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PHYSICS

Breaking the quantum adiabatic speed limit by jumping
along geodesics

Kebiao Xu"?3#, Tianyu Xie*3#, Fazhan Shi"*3, Zhen-Yu Wang**, Xiangkun Xu'*3%,
Pengfei Wang', Ya Wang'?, Martin B. Plenio®, Jiangfeng Du'2>'

Quantum adiabatic evolutions find a broad range of applications in quantum physics and quantum technolo-
gies. The traditional form of the quantum adiabatic theorem limits the speed of adiabatic evolution by the
minimum energy gaps of the system Hamiltonian. Here, we experimentally show using a nitrogen-vacancy
center in diamond that, even in the presence of vanishing energy gaps, quantum adiabatic evolution is possible.
This verifies a recently derived necessary and sufficient quantum adiabatic theorem and offers paths to overcome
the conventionally assumed constraints on adiabatic methods. By fast modulation of dynamic phases, we dem-
onstrate near-unit-fidelity quantum adiabatic processes in finite times. These results challenge traditional views
and provide deeper understanding on quantum adiabatic processes, as well as promising strategies for the
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control of quantum systems.

INTRODUCTION

Coherent control on quantum systems is a fundamental element of
quantum technologies that could revolutionize the fields of information
processing, simulation, and sensing. A powerful and universal method
to achieve this control is the quantum adiabatic technique, which ex-
hibits intrinsic robustness against control errors ensured by the quan-
tum adiabatic evolution (1). Besides important applications in quantum
state engineering (2, 3), quantum simulation (4-6), and quantum
computation (7-11), the quantum adiabatic evolution itself also pro-
vides interesting properties such as Abelian (12) or non-Abelian geo-
metric phases (13), which can be used for the realization of quantum
gates. However, the conventional quantum adiabatic theorem (14, 15),
which dates back to the idea of extremely slow and reversible change in
classical mechanics (14, 16), imposes a speed limit on the quantum
adiabatic methods, that is, for a quantum process to remain adiabatic,
the changes in the system Hamiltonian at all times must be much
smaller than the energy gap of the Hamiltonian. On the other hand,
to avoid perturbations from the environment, high rates of change are
desirable. This tension can impose severe limitations on the practical
use of adiabatic methods. Despite the long history and broad applica-
bility, it was found recently that key aspects of quantum adiabatic evo-
lution remain not fully understood (17, 18) and that the condition in
the conventional adiabatic theorem is not necessary for quantum ad-
iabatic evolution (19, 20).

In this work, we experimentally demonstrate adiabatic evolutions
with vanishing energy gaps and energy level crossings, which are
allowed under a recently proven quantum adiabatic condition (20) that
is based on dynamical phases instead of energy gaps, by using a nitrogen-
vacancy (NV) center (21) in diamond. In addition, we reveal that using
discrete jumps along the evolution path allows quantum adiabatic pro-
cesses at unlimited rates, which challenges the view that adiabatic pro-
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cesses must be slow. By jumping along the path, one can even avoid path
points where the eigenstates of the Hamiltonian are not feasible in
experiments. Furthermore, we theoretically and experimentally
demonstrate the elimination of all the nonadiabatic effects on the system
evolution of a finite evolution time by driving the system along the
geodesic that connects initial and final states, as well as combating system
decoherence by incorporating pulse sequences into adiabatic driving.

RESULTS
Experimental study of the necessary and sufficient quantum
adiabatic condition
To describe the theory for experiments, we consider a quantum system
driven by a Hamiltonian H()) for adiabatic evolution. In terms of its in-
stantaneous orthonormal eigenstates |y, (A)) (n = 1,2, ...) and eigen-
energies E, (1), the Hamiltonian is written as HQA) = ¥, E,(A) |y, (L))
(y,(A)|. For a given continuous finite evolution path, |y, (1)) changes
gradually with the configuration parameter A. In our experiments, A
corresponds to an angle in some unit and is tuned in time such that
A = M(#) € [0,1]. The system dynamics driven by the Hamiltonian is
fully determined by the corresponding evolution propagator U(A). It is
shown that one can decompose the propagator U(A) = U,gia(A) Ugia(A)
as the product of a quantum adiabatic evolution propagator U,g;,(A)
that describes the ideal quantum evolution in the adiabatic limit and
a diabatic propagator Ug;,(A) that includes all the diabatic errors
(20). In the adiabatic limit, Ug;,(A) = I becomes an identity matrix
and the adiabatic evolution U = U,g;,(A) fully describes the geo-
metric phases (12, 13) and dynamic phases accompanying the ad-
iabatic evolution (that is, the deviation from adiabaticity U — U,g;a
vanishes). This decomposition guarantees that both U,g;,(A) and
Udia(A) are gauge invariant, i.e., invariant with respect to any cho-
sen state basis.

