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ABSTRACT

Genomes are spatiotemporally organized within the
cell nucleus. Genome-wide chromosome conforma-
tion capture (Hi-C) technologies have uncovered the
3D genome organization. Furthermore, live-cell imag-
ing experiments have revealed that genomes are
functional in 4D. Although computational modeling
methods can convert 2D Hi-C data into population-
averaged static 3D genome models, exploring 4D
genome nature based on 2D Hi-C data remains lack-
ing. Here, we describe a 4D simulation method, PHi-
C (polymer dynamics deciphered from Hi-C data),
that depicts 4D genome features from 2D Hi-C data
by polymer modeling. PHi-C allows users to inter-
pret 2D Hi-C data as physical interaction parameters
within single chromosomes. The physical interac-
tion parameters can then be used in the simulations
and analyses to demonstrate dynamic characteris-
tics of genomic loci and chromosomes as observed
in live-cell imaging experiments. PHi-C is available at
https://github.com/soyashinkai/PHi-C.

INTRODUCTION

Genomes consist of 1D DNA sequences and are spatiotem-
porally organized within the cell nucleus. Contact frequen-
cies in the form of matrix data, measured using genome-
wide chromosome conformation capture (Hi-C) technolo-
gies, have uncovered 3D features of average genome organi-
zation in a cell population (1,2). Moreover, live-cell imaging
experiments can reveal dynamic chromatin organization in
response to biological perturbations within single cells (3–

5). Proper expression of genes should require orchestration
of their regulatory elements within the dynamic 3D genome
organization. Bridging the gap between these different sets
of data derived from population and single cells is a chal-
lenge for modeling dynamic genome organization (6,7).

Every Hi-C experiment provides 2D contact matrix data
for a population of cells. Several computational modeling
methods have been developed to reconstruct population-
averaged static 3D genome structures from 2D contact ma-
trix data and predict Hi-C data (8–10). In addition, there
has been the development of not only bioinformatic nor-
malization techniques in Hi-C matrix data processing to
reduce experimental biases by matrix balancing (11–13)
but also probabilistic modeling to eliminate systematic bi-
ases (14,15). However, the meaning of a contact matrix as
quantitative probability data has not been discussed; more-
over, both a concept and a computational method to ex-
plore dynamic 3D genome organization remain lacking.

Here, we propose PHi-C (polymer dynamics deciphered
from Hi-C data), a simulation tool that can overcome these
challenges by polymer modeling from a mathematical per-
spective and at low computational cost. PHi-C is a method
that deciphers Hi-C data into polymer dynamics simula-
tions (Figure 1). PHi-C uses Hi-C contact matrix data gen-
erated from a hic file through JUICER (16) as input (Sup-
plementary Figure S1A). PHi-C assumes that a genomic re-
gion of interest at an appropriate resolution can be modeled
using a polymer network model, in which one monomer
corresponds to the genomic bin size of the contact matrix
data with attractive and repulsive interaction parameters
between all pairs of monomers described as matrix data (see
the ‘Materials and Methods’ section). Instead of finding
optimized 3D conformations, we can utilize the optimiza-
tion procedure (Supplementary Figure S1B and S1C) to ob-
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Figure 1. Overview of PHi-C pipeline. Hi-C contact matrix data generated from a hic file through JUICER are deciphered by the PHi-C optimization
algorithm based on the polymer network model. Then, 4D polymer dynamics simulations of the polymer network model with the optimized interaction
parameters are carried out.

Figure 2. (Upper) In the bead–spring model, the probability density of the
distance rij between the ith and jth beads (or monomers) is characterized
by only the standard deviation �ij. (Lower) The contact Gaussian kernel
function can capture contacts with the contact distance σ .

tain optimal interaction parameters of the polymer network
model by using an analytical relationship between the pa-
rameters and the contact matrix. We can then reconstruct
an optimized contact matrix validated by input Hi-C ma-
trix data using Pearson’s correlation r. Finally, we can per-
form polymer dynamics simulations of the polymer network
model equipped with the optimal interaction parameters.

MATERIALS AND METHODS

Defining contacts in polymer modeling

The bead–spring model in polymer physics consists of N
beads (or monomers) connected by N − 1 harmonic springs
along the polymer backbone (Figure 2), where a polymer
conformation is represented by

{
Ri = (

Ri,x, Ri,y, Ri,z
)}N−1

i=0
and the characteristic length between adjacent monomers

is expressed by b (17). The linearity of the harmonic
springs enables us to analytically calculate the prob-
ability of the conformation r i j = Ri − R j between
the ith and jth monomers as follows: p(r i j )dr i j =
(2π�2

i j )
−3/2 exp [−(x2 + y2 + z2)/2�2

i j ] dx dy dz, where

�2
i j =

〈
r2

i j

〉
/3 is the variance for space coordinate (i.e. x, y,

z). Then, the probability density function for the distance
ri j = |r i j | becomes p(ri j ) = √

