N1M0, T2N2M0, and T1N3M0; stage III includes T4N1M0, T3N2M0, 
T2N3M0, T4N2M0, T3N3M0, and T4N3M0, and stage IV includes any T, any N and M1.

Tissue Microarray (TMA) construction.  All GC tissues were sectioned and stained with hematoxylin 
and eosin (HE). In addition, representative tissue areas of each sample were selected and marked on the slides. 
Subsequently, the fields corresponding to these selected regions were located in the corresponding paraffin block 
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for TMA construction. Tissue cylinders of 1.0 mm diameter were punched from these areas of each donor tissue 
block and brought into a recipient paraffin block using a homemade semiautomated tissue arrayer (Alphelys, 
Plaisir, France). The region of each tissue represented at least 70% of the typical region of interest in that sample. 
Finally, 5 μm-thick serial sections were prepared from the TMA blocks for ISH and IHC.

Detection of PVT1 expression in GC TMA by ISH.  Paraffin-embedded tissue samples were cut into 
4 μm-thick sections and mounted on slides. Samples were dewaxed in xylene and rehydrated using a graded 
series of ethanol solutions. Endogenous peroxidase activity was abolished by incubating the slides for 10 min 
in a peroxidase-blocking solution. After that, 0.1 M HCl was added to the GC TMA and incubated for 20 min, 
after which they were incubated with 0.5% Triton X-100 for 30 min. Sections were then treated with proteinase 
K solution, and finally fixed in 4% paraformaldehyde. Prehybridization was performed by adding 100 µL RNA 
hybridization solution dropwise. After pre-hybridization, 100 μL of probe was dropped onto the slide and it was 
hybridized overnight at 37 °C (18–20 h). The next day, anti-digoxin HRP-conjugated secondary antibody (dilu-
tion 1:100) was added and incubated for 2 h at 37 °C. The slides were then incubated in diaminobenzidine (DAB; 
Dako, Glostrup, Denmark)) buffer for 5 min, then stained with hematoxylin and finally washed with water. The 
slides were dehydrated through graded alcohol to xylene and mounted in an anti-fade mounting medium with 
mounting glass.

Detection of c-myc expression in GC TMA by IHC.  Paraffin-embedded tissue samples were cut into 
4 μm-thick sections and mounted on slides. Tissue samples were dewaxed in xylene and rehydrated through a 
graded series of ethanol solutions. Endogenous peroxidase activity was abolished by incubating the slides for 
5 min in a peroxidase-blocking solution. A total of 50 μL of the primary antibody against c-myc (ZSGB-BIO, 
Beijing, China, 1:100) was dropped onto each slide, followed by incubation overnight at 4 °C. The slides were 
then incubated with DAB (Dako) buffer for 5 min. Subsequently, slides were stained for 3 min with hematoxylin 
and then washed with water. The slides were dehydrated through graded alcohol to xylene and mounted in an 
anti-fade mounting medium with a mounting glass.

ISH and IHC scoring criteria.  All the immunostained slides were independently evaluated by two expe-
rienced pathologists. The expressions of these two markers were scored based on cytoplasmic/nuclear staining 
intensity and percentage of positively-stained cells. The staining intensity was categorized as follows: 0, negative; 
1, buff; 2, yellow and 3, brown. The percentages of positively-stained cells were scored as follows: 0 (<5% positive 
cells), 1 (6–25% positive cells), 2 (26–50% positive cells), 3 (51–75% positive cells) or 4 (≥76% positive cells).

The percentages of positively-stained cells and the staining intensities were further multiplied to generate the 
ISH score for each case and to evaluate PVT1 and c-myc expression. Four categories of expression were listed as 
follows: − (a score of 0–1), + (a score of 2–4), ++ (a score of 5–8), and +++ (a score of 9–12). PVT1 and c-myc 
were considered negative when the score was between + and ++ categories, whereas the +++ scorecategory 
were considered PVT1 positive.

Cell culture.  The human GC cell lines AGS, SGC7901, N87, MGC803, BGC823 and MKN45 were donated 
by the Laboratory of Molecular Oncology3, Peking University Cancer Hospital/Institute. The cells were routinely 
cultured in DMEM containing 4.5 g/L glucose and supplemented with 10% fetal bovine serum (FBS). Cells were 
maintained at 37 °C in a humidified atmosphere of 5% CO2.

RNA extraction and cDNA synthesis.  Total RNA from GC cells and serum was isolated using Trizol 
reagent (Invitrogen, Carlsbad, CA, USA) following the manufacturer’s instructions. A 750 μL aliquot of Trizol 
reagent was added directly to 250 μL of serum. The integrity of RNA was confirmed using 1.2% agarose gel elec-
trophoresis. The purity and concentration of RNA were assessed by measuring the absorbance by spectropho-
tometer at 280 and 260 nm. Total RNA from all samples was reverse transcription using a Revert aid First Strand 
cDNA Synthesis Kit (Thermo Fisher Scientific, Waltham, MA, USA) following the manufacturer’s protocol and 
every sample had an RNA content of 1.0 µg.