According to the result of (20), the error part satisfies the first-
order differential equation (7 = 1)

% Udiao\f) = Z.W(Qb) Udia(x) (1)

with the boundary condition Uy;,(0) = I. The generator W(A) describes
all the nonadiabatic transitions. On the basis of |,(0)), the diagonal
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matrix elements of W()A) vanish, i.e., (y,,(0) | W(L) | y,,(0)) = 0. The
off-diagonal matrix elements

W (0) | W) |, (0)) = €M G, () (2)

are responsible for nonadiabaticity. Here, ¢,,,,(A) = 0,(A) — ¢,,(A) is
the difference of the accumulated dynamic phases ¢,,(A) on |,(})),
and the geometric part G, ,,(A) = el = Y”(7‘)]g,1,m(7u) consists of
the geometric functions g, »(A) = i{y, (1) | 4 |y, (1)) and the ge-
ometric phases v, (A) = [ g,,(V)d\.

Equation 2 shows that the differences of dynamic phases ¢,,,, are
more fundamental than the energy gaps in suppressing the nonadia-
batic effects because the energies E,, do not explicitly appear in these
equations. According to (20), when the dynamic phase factors at dif-
ferent path points add destructively

for n # m and any A € [0,1] of a finite path with bounded G,, ,,,(A)
and 4 G, (1), the deviation from adiabaticity can be made arbi-
trarily small by reducing € with a scaling factor determined by the
magnitudes of G, ,,(A) and %Gn,m (M), that is, the operator norm
1Ugia() — Il < Ve(G?, + Giot)A* + (V€ + €)Gior, where Giop =
Sem Max| Gy (V)| and Giop = Zpam max| £ Gom(2)| for 0 <
A" < A (20). In the limit € — 0, the system evolution is adiabatic along
the entire finite path with Ug,(A) — I. For a zero gap throughout the
evolution path, the evolution is not adiabatic because €,,,,,(A) = A is
not negligible because of the constructive interference of the dynam-
ic phase factors at different path points. For a large constant gap, the
destructive interference gives a negligible €, ,,, and hence an adiabatic
evolution.

To experimentally verify the adiabatic condition in Eq. 3 by an NV
center, we construct the Hamiltonian for adiabatic evolution in the
standard way (2, 3), that is, we apply a microwave (MW) field to drive

A0y m(V ; _ _
€nm(A) =[5 g/t )dW| <€ (3)  the NV electron spin states | my=0)= | —z) and |mgs=+1) = | 2) (see
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Fig. 1. Quantum adiabaticity of continuous driving. (A) lllustration of experimental control. An MW resonant with an NV transition forms in the rotating frame a
Hamiltonian with the instantaneous eigenstates |y;(A)) = |+,) and | y»(A)) = | —) that are separated by an energy gap Q(A) proportional to the amplitude of the MW
field. (B) Evolving path (red curve with an arrowhead) on the Bloch sphere when increasing the parameter A = A(t) in the MW phase with the evolution time t. (C) The
energies of the eigenstates for a constant gap Q() = Qo = 21 X 6 MHz and the corresponding real (Re) and imaginary (Im) parts of €2 as a function of A. (D) The measured
projections (dots) of the system state on the |x), |y), and | z) states. The system state was initialized in |+, — o) = | x) [see (B)] and subsequently driven by the Hamiltonian
with the eigenenergies shown in (C) and with a changing rate dA/dt = 0.12 MHz and a path length 8, = 2x. The lines show the ideal state projections of the instantaneous
eigenstate |+,). The red line is a plot of € 5(A), i.e., the interference of €2 at different path points. (E and F) Same as (C) and (D), respectively, but for a gap Q) =
Qol2 + cos (QoAT)], larger than the gap in (C). Because g »(1) is not negligible, the corresponding evolution in (F) is not adiabatic. (G and H) Same as (C) and (D),
respectively, but for the gap Q(A) = Q,(A) that has energy level crossings. €; 5(1) is negligible and induces the quantum adiabatic evolution shown in (H). The error bars

in all the figures represent two SEM.
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Fig. 1A and Materials and Methods for experimental details). The
Hamiltonian H(A) under an on-resonant MW field reads

