
A major goal of human genetics is to identify genetic 
variation causally related to either Mendelian or complex 
diseases. More broadly, a fundamental goal of genetics is 
to describe the genetic architecture underlying any trait 
of interest. Most candidate gene studies, linkage studies, 
or genome-wide association studies to date have focused 
on European populations, for which large samples of 
ancestrally homogeneous individuals from relatively 
homogeneous environments have been established. For 
example, approximately 90% of genome-wide association 
studies have been performed using samples of individuals 
with European ancestry [1]. However, expanding human 
genetic studies to include diverse worldwide populations 
is needed to: (i) identify novel loci absent or not readily 
identifiable in European populations due to low allele 
frequencies and the resulting low statistical power; 
(ii) establish the extent to which findings from studies of 
European populations generalize or transfer to non-
European populations; and (iii) study diseases or traits, 
such as podoconiosis and human African trypano-
somiasis (sleeping sickness), present in non-European 
populations only [2-4].

In this article, we highlight the special value of admixed 
populations in disease mapping studies. Admixed 
populations are not ancestrally homogeneous but rather 
are populations with ancestry from more than one 
parental population. Admixed populations that have 
successfully contributed to the mapping of susceptibility 

loci include African Americans, who have African and 
European ancestry, and Latino Americans, who have 
African, European, and Native American ancestry. These 
admixed populations afford opportunities for the study of 
health inequalities or group differences, which can occur 
when there are differences in traits such as disease 
susceptibility (for example, a 2.8-fold increase in risk for 
hypertensive heart disease in African Americans 
compared with European Americans [5]) or drug 
response (for example, differential response between 
populations with African and European ancestry to 
peginterferon α-2a or peginterferon α-2b combined with 
ribavirin, which are used to treat chronic infection with 
the hepatitis C virus [6]). Such differences result from a 
combination of environmental and genetic differences, 
the latter of which are our focus.

Admixture mapping and association mapping studies 
in admixed populations are poised to enter a new era as a 
result of the availability of economical high-throughput 
genotyping and sequencing. To date, ancestry has been 
estimated using panels containing <10,000 highly 
ascertained markers known as ancestry-informative 
markers (AIMs) [7]. Estimation of ancestry improves 
with panels of approximately 1,000,000 random markers 
compared with sparse panels of AIMs, leading to 
increased statistical power and resolution for admixture 
mapping. Improved estimation of ancestry at the marker 
level results in decreased false-positive error rates and 
increased power for association mapping due to the 
elimination of confounding by ancestry. Highly resolved 
estimation of local ancestry can also facilitate detection 
of natural selection in admixed samples. Improved 
estimation of ancestry will therefore contribute to 
mapping of disease loci as well as contribute to 
understanding demographic and adaptive history.

Population genetics of admixture
Conceptually, an admixed human population resembles 
an advanced intercross between outbred populations 
with the admixed individuals having variable ancestry 
[8]. To illustrate the salient features of variation in 
ancestry, consider two isolated populations that have 
experienced no interbreeding (Figure 1). In Generation 0, 
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the two parental populations form a meta-population, 
which is simply a population of populations (Figure 1). At 
this generation, every marker in the genome of an 
individual traces its ancestry to only one parental 
population. Consequently, ancestry for each person at 
each marker, known as local ancestry, is constant for each 
individual across all loci.

After one generation of random mating within the 
meta-population, an individual has inherited one 
chromosome from each parental population (Figure 1). 
Local ancestry is still uniform across all loci for a given 
individual. After a second generation of random mating 
and beyond, an individual’s genome is a mosaic of 
chromosomal segments with ancestry switching from 
segment to segment among the parental populations 
(Figure 1). An ancestry switch refers to a change in 
ancestry in the interval between two markers and is the 
result of recombination during meiosis. In this simple 
example, the proportion of ancestors from each parental 
population is equal for every admixed individual.

There are several characteristics of admixed 
populations that are relevant to disease loci mapping. 
First, not all individuals in an admixed population 
necessarily have the same proportion of ancestors from 
each parental population. Second, all loci do not have to 
share the same genealogical history. These two 
characteristics of admixed populations are sources of 
variance that must be accounted for when estimating 
local ancestry. Third, at any given locus, allele frequencies 
can vary between the parental populations. The expected 
allele frequency in the admixed population is the linear 
combination of the allele frequencies in the parental 
populations with weights determined by the sample 
admixture proportion. Fourth, the admixed population 
can be more genetically diverse than the parental 
populations if a locus is not polymorphic with the same 
alleles in all parental populations. For example, suppose a 
locus is polymorphic in one parental population and 
monomorphic in a second parental population. In 
addition, suppose a second locus is monomorphic in the 
first parental population and polymorphic in the second 
parental population. The admixed population is expected 
to be polymorphic at both loci. Fifth, similar to the way in 
which allele frequencies at a locus may vary, the patterns 
of covariance between allele frequencies at linked loci, 
known as linkage disequilibrium, can also differ. As a 
result, the distribution of haplotype frequencies in the 
admixed population can be substantially different from 
the distributions of haplotype frequencies in the parental 
populations. These latter three characteristics of admixed 
populations affect how many markers are needed for 
association mapping and the fine-mapping of functional 
variants.