2/π �−3
i j r 2

i j exp (−r 2
i j/2�2

i j ).
So far, a mathematical expression to define contacts
within the contact distance σ has been written by∫ σ

0 p(ri j ) dri j (7,18). However, the expression makes
it difficult to improve further analytical calculations.
Therefore, we introduced the contact Gaussian ker-
nel with σ (Figure 2). Then, the contact probability
between the ith and jth monomers is represented by
Ci j ∝ ∫ ∞

0 p(ri j ) exp (−r 2
i j/2σ 2) dri j . Finally, under the

normalization Cii = 1, the contact probability can be
expressed as

Ci j =
(

1 + �2
i j

σ 2

)−3/2

, (1)

which means that the ratio of the conformational fluctua-
tion �ij to the contact distance σ is a physically important
parameter to define the contacts. Note that Equation (1)
was also recently derived with a similar consideration (19).

Matrix transformations between polymer network model and
contact matrix

The polymer network model is a generalized model of the
bead–spring model and the Gaussian network model (20–
22), and is characterized by the interaction matrix K =(
ki j

)
, which is an N × N matrix for an N-monomer poly-

mer system. The element kij generally represents the inten-
sity of attractive or repulsive interaction between the ith and
jth monomers. Therefore, the matrix satisfies kii = 0 and
K = KT. Basically, the elastic force between two monomers
results from an attractive interaction with a positive value.
Furthermore, here, we take into account negative values,
which represent repulsive interactions between monomers.

Through analytical calculations in the theoretical frame-
work of the polymer network model (see Supplementary
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Data), we found matrix transformations between the inter-
action matrix of the polymer network model K and the con-
tact matrix C = (

Ci j
)

(Figure 3): K � L � M � �2 � C,
where the matrices L, M and �2 represent the Laplacian, co-
variance and variance matrices, respectively. The analytical
matrix transformations are straightforwardly implemented
in our Python codes using the NumPy package.

Overview of PHi-C

PHi-C enables us to decipher Hi-C data into polymer
dynamics simulation. PHi-C is based on the theory of the
polymer network model and defining contacts between
two monomers on the polymer (Supplementary Data). The
theoretical framework provides the following matrix trans-
formations (Figure 3), where the matrix size is N × N: (i) the
normalized interaction matrix K̄ = (σ 2/3kBT)

(
ki j

) = (
k̄i j

)
into the normalized Laplacian matrix L̄ = (σ 2/3kBT)

(
Li j

)
by L̄ = D̄ − K̄, where the normalized degree matrix
D̄ = diag

(
D̄0, D̄1, . . . , D̄N−1

)
, where D̄i = ∑N−1

j=0 k̄i j . (ii)
As L̄ is real symmetric, L̄ is diagonalizable. Furthermore,
as long as L̄ is positive semidefinite, the N eigenvalues
satisfy 0 = λ̄0 < λ̄1 ≤ λ̄2 ≤ · · · ≤ λ̄N−1. Therefore, L̄ can
be transformed into the normalized covariance matrix
relative to the center of mass M̄ = (3kBT/σ 2)

(
Mi j

) =(
M̄i j

)
by M̄ = Q diag

(
0, λ̄−1

1 , λ̄−1
2 , . . . , λ̄−1

N−1

)
QT,

where Q is the orthogonal matrix satisfying
QTL̄Q = diag

(
0, λ̄1, λ̄2, . . . , λ̄N−1

)
. (iii) M̄ into

the normalized variance matrix �̄2 =
(
�2

i j/σ
2
)

=([
M̄ii + M̄j j − 2M̄i j

]
/3

)
. (iv) �̄2 into the contact ma-

trix C = (
Ci j

) = (
1 + �̄2

)−3/2
. Note that the normalized

Laplacian matrix L̄ should be positive semidefinite. In
terms of physics, the positive semidefiniteness is a nec-
essary and sufficient condition for the stability of the
polymer network model (Supplementary Data). Therefore,
the normalized interaction matrix K̄ is restricted by the
positive-semidefinite condition of L̄. Theoretically, the
matrix transformations between K̄ and C are invertible, and
we had found the inverse matrix transformations from C
to K̄. However, when we apply the inverse transformations
to experimental Hi-C data, it does not work. The reason
is that the inverse-transformed Laplacian matrix does
not satisfy the positive-semidefinite condition. That is, we
could not use the inverse matrix transformations straight-
forwardly. Thus, we developed an optimization procedure,
described below, to obtain an optimal interaction matrix
K̄optimized from an experimental contact matrix CHi-C.