Q()

Hy (M) = [T )X (W) 1 = T WO)wa (M 1] (4)

where the energy gap ©()) is tunable and the instantaneous eigenstates
of the system Hamiltonian |y;(A)) = [+,) and |y,(A)) = |—). Here

|ix>5%(|z>iei%| —2)) (5)

is tunable by varying the MW phases 8,1. We define the initial eigenstates
|+x) = |+o) and the superposition states |+ y)E\%ﬂ Zyti| —z))
for convenience.

In the traditional approach where the Hamiltonian varies slowly with
a nonvanishing gap, the strength of relative dynamic phase ¢, , =
¢1(A) — do(A) rapidly increases with the change of the path parameter
A, giving the fast oscillating factor > with a zero mean [see Fig. 1C
for the case of a constant gap Q(L) = o). Therefore, the right-hand
side of Eq. 1 is negligible in solving the differential equation, leading to
the solution Ug;,(A) = I As a consequence of the adiabatic evolu-
tion U = U,4;,(A), the state initialized in an initial eigenstate of the
Hamiltonian follows the evolution of the instantaneous eigenstate
(Fig. 1D).

However, a quantum evolution with a nonvanishing gap and a
long evolution time is not necessarily adiabatic. In Fig. 1 (E and F),
we show a counterexample that increasing the energy gap in Fig. 1C to

Q) = Qp[2 + cos (QAT)] = Q, will not realize adiabatic evolution
because, in this case, the €;,(A) in Eq. 3 and the G;,()) are not neg-
ligible. For example, €;,(A) = J,(1)A = 0.115A (], being the Bessel
function of the first kind) whenever the difference of dynamic phases
is a multiple of 2rt. This counterexample is different from the previously
proposed counterexamples (17, 18, 20, 22), where the Hamiltonian
contains resonant terms that increase | % Gum(X) | and hence modify
the evolution path when increasing the total time. Our counter-
example also demonstrates that the widely used adiabatic condition
| (W, | 41y, ) |/| Ex — Em| <1 (15), which is based on the energy
gap and diverges at E,, — E,,, = 0, does not guarantee quantum adiabatic
evolution. On the contrary, the condition in Eq. 3 based on dynamic
phases, i.e., integrated energy differences, does not diverge for any
energy gaps. We note that fast amplitude fluctuations on the control
fields (hence energy gaps) can exist in adiabatic methods [e.g., see (23)]
because of their strong robustness against control errors. By adding errors
in the energy gap shown in Fig. 1E, the adiabaticity of the evolution is
substantially enhanced (Fig. 2), showing that the situations to have non-
adiabatic evolution with a fluctuating energy gap are relatively rare.
We demonstrate that adiabatic evolution can be achieved even
when the energy spectrum exhibits vanishing gaps and crossings
as long as Eq. 3 is satisfied for a sufficiently small €. As an exam-
ple, we consider the energy gap of the form Q(A) = Q. (1) =Qp[1 +
a cos(2Q TA)], which has zeros and crossings for |a| > 1 [see Fig.
1G for the case of a = 2.34, where Qf = 1/2/(2 + a?)Qp is used
to have the same average MW power in Fig. 1 (C and G) ]. Despite the
vanishing gaps and crossings, the corresponding factor ¢* parame-
terized by the parameter A = /T is fast oscillating (Fig. 1G) with a
zero mean and realizes quantum adiabatic evolution for a sufficiently
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Fig. 2. Recovery of quantum adiabaticity by adding energy gap fluctuations. (A) The energies of instantaneous eigenstates, the real and imaginary parts of €’

Evolution time (us)

Evolution time (us)
o2

€12(A), and the measured projections (dots) of the system state on the |x), |y), or |z) states. The results are the same as those in Fig. 1 (E and F) where the energy gap