Admixture mapping: from AIMs to random markers
Linkage disequilibrium caused by admixture that extends 
further than background linkage disequilibrium in the 
parental populations is the basis of admixture mapping 
[9,10]. Admixture mapping became practical in 2004 
with the development of statistical methods [11] and 
panels of AIMs developed from reference databases [12] 
(for a historical overview of progress, see Winkler et al. 
[7]). Essentially, admixture mapping is designed to 
evaluate variation in ancestry. Tests of linkage are based 
on assessing the relationship between phenotype and 
local ancestry [13]. The standard case-control design 
involves a comparison of local ancestry between cases 
and controls, whereas the case-only design involves a 
comparison of local ancestry to the average local ancestry 
[11,14,15]. The average local ancestry is synonymous 
with global ancestry and the individual admixture 
proportion.

The next era of admixture mapping will benefit from an 
increased density of markers. Local ancestry can be 

Figure 1. Schematic representation of population stratification 
and admixture. Population stratification can confound analysis 
of the meta-population in Generation 0 if allele frequencies differ 
between the two parental populations. Admixed individuals are 
generated by interbreeding among previously isolated populations. 
In subsequent generations, due to the cumulative effect of meioses, 
ancestry switches (that is, changes in ancestry in the interval 
between two markers) accumulate and chromosomes become 
mosaics of ancestry.
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estimated using either AIMs or random markers. 
Furthermore, given the distribution of local ancestry, we 
can efficiently estimate global ancestry (Figure 2). 
However, despite ascertainment for ancestry informative-
ness, a sparse panel of AIMs does not extract as much 
information regarding ancestry as does a dense panel of 
random markers [16]. Dense panels provide two 
advantages: increased sensitivity to smaller segments and 
higher resolution of ancestry switches. The average 
intermarker distance decreases from approximately 
1,500  kb for a typical panel of 2,000 AIMs to approxi-
mately 3 kb for a dense panel of 1,000,000 markers. As an 
example, in a sample of 1,976 African Americans [17], we 
detected a 1,027 kb segment of European ancestry in an 

African background with the intervals for the left and 
right switches localized to 35 kb and 1 kb, respectively. 
This segment is undetectable using a sparse panel of 
AIMs [18], as it lies entirely between flanking markers 
1,176 kb apart. Expanded to the genome-wide scale, how 
many random markers would it take to detect all ancestry 
switches? By examining the individual with the most 
ancestry switches in our sample, we estimate that the 
number of random markers required is 177,000 (Figure 3), 
for which high-throughput genotyping will be more than 
sufficient. Some ‘failures’ of previous admixture mapping 
studies might have resulted from peaks of excess ancestry 
falling between AIMs. Revisiting these studies with 
denser panels might yield positive findings.

Figure 2. Local and global ancestry for three unrelated admixed African American individuals. Blue indicates two chromosomes of African 
ancestry, red indicates two chromosomes of European ancestry, and black indicates one chromosome of African ancestry and one chromosome 
of European ancestry. (a) An individual with a low proportion of African ancestry is depicted. (b) An individual with similar proportions of African 
and European ancestry is depicted. (c) An individual with a high proportion of African ancestry is depicted. The histograms on the right indicate the 
genome-wide frequencies of the three local ancestry values. Global ancestry equals the average of local ancestry divided by two (to account for 
diploidy). Among self-identified African Americans, the proportion of African ancestry can range from 0 to 1, representing the full range of variation. 
The information content of the local ancestry plots on the left is considerably higher than the global ancestry summaries on the right.
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Fine-scale mapping of ancestry enables additional 
characterization of the distribution of ancestry switches. 
By definition, ancestry switches are a subset of meiotic 
recombination events. The expected number of ancestry 
switches can be calculated using a fine-scale 
recombination map such as the one provided by the 
International HapMap Project [19]. Deviation between 
the observed and expected numbers of ancestry switches 
indicates an inconsistency between the recombination 
map and the sample. A trivial explanation for such 
inconsistencies is error in the recombination map and/or 
the estimation of ancestry switches. Alternatively, fewer 
ancestry switches than expected given the local 
recombination rate might reflect negative natural 
selection, whereas more ancestry switches than expected 
might reflect positive natural selection [20]. To illustrate, 
on chromosome 6p in our sample of African Americans, 
the region from 28 Mb to 33 Mb shows an excess of 
ancestry switches (Figure 4). This region includes the 
major histocompatibility complex, which includes 
multiple immune response genes and is well known to be 
under positive natural selection. However, formal tests to 
evaluate natural selection in this manner await 
development. The distribution of ancestry switches also 
provides information with respect to the number of 
generations since admixture began [21].