The matrix K̄ describing attractive and repulsive interac-
tions of the polymer network model is optimized so that
the difference between an input Hi-C contact matrix CHi-C
and the reconstructed contact matrix Creconstructed, through
the above transformations, is minimized. Finally, a 4D sim-
ulation of the polymer network model with the optimized
matrix K̄optimized is performed. Below, we describe each step
in Figure 1 in detail.

Input data. PHi-C requires N × N contact matrix data for
a genomic region of interest as an input, which are gen-

erated through the JUICER and JUICER TOOLS (16)
from public Hi-C data with a normalization option
(VC/VC SQRT/KR). Here, we used the KR normaliza-
tion (23). In our theoretical framework, the diagonal ele-
ments of the contact matrix should satisfy Cii = 1, so we ad-
ditionally normalized the contact matrix such that the shape
of the contact probability as a function of genomic dis-
tance P(s) is unaltered, with an interpolation if needed (Sup-
plementary Figure S1A). Note that the interpolation may
result in artifacts for sparse contact matrix data. Besides,
our physical assumption for the polymer network model in
the equilibrium state requires that an input contact matrix
should be dense so that each element value of the contact
matrix has a meaning as a probability. Therefore, according
to the depth of sequence reads, the matrix size N and the
binning resolution should be tuned so that a contact matrix
becomes as dense as possible with fewer interpolations. Fi-
nally, we obtained a normalized Hi-C contact matrix CHi-C.

Optimization and validation. The optimization algo-
rithm is designed to minimize the Frobenius norm
|| log10 Creconstructed − log10 CHi-C||F as a cost function,
where the contact matrix Creconstructed is generated from the
normalized interaction matrix K̄. At every optimization
step, an integer pair (i, j) is randomly selected, and the
values of k̄i j and k̄j i are slightly altered. If the alteration
decreases the cost function, the matrix K̄ is updated,
and the positive semidefiniteness of the Laplacian matrix
generated from the updated K̄ is checked. A flowchart of
the algorithm is presented in Supplementary Figure S1B.

As our optimization method is based on the ran-
dom sampling of integer pairs, the amount of calcula-
tion in the procedure is proportional to O(N2). In our
demo codes, the hyperparameters for the optimization
are tuned, and it takes ∼13 min to obtain an optimized
solution for N = 97, even on our laptop PC (Intel®

Core™ i7-6600U, dual-core 2.60 GHz). Detail bench-
marks in the optimization procedure with changing ma-
trix size are summarized at https://github.com/soyashinkai/
PHi-C#benchmark-of-the-optimization-procedure.

After optimization, an optimized contact matrix
Coptimized is converted from an optimized matrix K̄optimized.
To assess the compatibility between contact matrices
Coptimized and CHi-C in a logarithmic scale, we used Pear-
son’s correlation coefficient r.

Polymer dynamics simulation. We performed 4D simula-
tions of the polymer network model by using the nor-
malized interaction matrix K̄. First, K̄ = (

k̄i j
)

is converted
into the normalized Laplacian matrix L̄. Using the eigen-
decomposition of the matrix L̄, the normalized eigenval-
ues

{
λ̄p

}N−1
p=0 and the orthogonal matrix Q are obtained.

For a normalized polymer conformation vector R̄α =
(R0,α/σ, R1,α/σ, . . . , RN−1,α/σ )T, where Ri,α stands for the
α (= x, y, z) coordinate of the ith monomer, the con-
verted vector X̄α = QT R̄α satisfies the variance relationship〈
X̄2

p,α

〉 = 1/(3λ̄p) for p = 1, 2, . . . , N − 1. Therefore, an ini-
tial conformation of the converted vector in thermal equi-
librium is given: X̄0,α

∣∣
t=0 = 0, so that the center of mass is

the origin and X̄p,α

∣∣
t=0 is a random variable obeying the

https://github.com/soyashinkai/PHi-C#benchmark-of-the-optimization-procedure
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Figure 3. The polymer network model is characterized by connectivity between all pairs of monomers, expressed by the interaction matrix kij. The matrix
kij is reversibly converted into the contact matrix Cij through matrix transformations K � L � M � �2 � C. Each matrix has dimensionless values with
a normalization factor.

normal distribution with mean 0 and variance 1/(3λ̄p) for
p = 1, 2, . . . , N − 1. Then, the initial normalized confor-
mation in thermal equilibrium is calculated as R̄α

∣∣
t=0 =

QX̄α

∣∣
t=0. Finally, to calculate the polymer dynamics, we

numerically integrated the stochastic differential equation
(SDE) by using Heun’s method (24): the integral algorithm
assures the second-order convergence in ε (25) and is de-
fined by first predicting