QM) =

Qol2 + cos (QoAT)]. (B and C) Same as (A) but changing the energy gap to Q(A) — 1.1Q(A) and Q(r) — 0.8Q(A), respectively, by adding an amplitude bias in the

control field of the experiments. The fluctuation in the energy gap induces random modulation on the function 2. The destructive interference on €2 leads to a
smaller average € ,(A) and hence improved quantum adiabatic evolution. In (A), the cyan dashed line in the plot of €, (1) shows the line J(1)A = 0.115A.
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Fig. 3. Transition of adiabatic driving from the standard continuous protocol to the jumping protocol. (A) Relations among the energy gap Q(A), path parameter
A, evolution time t, phase factor e®2(3), and €12(A) for the standard adiabatic driving with a constant gap Qg = 21 x 5 MHz. (B and C) Same as (A) with the maximum gap
Qo = 21 X 5 MHz but with a ratio rjymp of intervals to have Q(1) = 0 along the path parameter A. Therefore, the case of rj,mp = 0 corresponds to the standard adiabatic
protocol without a vanishing gap. A ratio rjymp > 0 in (B) opens regions that have Q()) = 0. For the maximum value rjym, = 1, we get in (C) the jumping protocol that
only drives the system at discrete path points with a Rabi frequency equalling Q. For comparison, the plot of € 5(A) in (A) is also shown in (B) and (C) by a gray dashed
line. (D) Calculated fidelity to the ideal adiabatic state at the final time as a function of rjump. The fidelity increases to 100% when the driving is getting to the jumping
protocol. The solid line shows the case that the initial state is prepared in the initial eigenstate |x) of the Hamiltonian, while the dashed line is the result for the initial state
being the superposition state |y). The driving is along the adiabatic path given in Eq. 5 with 8, = © and is repeated back and forth three times for a total time T = 3 ps.

quantum adiabatic evolution of a finite time duration. We demon-
strate this by driving the system along the geodesic for maximal speed
[see, e.g., (24, 25) for more discussion on the geodesic in quantum
mechanics]. The system eigenstate |y, (X)) = cos(L61) |y (0)) +

large total time T (see Fig. 1H). In fig. S1, we show how the adiaba-
ticity can also be preserved when gradually introducing energy level
crossings.

Unit-fidelity quantum adiabatic evolution within a

finite time

Without the restriction to nonzero energy gaps, it is possible to com-
pletely eliminate nonadiabatic effects and to drive an arbitrary initial
state |'¥;) to a target state |'¥) of a general quantum system by the

Xu et al.,, Sci. Adv. 2019;5:eaax3800 21 June 2019

sin (% ng) | w,(0)) connects |y;(0)) and |y;(1)) along the geodesic
by varying A = 0 to A = 1, with its orthonormal eigenstate |y, (1)) =
—sin(1041) |y, (0)) + cos(L044) | w,(0)) varied accordingly (see Ma-
terials and Methods). The method works for any quantum system
(e.g., a set of interacting qubits) because geodesics can always be found

40f 9



SCIENCE ADVANCES | RESEARCH ARTICLE

(24, 25). An example of the geodesic path for a single qubit is given in
Eq. 5, which intuitively can be illustrated by the shortest path on the
Bloch sphere (see Fig. 1B). We find that, along the geodesic, the nonzero
elements g,;(A) and g;,(A) are constant. We adopt the sequence
theoretically proposed in (20) that changes the dynamic phases at N
equally spaced path points A = 4; (j = 1,2, ... , N). By staying at each
of the points

=N (2 - 1) (6)

for a time required to implement a © phase shift on the dynamic
phases, we have Ug,(1) = I because W(L) commutes and

e12(1) = | f(l) 20120 gy, | -0

In other words, by jumping on discrete points A, the system evolu-
tion at A = 1 is exactly the perfect adiabatic evolution U,4;, although the
evolution time is finite, and an initial state |¥;) will end up with the
adiabatic target state | W) = U,gi, | ¥;). To realize the jumping protocol,
we apply rectangular n pulses at the points A; without time delay be-
tween the pulses because, between the points A;, the Hamiltonian has
a zero energy gap and its driving can be neglected (see Fig. 3C). The
simulation results in Fig. 3 show how the transition from the standard

continuous protocol to the jumping one gradually increases the fidelity
of adiabatic evolution.