Two major challenges remain in admixture mapping. 
First, inferring ancestry conditional on two parental 
populations is generally considered to be solved, but 
inferring ancestry for admixed populations with three or 
more parental populations remains challenging, 
particularly when the number of parental populations is 
unknown. As an example of three-way admixture, Puerto 
Rican individuals can have varying proportions of 
African, European, and Native American ancestry 
[22,23]. Compared with a prevalence of 7.8% of asthma 
among European Americans, the prevalence of asthma 
among Puerto Ricans is 16.6% [24]. Second, admixture 
mapping involves testing multiple markers across the 
genome. To maintain control of the false-positive error 
rate and provide maximum power, the genome-wide 
significance level must account for the number of 
markers tested while accounting for correlation of 
ancestry between markers. Appropriate genome-wide 
significance levels for admixture mapping are unclear 
[25-27]: for African Americans, estimates of the number 
of tests range from 400 [26] to 31,000 [27].

Refining association mapping in admixed 
populations
Association mapping is designed to evaluate differences 
in genotype frequencies. The major challenge for this 

Figure 3. The effect of marker density on detecting ancestry 
switches. The number of ancestry switches detected as a function 
of marker density for the individual with the largest number of ancestry 
switches (n = 737) among 1,976 African Americans [17]. The continuous 
red line indicates the sparse panel of 1,943 ancestry-informative markers 
[18]. The dashed red line indicates saturation at 177,000 random 
markers, after which more markers provide no additional information 
regarding the number of ancestry switches. For admixed African 
Americans, high-throughput genotyping of approximately 1 million 
markers using commercially available microarrays is sufficient to 
extract all of the information on local ancestry.
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Figure 4. Detecting natural selection based on the distribution 
of ancestry switches. The expected number of ancestry switches 
is based on the local recombination rate, provided by phase II of the 
International HapMap Project [19]. The observed number of ancestry 
switches is based on a sample of 1,018 unrelated African Americans 
[17]. An excess of ancestry switches on chromosome 6p co-localizes 
with the major histocompatibility complex (MHC; indicated by the bar), 
consistent with the well-reported evidence of positive natural selection 
in this genomic region. Comparing the distributions of the observed 
and expected numbers of ancestry switches in an admixed sample can 
reveal genomic regions experiencing either positive natural selection 
(if there is an observed excess of ancestry switches) or negative natural 
selection (if there is an observed deficiency of ancestry switches).
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approach in admixed populations is the risk of false-
positive genotype-phenotype associations due to 
variation in ancestry [28]. There are several techniques to 
control for this form of confounding for samples of 
ancestrally homogeneous individuals, including genomic 
control, structured association testing, principal 
components, variance components, and propensity 
scores [16,29,30]. These techniques control for 
confounding at the level of the individual but none 
controls for confounding at the level of specific markers 
such as SNPs [31].

Global ancestry as a covariate will control for 
confounding due to variation in individual ancestry if 
there are no marker-specific ancestry effects and 
genotypic effects are additive [32]. If there are marker-
specific ancestry effects, or if genotypic effects are not 
additive, it is important to measure local ancestry to 
control for confounding due to admixture (Table 1). 
Accounting for local ancestry can also improve power of 
association testing if there are both local ancestry and 
genotypic effects at the same marker (Table 1). 
Controlling for local ancestry will not necessarily control 
for confounding due to global ancestry because local 
ancestry and global ancestry are weakly correlated [33]. 
Therefore, control of confounding due to admixture 
requires conditioning on both local and global ancestry.