R̄α

∣∣
t̃ = R̄α

∣∣
t − 3 ε L̄ R̄α

∣∣
t +

√
2ε ξα, (2)

and then correcting

R̄α

∣∣
t+ε

= R̄α

∣∣
t − 3 ε L̄

R̄α

∣∣
t + R̄α

∣∣
t̃

2
+

√
2ε ξα, (3)

where the vector ξα = (ξ0,α, ξ1,α, . . . , ξN−1,α)T consists of
random variables

{
ξi,α

}N−1
i=0 obeying the normal distribu-

tion with mean 0 and variance 1. The parameter ε =
kBT	t/γ σ 2 is nondimensional and represents a normalized
step time, and it determines the accuracy of the SDE inte-
gration. 	t stands for the step time of the integration in ac-
tual time. Here, we set ε = 0.0001.

Visualization of polymer conformation. The code for poly-
mer dynamics simulation outputs XYZ and PSF files to vi-
sualize the simulated polymer dynamics. Polymer confor-
mations were visualized using VMD (26) by reading these
files.

Contact probability of fractal polymers

When a polymer globule composed of N monomers is or-
ganized with the average diameter R, the average polymer
conformation can be characterized by the scaling law R ∝
N1/df , where df represent the fractal dimension. Here, the
fractal polymer with df is a generalized model of the bead–
spring model with the scaling �2

i j = (b2/3)|i − j |2/df , and
the fractal dimension can characterize polymer condensa-
tion states (27,28) (Supplementary Figure S2A). Substitut-
ing the scaling into Equation (1), we obtained a mathemat-
ical relation for the contact probability as a function of ge-
nomic distance s,

P(s) =
(

1 + 1
3(σ/b)2

( s
c

)2/df
)−3/2

, (4)

where c is the genomic size corresponding to a modeled
monomer. Theoretical curves for the decay show two fea-

tures (Figure 4A): (i) the ratio σ/b results in a rounded
shape at a small genomic distance and (ii) the fractal dimen-
sion determines the scaling at a large genomic distance,

P(s) ∼ s−3/df . (5)

Equations (4) and (5) allow us to extract physical informa-
tion, σ/b and df, from experimental P(s) data by fitting the
parameters.

Fitting contact probability

In terms of the fractal polymer, the contact probability, P(s),
from high-resolution Hi-C data was fitted by Equations (4)
and (5) for small and large genomic regions, respectively.
The ratio σ/b and the fractal dimension df are the fitted pa-
rameters, and c stands for the genomic size corresponding
to the bin size of the Hi-C matrix. We used the nonlinear
least-squares Marquardt–Levenberg algorithm on GNU-
PLOT.

Calculating mean-squared displacement of genome loci

We re-analyzed movements of Nanog and Oct4 loci in
mouse embryonic stem cells (mESCs) measured by Ochiai
et al. (29). In each session of live imaging, 3D time series
of a genome locus (Nanog or Oct4) and the nucleus cen-
ter of mass,

{
Slocus(tm)

}M−1
m=0 and

{
Snucleus(tm)

}M−1
m=0 , were si-

multaneously acquired, where the maximum frame num-
ber was M = 50, the time interval was 	t = 10 s and tm
= m 	t (m = 0, 1, 2, . . . , M − 1). To eliminate the effect of
the nucleus movement, we dealt with the locus movement
relative to the nucleus center described by the time series
{S(tm)}M−1

m=0 = {
Slocus(tm) − Snucleus(tm)

}M−1
m=0 . Then, the time-

averaged mean-squared displacement (TAMSD) for a time
series {S(tm)}M−1

m=0 was calculated as follows:

TAMSD(tm) = 1
M − m

M−1−m∑
i=0

[S(tm+i ) − S(ti )]
2
. (6)

Calculating theoretical MSD curve

The optimized matrix K̄optimized derives a theoretical MSD
curve for the ith monomer in the polymer network model as
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Figure 4. (A) Theoretical curves of the contact probability P(s) in Equation (4). P(s) is normalized by the value at s/c = |i − j| = 1, where i and j are
monomer indices of the fractal polymer and c represents the genomic size corresponding to every monomer. (Left) P(s) for fixed df = 2.0 and σ/b = 0.2,
0.5, 1.0, 2.0 and 5.0. (Right) P(s) for fixed σ/b = 1.0 and df = 1.5, 2.0, 3.0 and 4.0. Theoretical scaling relations, as in Equation (5), are shown. (B) Contact
probability (blue) for yeast cells with 160-bp nucleosome resolution (31) as a function of genomic distance averaged across the genome, and the theoretically
fitted curve (orange) at a small genomic distance.

follows [Equation (S23) in Supplementary Data]:

MSD(t; i )
σ 2

= 6
N

(εt/	t)

+2
N−1∑
p=1

Q2
i pλ̄

−1
p

(
1 − exp (−3λ̄p(εt/	t))

)
.(7)

Here, not only is the MSD normalized by σ 2 in the length
scale, but the time step is also normalized in time; that is,
MSD/σ 2 and εt/	t are dimensionless.