We experimentally compare the jumping protocol with the contin-
uous one along the geodesic given in Eq. 5 by measuring the fidelity
between the evolved state and the target state | ‘V',) that follows the ideal
adiabatic evolution U,g;,. The continuous protocol has a constant gap
and a constant sweeping rate as in Fig. 1C. As shown in Fig. 4 (A and B),
for the case of a geodesic half circle (8, = n), the jumping protocol
reaches unit fidelity within the measurement accuracy, while the stan-
dard continuous driving has much lower fidelity at short evolution
times. The advantage of the jumping protocol is more prominent when
we traverse the half-circle path back and forth [see Fig. 4 (C to F) for the
results of a total path length of 68,]. We observe in Fig. 4 that the con-
stant gap protocol provides unit state transfer fidelity only when the ini-
tial state is an eigenstate of the initial Hamiltonian | ¥;) = | x) and when
the relative dynamic phase accumulated in a single half circle is ¢ =

(2kn)* — (Gg)2 (k=1.2, ...) (see Materials and Methods). However,

the phase shifts on the system eigenstates accompanying adiabatic evo-
lution cannot be observed when the initial state is prepared in one of the
initial eigenstates. Therefore, in Fig. 4, we also compare the fidelity for
the initial state |'¥';) = | y), which is a superposition of the initial eigen-
states | £ x). The results confirm that the jumping protocol achieves ex-
actly the adiabatic evolution U,4;, within the experimental uncertainties.
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Fig. 4. Performance of adiabatic protocols along geodesics. (A) Measured fidelity (blue dots) between the final state and the target adiabatic state as a function of
the total time by using a continuous driving protocol with a constant gap Qg = 2 X 5 MHz. The inset indicates the control path where the instantaneous eigenstate |y+(A)) of
the Hamiltonian proceeds from |x) to the | — x) via a geodesic half circle. The initial state |y;(0)) = | ¥;) is prepared in the initial eigenstate |x) (top) or |y) (bottom), the
equal superposition of initial eigenstates. The target state is defined as the state driven by an ideal, infinitely slow adiabatic evolution. The red lines show the numerical
simulation that has taken experimental noise sources into consideration (see Materials and Methods). The horizontal gray lines indicate the level of unit fidelity. (B) Same as (A)
but for a jumping protocol where the m pulses have the same amplitude as the continuous protocol but are applied at the path points A; without time delay. The crosses in the
inset illustrate the path points for N = 5 pulses. (C and D) Same as (A) and (B), respectively, but for a longer path containing six half circles by using three times of back-forward
motion. (E and F) Fidelity during the evolution for a total time T = 3 us using the protocols in (C) and (D).
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Robustness of quantum adiabatic evolution via jumping

To demonstrate the intrinsic robustness guaranteed by adiabatic evo-
lutions, in Fig. 5, we consider large random driving amplitude errors in
the jumping protocol. We add random Gaussian distributed errors
with an SD of 50% to the control amplitude. To simulate white noise,
we change the amplitude after every 10 ns in an uncorrelated manner.
Despite the large amplitude errors, which can even cause energy level
crossings, during the evolution (see Fig. 5A for a random time trace), a
change of fidelity is hardly observable in Fig. 5B. Additional simula-
tions in fig. S2 also demonstrate the robustness to amplitude fluctua-
tions with different kinds of noise correlation, i.e., Gaussian white
noise, Ornstein-Uhlenbeck process modeled noise, and static random
noise. The robustness of the jumping protocol can be further enhanced
by using a larger number N of points along the path (fig. S3).

While it is different from dynamical decoupling (DD) (20, 26), the
jumping protocol can suppress the effect of environmental noise
through a mechanism similar to DD. Therefore, the fidelity is still high
even when the evolution time is much longer than the coherence time,
T; = 1.7us, of the NV electron spin (fig. S4). This evidence is useful to
design adiabatic protocols that provide strong robustness against both
control errors and general environmental perturbations.