One way to control for confounding due to local 
ancestry in association mapping is to simply include local 

ancestry as an additive covariate. This parametric 
approach assumes that the effect of local ancestry is 
additive, analogous to the additive genetic model for 
genotypes. Alternatively, a non-parametric approach to 
control for confounding due to local ancestry is stratified 
regression. Specifically, when testing for association at a 
locus, one actually performs separate regressions with 
the subgroups defined by local ancestry. The separate 
regressions can then be pooled to generate inverse 
variance-weighted regression coefficients and standard 
errors. One can also perform subgroup analyses. For 
example, differences in effect sizes at a locus can be 
tested by Welch’s t test, and differences in reference allele 
frequencies can be tested using a test of proportions 
between subgroups. These tests help to address the issue 
of heterogeneity of genetic associations across popula-
tions. Furthermore, we can jointly test for genotype and 
ancestry effects at each marker [34].

Imputation is commonly used in association studies to 
‘fill in’ genotypes for untyped markers by leveraging 
external data on patterns of linkage disequilibrium [35]. 
For example, the HapMap [19] or 1000 Genomes CEU 
[36] data provide reference data regarding linkage 
disequilibrium patterns relevant for association studies 
comprising samples of similar European ancestry. For 
admixed samples, each parental population may be 
represented by a separate reference data set. However, it 
is not yet clear how best to utilize multiple reference data 
sets to maximize imputation accuracy [37]. Ancestry-
aware imputation can be more accurate than not 
accounting for local ancestry [38].

In direct contrast to the situation with admixture 
mapping, approximately 1 million markers are barely 
sufficient to saturate background linkage disequilibrium 
in association mapping in populations of European or 
East Asian ancestry and insufficient for populations of 
African ancestry, as they are more genetically diverse 
[19]. In addition to weaker background linkage 
disequilibrium in populations of African ancestry 
compared with those of European ancestry, there are 
more low-frequency and rare variants in populations of 
African ancestry [36]. Whole-genome sequencing can 
contribute substantially to association mapping by 
eliminating the use of tagging variants that achieve poor 
coverage in genomic regions of weak linkage 
disequilibrium and by discovering all genetic variants 
regardless of frequency. Compared with high-throughput 
genotyping, sequencing will also expedite finding causal 
variants (that is, genetic variants directly associated with 
the phenotype of interest).

Success stories
Several success stories of disease loci mapping in 
admixed populations have been reported [7,39], 

Table 1. Controlling for confounding due to admixture in 
association testing

 Generative modela Regression modeld

    Genotype 
   Genotype and stratified by 
βgenotype

b βlocal ancestry
c Genotype global ancestry local ancestry

0 0 0.048 0.044 0.053

0 1 0.570 0.538 0.052

1 0 0.892 0.892 0.893

1 1 0.599 0.626 0.899

The first two rows demonstrate inflation of the false-positive error rate resulting 
from confounding due to admixture. The second two rows demonstrate the 
loss of power resulting from confounding due to admixture. In both cases, 
confounding is controlled by local ancestry but not by global ancestry. aTwo 
isolated parental populations were generated with FST = 0.115 (FST is the ratio of 
the observed variance in allele frequencies among populations to the variance 
expected if the populations were randomly mating), mimicking the amount 
of population differentiation between the African and European ancestors of 
African Americans. A sample of admixed individuals was generated with 80% 
of the genome inherited from the first parental population, mimicking the 
amount of African ancestry in African Americans. A dataset consisted of 1,000 
unrelated individuals and 1,000 unlinked markers. The generative model for 
the phenotype was a linear model with the listed fixed effects for the queried 
marker, no effects for all other markers, and noise equal to a random deviate 
from the standard normal distribution. bFor each marker and individual, the 
genotype was coded as 0, 1, or 2 copies of the derived allele. cFor each marker 
and individual, local ancestry was coded as 0, 1, or 2 copies inherited from the 
first parental population. dThe rejection rates (false-positive error rates if βgenotype 
= 0, or power if βgenotype = 1) for testing genotype association at one marker are 
shown. The significance level was 0.05.
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including studies in African Americans for asthma, 
cancer, and kidney disease. The two diseases for which 
fine-mapping of the original admixture signal has 
proceeded the furthest are prostate cancer and end-stage 
kidney disease.

An admixture signal on chromosome 8q24 was found 
for prostate cancer in African Americans [40]. The same 
locus was detected by linkage analysis in Icelanders [41]. 
At least three blocks of linkage disequilibrium containing 
several independently associated variants have been 
identified within this locus [41-44]. Molecular studies 
identified enhancer elements for the oncogenic 
transcription factor MYC that regulate tissue-specific 
expression patterns, which potentially explain why the 
locus affects risk for breast and colorectal cancer in 
addition to prostate cancer [45-51]. One of these 
enhancers interacts with the MYC promoter through 
binding of the transcription factor complex β-catenin/
TCF7L2 [46,50]. TCF7L2 is the most strongly associated 
gene for type 2 diabetes [52], providing in part a genetic 
basis for the epidemiological association between these 
two diseases. Thus, although the original admixture 
signal was detected for prostate cancer, ongoing follow-
up studies indicate that the locus also influences breast 
cancer, colorectal cancer, and type 2 diabetes.