Calculating radius of gyration

As we described in the ‘Polymer Dynamics Simula-
tion’ section, a normalized polymer conformation{

R̄i = (R̄i,x, R̄i,y, R̄i,z)
}N−1

i=0 in thermal equilibrium can
be sampled on the basis of the optimized matrix K̄optimized.
Therefore, we can estimate the physical conformations of

the 50.5-Mb genomic regions around Nanog and Oct4 loci
in mESCs by calculating the radius of gyration. By using
two integers nstart and nend corresponding to the 50.5-Mb
region, the radius of gyration is calculated as

R̄g =
√√√√ 1

nend − nstart + 1

nend∑
i=nstart

(
R̄i − R̄G

)2
, (8)

where R̄G = [1/(nend − nstart + 1)]
∑nend

i=nstart
R̄i represents

the center of mass of the polymer conformation of the
50.5-Mb genomic region.

Simulating polymer dynamics during chromosome condensa-
tion

We applied PHi-C to Hi-C data during mitotic chromo-
some formation in chicken DT-40 cells (30). We used the
second dataset of chromosome 7 (binned at 100 kb) for
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the wild type at G2 (0 min), 5, 15, 30 and 60 min. We
eliminated the centromere region due to the lack of asso-
ciated read counts. Through the optimization of PHi-C,
we obtained the optimized matrices K̄0, K̄500, K̄1500, K̄3000
and K̄6000, respectively (Supplementary Figure S5). Here,
the suffix n of the matrix K̄n represents the time n/100
min for the Hi-C data. To simulate the polymer dynam-
ics during chromosome condensation, we linearly interpo-
lated the matrices

{
K̄n

}6000
n=0 as follows: K̄n = K̄0 + (K̄500 −

K̄0) × n/500 for 0 ≤ n < 500, K̄n = K̄500 + (K̄1500 − K̄500) ×
(n − 500)/1000 for 500 ≤ n < 1500, K̄n = K̄1500 + (K̄3000 −
K̄1500) × (n − 1500)/1500 for 1500 ≤ n < 3000 and K̄n =
K̄3000 + (K̄6000 − K̄3000) × (n − 3000)/3000 for 3000 ≤ n ≤
6000. By using K̄0, an initial polymer conformation was
sampled. Then, the polymer dynamics between n/100 and
(n + 1)/100 min was calculated by 1000 steps of numerical
integration with K̄n based on the integral algorithm [Equa-
tions (2) and (3)).

In the visualization, we fixed the center of mass of poly-
mer conformations to the origin (Figure 7B, Supplementary
Videos S4 and S5).

Calculating shape length of polymer conformation

To quantify the characteristic shape of a polymer con-
formation

{
R̄α

}
α=x,y,z during chromosome condensation,

we evaluated the characteristic shape lengths as an ellip-
soidal conformation based on the gyration tensor G =
(1/N)

(
R̄α · R̄β

)
. We calculated the three eigenvalues g2

1 ≤
g2

2 ≤ g2
3 of the tensor G. Then, we adopted g3 and√

(g2
1 + g2

2)/2 as the characteristic shape lengths of the ma-
jor and minor axes, respectively (Figure 7C).

Code availability

Python codes of PHi-C are available at https://github.com/
soyashinkai/PHi-C.

Data availability

Published publicly available Hi-C data were used in this
study: Ohno et al. (31) (BioProject: PRJNA427106), Rao
et al. (12) (GEO: GSE63525), Bonev et al. (32) (GEO:
GSE96107) and Gibcus et al. (30) (GEO: GSE102740). In-
put Hi-C matrix data of PHi-C were generated through the
JUICER and JUICER TOOLS (16).

RESULTS

Validation of PHi-C’s theoretical assumption regarding chro-
mosome contact

First, we evaluated PHi-C’s theoretical assumption about
chromosome contact. Here, we started with a simple poly-
mer model called the bead–spring model, in which the char-
acteristic length b between adjacent beads (or monomers)
represents the physical size corresponding to one genomic
bin of the contact matrix data (see the ‘Materials and Meth-
ods’ section). To mathematically define the contact between
a pair of monomers, we introduced the contact Gaussian

kernel with the contact distance σ (Figure 2). Almost com-
putational 3D genome modeling techniques have relied on
a conventionally assumed mathematical relationship: Hi-C
contact matrix data, Cij, should be a function of the spatial
distance, rij, between the ith and jth monomers in a poly-
mer model. Although this relationship is reasonable to elu-
cidate the population-averaged static 3D genome structures,
the assumption cannot be extended beyond a static perspec-
tive of the 3D genome. As shown in Equation (1), we elu-
cidated the following relationship: the contact matrix data,
Cij, is a function of not the spatial distance, rij, but the dy-
namic range, �ij, between the ith and jth monomers in a
polymer model. The dynamic property of chromatin fibers
should contribute to the chromosome contacts in Hi-C ex-
periments.