Real-time PCR.  The PVT1 expression level was quantified with a SYBR Green PCR kit (Qiagen, 
Valencia, CA, USA) following the manufacturer’s protocol, and the following primers: forward, 
5′-GGAAGGTGGAGCGTAAGGA-3′ and reverse, 5′-CAATGCCGCCAATCTTGTA-3′. The length of the quanti-
tative PCR product was 92 base pairs. The expression levels of PVT1 in each cell line were normalized to the respective 
β-actin expression levels with the following primers: forward, 5′-CCCAGCACAATGAAGATCAAGATCAT-3′,  
and reverse, 5′-ATCTGCTGGAAGGTGGACAGCGA-3′ (product length, 101 base pairs). The amplification pro-
tocol included an initial heat activation step at 95 °C for 5 min, followed by 40 cycles of denaturation at 95 °C for 
30 s and a combined annealing/extension step at 55 °C for 30 s. The expression of PVT1 was calculated using the 
2(−ΔCT) value and the specificity of each reaction was confirmed by melting curve analysis.

Plasmid transfection and RNAi assay.  The shRNA interference plasmids for lncRNA PVT1 were syn-
thesized by Sangon, Ltd (Shanghai, China) using the plasmid pGPU6/GFP/Neo. Four shRNA plasmids for PVT1 
were synthesized and named sh-PVT1-1, sh-PVT1-2, sh-PVT1-3, and sh-PVT1-4 (Supplement Table 1), with 
the empty plasmid designated sh-NC. The interference sequence was 5′-GGACTTGAGAACTGTCCTTAC-3′. 
Human GC BGC823 and AGS cells were transfected with 2 µg sh-PVT1 or sh-NC using Lipofectamine 2000 
transfection reagent (Life Technologies) according to the manufacturer’s instructions. After 48 h, cells trans-
fected with shRNA were lysed and RNA was extracted for real-time PCR to determine the transfection efficiency 
(Supplement Fig. 2).
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Western blotting.  Total proteins were collected from the GC cells. Proteins were fractionated by sodium 
dodecyl sulfate polyacrylamide gel electrophoresis, transferred to polyvinylidene difluoride membranes, blocked 
in 5% skimmed milk powder at room temperature for 2 h, and incubated with antibodies at 4 °C overnight. 
Antibodies against c-myc (mouse monoclonal antibody anti-c-myc; 1:100; Boster, Wuhan, China) and beta 
actin (mouse monoclonal antibody anti-β-Actin; 1:1000; ZSGB-BIO, Beijing, China). Next, the membranes were 
washed three times with TBST, and the secondary antibody (goat anti-Mouse IgG; 1:5,000; ZSGB-BIO) was then 
added and incubated for 2 h at room temperature, then washed three times with TBST.

Cell Counting Kit-8 (CCK8) assay.  To determine cell growth, 5 × 103 cells were seeded into 96-well plates 
and transfected with shRNA. Cell proliferation was determined using CCK8 according to the manufacturer’s 
protocol. The fluorescence intensity was measured using a fluorescence microplate reader and absorbance was 
measured at 450 nm (Molecular Devices, Sunnyvale, CA, USA). Three independent experiments (three replicates 
in each) were performed.

Invasion and migration assays.  First, the interference plasmid of PVT1 was transfected into BGC823 
and AGS cells for 48 h. The transfected cells were then treated with trypsin and counted, and 3 × 104 cells were 
inoculated into a 24-well plate with 8 mm pore size chamber inserts. For invasion assays, Matrigel (1:8 dilution) 
was placed into the upper chamber and the plate was incubated for 3 h at 37 °C. Cells in 200 µL serum-free 
DMEM were seeded into a Transwell apparatus incubator at 37 °C in 5% CO2 for 48 h. DMEM containing 20% 
FBS (600 µL) was added to the lower chamber. For migration assays, cells were placed into the upper chamber of 
each well with the non-coated membrane and 20% FBS was added to the lower chamber; the plate was then incu-
bated for 24 h. At the end of the incubation time, cells were fixed in methanol for 20 min, stained in 0.1% crystal 
violet for 30 min and subjected to microscopic inspection.

Statistical analysis.  The rank sum test was used to compare the differences between GC and normal serum 
cases. The correlations between PVT1, c-myc and clinicopathological characteristics of GC patients were analyzed 
by χ2 and Spearman’s test. All statistical analyses were performed using Statistical Products and Services Solutions 
software (SPSS, version 20.0, Chicago, IL, USA). Values of P < 0.05 were considered statistically significant.
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