An admixture signal on chromosome 22q13 was found 
for focal segmental glomerulosclerosis, a cause of end-
stage kidney disease, in African Americans [53,54]. 
Originally, the candidate gene underlying this signal was 
thought to be MYH9, which encodes non-muscle myosin 
heavy chain 9 and is highly expressed in kidney podocytes 
[53,54]. Sequence data from the 1000 Genomes Project 
[36] included newly discovered variants in a part of 
chromosome 22q13 that had poor coverage in the 
International HapMap Project [55]. Using the more 
comprehensive sequence data, it now appears that the 
major effect gene is that encoding apolipoprotein L1, 
which is in linkage disequilibrium with MYH9 [56]. The 
protein product apolipoprotein L1 has trypanolytic 
activity; the gene locus appears to be under balancing 
selection for protection against sleeping sickness at the 
cost of increased risk for end-stage kidney disease [56]. 
Starting from the original admixture signal, sequence 
data have permitted fine-mapping, with the majority of 
the signal resolved to two alleles located in the last exon 
of the gene encoding apolipoprotein L1 [56].

Admixed populations: how many markers should 
one use?
In the USA, the two most commonly studied admixed 
populations are African Americans and Latino 
Americans. Both of these populations are characterized 
by less than 25 generations since admixture began as a 
result of maritime European expansion. For both of these 

admixed populations, the parental populations 
genetically differ at the intercontinental level. Population 
differentiation is often measured by FST, which is defined 
as the ratio of the observed variance in allele frequencies 
among populations to the variance expected if the 
populations were randomly mating. FST at the 
intercontinental level is generally greater than 0.10 [55]. 
Other examples of admixed populations with this level of 
population differentiation include Ashkenazi Jews (who 
have Eastern European and Middle Eastern ancestry), 
South African Coloureds (who have Bantu-speaking 
African, European, Indian, Khoisan, and Southeast Asian 
ancestry), Australian Aboriginals (who have Aboriginal 
and European ancestry), and Pacific Islanders (who have 
European and Polynesian ancestry) [7].

We estimate that <200,000 random markers (that is, 
markers not ascertained for ancestry informativeness) 
are sufficient to saturate the signal of linkage 
disequilibrium due to admixture in the context of 
admixture mapping for African Americans. A higher 
density of markers may enable detection of older 
admixture, because the number of ancestry switches (and 
the number of markers required to detect all of those 
ancestry switches) increases as the number of generations 
since admixture began increases. As a first-pass 
approximation, a sample is well powered to detect 
population structure if 1/FST exceeds the geometric mean 
of the number of unrelated individuals and the number of 
independent markers [57]. With a sufficiently large 
sample and dense markers, it might be possible to detect 
admixture among parental populations that differ at the 
intracontinental level, or FST of the order of 0.01 [57], 
which is relevant for analysis of Northern Europe versus 
Southern Europe [57] and East Asian populations [58]. It 
also may be possible to detect admixture that occurred 
more distantly in the past (for example, approximately 
100 generations ago), for example, in the Uyghurs in 
western China (who have European and East Asian 
ancestry) [59]. At a more ancient level, Tishkoff et al. 
reported evidence of admixture between Bantu-speaking 
Africans and Khoisans [60]. At an even more ancient 
level, the proportion of Neandertal ancestry of Eurasians 
has been estimated to be between 1% and 4% [61]. 
Characterization of populations with complex patterns of 
admixture can contribute substantially to our 
understanding of population history and can also 
contribute to understanding complex disease.

Bright prospects for the future
The convergence of high-throughput genotyping or 
sequencing and new methods to infer local ancestry 
allows for joint admixture and association analysis. 
Furthermore, sensitivity to detect admixture afforded by 
the combination of larger samples, denser markers, and 
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improved inferential methods has increased for ancient 
admixture events and admixture between more closely 
related populations. Improved estimation of ancestry will 
benefit association mapping in admixed populations by 
eliminating the effects of confounding due to variation in 
ancestry. High-throughput genotyping and sequencing 
will enable refined estimation of ancestry, making disease 
loci identification in admixed populations more powerful.
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