The above mathematical assumption can be used to de-
rive the theoretical scaling relationship of the contact prob-
ability, P(s) ∼ s−df/3 [Equation (5)], as a function of ge-
nomic distance s in terms of the fractal dimension of poly-
mer organization df (27) (Supplementary Figure S2A). In
addition, interestingly, the ratio of the contact distance to
the length between adjacent monomers, σ/b, makes the
shape of the contact probability rounder at a small genomic
distance (Figure 4A). This phenomenon implies that the
rounded shape conveys information about the ratio σ/b.
As we predicted, such a rounded shape was observed in
yeast Hi-C data at nucleosome resolution (binned at 160
bp) (31). The fitted value was σ/b = 1.12, supporting our
theoretical framework about contact and suggesting that
contacts mainly occur within a distance corresponding to
the size of a nucleosome in this super-resolution Hi-C exper-
iment (Figure 4B, Supplementary Figure S2B). Other high-
resolution Hi-C data for human GM12878 (12) revealed
σ/b = 1.38, suggesting that cross-linking of Hi-C experi-
ments almost exactly captures chromosome contacts with
the binned resolution (Supplementary Figure S2C).

Matrix transformations in PHi-C’s polymer modeling allow
for fast optimization, painting any contact pattern and 4D
simulations

To decipher Hi-C contact matrix data computationally, the
optimization procedure of PHi-C is essential and based on
analytical matrix transformations between the polymer net-
work model and the contact matrix (Figure 3, ‘Materials
and Methods’ section). The matrix transformations pro-
vided us with a low computational cost optimization strat-
egy that can be applied to find optimal interaction parame-
ters of the polymer network model without sampling opti-
mal static 3D polymer conformations (Supplementary Fig-
ure S1B and S1C). Moreover, we can depict any contact
pattern in a moment by using the matrix transformations
and perform polymer dynamics simulations by designing
interactions in the polymer network model (Figure 5, Sup-
plementary Videos S1–S3). Intra- and interdomain interac-
tions generate a checkerboard pattern reminiscent of A/B
compartments (1,2), and the attractive interaction domains
form a combined domain (Figure 5A). Loop interactions
show a clear punctate pattern (Figure 5B). Furthermore,
we can depict a topologically associating domain (TAD)-
like pattern (1,2) by only tuning heterogeneous connectivity

https://github.com/soyashinkai/PHi-C
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Figure 5. Painting contact patterns for intra- and interdomain interactions (A), loop interactions (B) and heterogeneous connectivity along the polymer
backbone (C). (Upper) Designed interactions in the polymer network model. (Lower) Converted contact matrix, with a snapshot of polymer conformations
in the polymer dynamics simulation (Supplementary Videos S1–S3). (C) TAD-like domains are highlighted by dashed lines. (Right) Removal of a domain-
boundary part (yellow) results in domain fusion.

along the polymer backbone, where less connected regions
behave as domain boundaries (Figure 5C, left). The 3D con-
formation suggests that the boundary regions are physically
elongated with insulating inter-TAD-like-domain interac-
tions. In addition, the removal of a boundary part causes
the adjacent domain fusion (Figure 5C, right) that reminds
us of fusions of TADs (10,33).

PHi-C analysis provides physical insights into dynamic
genome organization of mouse embryonic stem cells

So far, computational approaches to reconstruct static 3D
genome structures from Hi-C data are not able to explain
the dynamic movement of chromatin in living cells. How-
ever, our PHi-C method can provide not only 4D simula-
tions but also the theoretical MSD curves as the dynamic
features of chromatin. Therefore, we can compare and pre-
dict the differences in the dynamic movement of genomic
loci based on Hi-C data.

To investigate how PHi-C explains 4D features of chro-
mosomes within living cells, we applied this approach to
Hi-C data for mESCs (32). A live-cell imaging experiment
showed a marked difference in the movements of Nanog
and Oct4 loci in mESCs (29): statistically significant en-
hancement of Nanog diffusive movement compared with
Oct4 diffusive movement was revealed (Supplementary Fig-
ure S3). The optimization step of the PHi-C analysis for
chromosomes 6 and 17 provided optimized contact matri-
ces with correlations of >97% between the Hi-C and opti-
mized contact matrices (Figure 6A). The MSD curves that
were theoretically derived from the optimized data for the
Nanog locus on chromosome 6 and the Oct4 locus on chro-
mosome 17 are consistent with the experimental dynam-
ics (Figure 6B). We also compared the physical sizes of
50.5-Mb genomic regions around the Nanog and Oct4 loci,
with the inclusion of several areas that highly interact with
each locus, and observed more compact organization of the
Nanog region (Figure 6C). Taking together, these findings
indicate that PHi-C analysis can provide new insights into
genome organization and dynamics: for example, a region

of 50.5 Mb around Nanog adopts a more compact organiza-
tion than an equivalent region around Oct4, and the Nanog
locus on chromosome 6 is more mobile than the Oct4 locus
on chromosome 17 (Figure 6D).