Avoiding unwanted path points in adiabatic evolution
Without going through all the path points, the jumping protocol has
advantages to avoid path points (i.e., Hamiltonian with certain eigen-
states) that cannot be realized in experiments. As a proof-of-principle
experiment, we consider the Landau-Zener (LZ) Hamiltonian (27)

O O
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— 5} ]
&
=
< ol ]
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Fig. 5. Robustness of the jumping protocol. (A) Exemplary time trace of the
driving Rabi frequency. The amplitudes of the Rabi frequency are randomly gen-
erated by the Gaussian distribution with a mean of 2r x 5 MHz and an SD of 2r x
2.5 MHz. The amplitudes are uncorrelated at every slices of duration of 10 ns.
(B) Fidelity to the final adiabatic state as a function of the total time using the
amplitudes as in (A) and the initial state prepared in the eigenstate |x). The
inset of (B) shows the fidelity during the evolution time t for N = 5. The fidelity
is measured by comparing the experimental state with the ideal state under an
infinitely slow adiabatic evolution.
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with 6, (0= x, y, z) being the Pauli matrices. Because A is nonzero in
the LZ Hamiltonian, tuning the system eigenstates to the eigen-
states | +z) of 6, requires B, — * oo. Therefore, for a perfect state
transfer from |¥;) = | —z) to |'¥,) = | 2), by using the standard con-
tinuous protocol, it is required to adiabatically tune B, from —eo to +oo
(see insets of Fig. 6A). The experimental implementation of B, = + e
however requires an infinitely large control field, which is a severe lim-
itation. In our experiment, a large B, field can be simulated by going to
the rotating frame of the MW control field with a large frequency de-
tuning. The experimental realization of B, — + oo can be challenging
in other quantum platforms. For example, for superconducting qubits
where A/(2r) could be as large as 0.1 GHz, the tuning range of B./(2r)
is usually limited to a couple of gigahertz or even of the same order of
magnitude as A/(2m) (28). For a two-level quantum system comprising
Bose-Einstein condensates in optical lattices, the maximum ratio of
B, /A is determined by the band structure (29). For singlet-triplet qubits
in semiconductor quantum dots, the exchange interaction for the
control of B, is positively confined (30). On the contrary, with the jump-
ing approach, one can avoid the unphysical points such as B, = + o as
an infinitely slow and continuous process is not required and can
achieve high-fidelity state transfer as shown in Fig. 6.

As a remark, we find that our jumping protocol with N =1 (i.e., a
Rabi pulse) specializes to the optimized composite pulse protocol (29)
but has the advantage of requiring no additional strong m/2 pulses at

A
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= = ;I/I/x\—‘\K
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02 o (©) ©
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0.0 0.1 0.2 0.3 0.4 0.5 0.6

B

1.0
=
g
=05
=
o
o
[a¥

0.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Evolution time (us)

Fig. 6. Avoiding unphysical points in the LZ model. (A) Measured fidelity
(dots) to the adiabatic state during the evolution time along the path of the LZ
model by using the jumping protocol of N = 5 pulses. Left inset is the eigenener-
gies of the LZ model with an avoided crossing A = 2n x 5 MHz. The path (right
inset) was set as from the initial eigenstate |-z) to |z) (blue arrowheads) and
back from |z) to |—z) (purple arrowheads). The red circles indicate the unphysical
path points (|+z)) that require an infinitely large B, and eigenenergies in the
Hamiltonian. The jumping protocol avoids the use of the unphysical points and
adiabatically transfers the states |+z) with high fidelity (dots) during the evolution
by jumping only on the path points indicated by red crosses. (B) Population at | -z)
during the evolution time along the path. The red lines are the numerical simulations,
and the target state is defined as the ideal adiabatic state driven under the control
with an infinite number of © pulses.
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the beginning and the end of the evolution. Moreover, by applying the
jumping protocol with N =1 to the adiabatic passage proposed in (31),
we obtain the protocol that has been used to experimentally generate
Fock states of a trapped atom (32). When, instead of a single target
point, high-fidelity adiabatic evolution along the path is also desired,
we can use the jumping protocol with a larger N.