4D simulations of PHi-C enable to demonstrate the dynamic
chromosome condensation process of chicken cells

Finally, we used PHi-C to demonstrate the dynamic chro-
mosome condensation process for the highly synchronous
entry of DT-40 cells, which revealed a pathway for mitotic
chromosome formation (30). The optimized contact matri-
ces at five different time points were reconstructed with high
correlations (Figure 7A, Supplementary Figure S4). Using
the optimized interaction parameters in the polymer net-
work model (Supplementary Figure S5), we conducted 4D
simulations starting from a comparatively elongated con-
formation at 0 min. The polymer conformation dynamically
changed into a rod-shaped structure, revealing the conden-
sation state of chromosomes at prometaphase (Figure 7B,
Supplementary Videos S4 and S5). We evaluated dynamic
changes in polymer conformations in simulations by calcu-
lating the characteristic shape lengths of the major and mi-
nor axes. As observed by microscopy, rapid and gradual de-
creases in the minor and major axes within 15 and 60 min in-
dicated thin and thick rod-shaped formations, respectively
(Figure 7C). In addition, the optimized interaction parame-
ters averaged at each genomic separation represent not only
strong compaction within 2 Mb during mitosis but also in-
crease of periodicity of long-range attractive interactions
from 3 to 12 Mb in prometaphase (Figure 7D). These physi-
cal findings are consistent with a helical organization in rod-
shaped chromosomes during prometaphase (30).

DISCUSSION

PHi-C provides dynamic 3D genome features by decipher-
ing Hi-C data into polymer dynamics. In the development
of the PHi-C method, the derivation of Equation (1) is criti-
cal to bridging the gap between the contact matrix data and
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Figure 6. Demonstrations of PHi-C for Hi-C data of mESCs. (A) PHi-C analysis for chromosomes 6 (left) and 17 (right) of mESCs. (Upper) Contact
matrices of the Hi-C experiment (binned at 500 kb), and contact probabilities as a function of genomic distance. (Middle) 4C-like profiles of Nanog
(left) and Oct4 (right) loci. High-interaction regions are highlighted (pink). (Lower) Optimized contact matrices by PHi-C, and correlation plots between
log10 CHi-C and log10 Coptimized. (B) Theoretical MSD curves of Nanog and Oct4 loci. (C) Probability densities of the gyration radius of 105 conformations
for the 50.5-Mb genomic regions around Nanog and Oct4 loci in mESCs. (D) Polymer models derived from PHi-C analysis for Nanog and Oct4 loci on
chromosomes 6 and 17, respectively. Pink highlighted regions on the polymer models correspond to the regions in the 4C-like profile of (A).

Figure 7. Demonstrations of PHi-C for Hi-C data of DT-40 cells. (A) PHi-C analysis for chromosome 7 of DT-40 cells at G2 (0 min), 5, 15, 30 and 60 min.
Contact matrices of the Hi-C experiment with 100-kb bins (upper) and optimized contact matrices with the correlation value (lower). (B) Snapshots of
polymer conformations in a 4D polymer dynamics simulation. (C) Time series of the shape lengths of the major (yellow) and minor (purple) axes for
polymer conformations in 100 polymer dynamics simulations starting from the same initial conformation. Thick curves represent the averages. (D) Curves
of optimized interaction parameters,

〈
k̄i j

〉
, averaged at each genomic distance (separation, |i − j| × 100 kb). A triangle indicates a position of a local peak

inducing compaction within 2 Mb. Arrows indicate positions of a local peak generating periodicity of attractive interactions around 4, 6 and 10 Mb at 15,
30 and 60 min, respectively.

the dynamics property of the polymer model. As shown in
Figure 2, the Gaussian contact kernel with the contact dis-
tance σ is mathematically able to take into account varia-
tions of the chromosome contact distance in Hi-C exper-
iments. In addition, our prediction that the finite contact
distance affects the rounded shape of the contact probabil-
ity P(s) was verified to super-resolution Hi-C data for yeast
and human GM12878 cells (Figure 3, Supplementary Fig-
ure S2). At least, our mathematical consideration must be
correct as a first approximation to understand the meaning
of the contact frequency, but there would be a mathemati-

cal improvement to express the more detailed quantitative
probability data.

The PHi-C optimization procedure relies on the matrix
transformations between the interaction matrix K of the
polymer network model and the contact matrix C (Fig-
ure 3). Within the range of the theoretical framework, the
relation K � C means a one-to-one correspondence. There
exists the analytical inverse transformation from C to K.
However, applying the inverse transformation to experi-
mental Hi-C data caused numerical divergence. Experimen-
tal noise of Hi-C data and the effect of the matrix normal-
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ization would be the reason. In the optimization algorithm,
the Frobenius norm || log10 Creconstructed − log10 CHi-C||F as
a cost function allows for obtaining an optimized solution
K̄optimized so that the logarithmic values of the reconstructed
contact matrix data are close to the experimental Hi-C data.
So far, the cost function is practically better in PHi-C, but
there would be other cost functions. Further mathematical
development regarding the optimization is needed.

In principle, as shown in Figure 5, the matrix trans-
formations enable us to depict any contact patterns. In
other words, the interaction matrix K physically implies a
mean field of the population-averaged chromosome folding.
Therefore, our polymer modeling cannot take into account
some active processes on chromosomes known as the loop
extrusion model to explain the mechanisms of TAD forma-
tion (34). Recent experiments have shown that enrichment
of specific proteins on TAD boundaries promotes such ac-
tive processes to form TADs (35–37). However, as long as a
reconstructed contact matrix by our PHi-C method shows
a good agreement with an experimental contact matrix, the
stochastic and dynamic nature in our polymer model might
be a mechanism to maintain the TAD formation.

Both GC content and mappability play non-negligible
roles in predicting the contact probability between two re-
gions (14). Besides, restriction enzyme sequence specificity
means that the chimeric reads generated will have different
lengths and occur at different densities. Although we pre-
sumed a fixed binning of the Hi-C data, variable-sized bin-
ning would be a better pre-process to normalize Hi-C data.
In the polymer network model in our PHi-C method, the
physical distance between adjacent beads [i.e. the ith and (i
+ 1)th beads] in 3D space relates to the matrix element ki,i+1.
Therefore, it is not essential how long each bead includes the
genomic region. As long as an N × N variable-sized binning
contact matrix is mathematically normalized in the sense of
probability, we can apply our PHi-C method to the variable-
sized binning contact matrix.

Our PHi-C method is not always applicable to all the
input contact matrices. Our theoretical assumption of the
polymer network model in the equilibrium state requires
that a contact matrix should be dense, where each element
value of the contact matrix has a meaning as a probability:
given an interaction matrix K̄, all elements of the converted
contact matrix C are nonzero. However, there would be a
lot of sparse Hi-C matrices due to the depth of sequence
reads and binning resolutions. Based on our benchmarking
to carry out Hi-C procedures, the upper value of the ma-
trix size would be N = 500 practically. We should develop a
physical theory and computational methods for sparse and
large-sized contact matrices.

Unlike other computational modeling methods to recon-
struct 3D genome structures, PHi-C requires only the con-
tact matrix data for single chromosomes to convert into the
interaction matrix of the polymer network model. Since the
theory of the model assumes thermal equilibrium within a
chromosome, the contact matrix data must be dense and
deep so that the data can be characterized as a probability
measure. Therefore, the bin size of the contact matrix data in
the PHi-C analysis is limited according to the amount of the
sequencing reads. Moreover, introducing additional physi-
cal parameters is not needed except for the nondimensional

parameter ε to carry out the 4D simulations. The spatial
and time scales are normalized by the physical parameters
σ (m) and γ σ 2/kBT (s), respectively (Supplementary Data).
Fitting the MSD data, in live-cell imaging experiments, with
the theoretical function [Equation (S23) in Supplementary
Data] could determine the parameters.

We have shown that PHi-C can decipher Hi-C data into
polymer dynamics, based on a mathematical theory of chro-
mosome contacts in the polymer network model. As shown
for mESC Hi-C data, PHi-C analysis can bridge the gap
between Hi-C data and imaging data with respect to chro-
matin dynamics in living cells. In addition, PHi-C’s theo-
retical basis allows for the depiction of any Hi-C pattern
by designing the appropriate interaction parameters, which
supports a model for TAD formation: physical chromatin
stiffness based on certain molecular interactions creates in-
sulation at TAD boundaries (38). Polymer modeling studies
have revealed that chromatin modifications alter the physi-
cal properties of chromatin fibers and affect chromosome
organization (13,39). Because PHi-C analysis can extract
physical interaction parameters from Hi-C data, it should
be elucidated which molecular interactions on chromatin
are related to physical parameters. Further comprehensive
PHi-C analysis could provide physical insights into molec-
ular interactions on chromosomes.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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