DISCUSSION

In summary, our experiments demonstrated that energy level crossings
and vanishing gaps allow and can even accelerate quantum adiabatic
evolutions, challenging the traditional views that adiabatic control must
be slow and that unit-fidelity adiabatic processes require an infinite
amount of evolution time. By experimentally verifying a recently derived
quantum adiabatic condition, we have shown that the quantum dynamic
phases are more fundamental than energy gaps in quantum adiabatic
processes. Owing to rapid changes of these phases, nonadiabatic transi-
tions can be efficiently suppressed and fast-varying Hamiltonians can
still realize quantum adiabatic evolutions. Our results break the limit im-
posed by the conventional adiabatic methods that originate from the tra-
ditional concept of extremely slow change in classical mechanics (14, 16),
allowing fast quantum adiabatic protocols with unit fidelity within finite
evolution times. In addition, the freedom of using vanishing gaps pro-
vides the ability to avoid unphysical points in an adiabatic path and
allows incorporating pulse techniques (26) into a quantum adiabatic evo-
lution to suppress environmental noise for long-term robust adiabatic
control. While it is possible to mimic the infinitely slow quantum adia-
batic evolution by using additional counterdiabatic control, i.e., shortcuts
to adiabaticity (29, 33-37), the implementation of the counterdiabatic
control can be exceedingly intricate because it may need interactions
absent in the system Hamiltonian (36, 37). Furthermore, the counter-
diabatic control unavoidably changes the eigenstates of the initial
Hamiltonian and introduces additional control errors (36, 37). How-
ever, because our protocol uses the intrinsic adiabatic path that follows
the eigenstates of the Hamiltonian, no additional control is required.
As a consequence, our methods avoid the use of difficult or unavail-
able control resources and share the intrinsic robustness of adiabatic
methods. With the removal of the prerequisites in the conventional
adiabatic conditions, namely nonzero gaps and slow control, our results
provide new directions and promising strategies for fast, robust control
on quantum systems.

MATERIALS AND METHODS

Adiabatic evolution along the geodesics of a general
quantum system

For two arbitrary states (e.g., entangled states and product states) of
a general quantum system, |¥;) and |'¥,), one can write(¥; | ¥;) =
cos(} Gg) e'®%:, with ¢;, and 6, being real. Here, 6, is the path length
connecting | ¥;) and |'¥,) by the geodesic, and we set ¢; =0 by a
proper gauge transformation (24). The geodesic (24, 25) that con-
nects |'P;) and |W,) by varying A = 0 to A = 1 can be written as
[wi(W) = () | + c(V) | Py, where the coefficients ¢ (A) =
cos(1651) — sin(16,1) cot (16,) and ¢ (1) = sin(}6,1) /sin(16;) for
sin (% eg) #0. To describe |y;(A)) in terms of the system eigenstates,
we chose an orthonormal state |y,(0)) oc (I —|WX¥;|) |Wy if
sin(16;) #0. When | ¥, is equivalent to |'¥;) up to a phase factor

1

> Gg) = 0], | y»(0)) can be an arbitrary orthonormal state. Then,

[ie.sin (
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the geodesic and its orthonormal state can be written as |y, (X)) =
cos(10,1) [, (0)) + sin(16,1) [ y,(0)) and |y, (1)) = —sin (2 6,1)
|1 (0)) + cos(2651) | w,(0)), respectively. Along the geodesic, we
had g1(A) = —g12(A) = i1 6, being a constant and g, ,, = 0 for
other combinations of n and m. Along the geodesic, if one changes
the dynamic phases with a  phase shift only at each of the N equally
spaced path points A; = (2N)'(2j — 1), with j = 1,2, ..., N; then the
operators W() at different A commute and we have f(l) ez d) = 0. As
a consequence, Ugi, (1) = explif; W(A)d)] = I and the quantum evo-
lution U = U,g;, does not have any nonadiabatic effects.

Hamiltonian of the NV center under MW control

Under a magnetic field b, along the NV symmetry axis, the Hamil-
tonian of the NV center electron spin without MW control reads
Hyy = DS2 — v.b.S;, where S, is the electron spin operator, D ~ 21t x
2.87 GHz is the ground-state zero field splitting, b, is the magnetic field,
and y, = — 2 x 2.8 MHz G ™" is the electron spin gyromagnetic ratio (21).
Following the standard methods to achieve a controllable Hamilto-
nian for quantum adiabatic evolution (2, 3), we applied an MW field
V2Q(\) [cos(opwt + 9(A)] to the NV my = 0 and m; = 1 levels to form
a qubit with the qubit states |z) = | mg=1)and | —z) = | my=0). The
MW frequency myw may also be tuned by the parameter A to realize
a controllable frequency detuning (1) with respect to the transition
frequency of mg = 0 and m; = 1 levels. In the standard rotating frame
of the MW control field, we had the general qubit Hamiltonian un-
der the MW control (21)

H(}) =38(}) % +Q()) [cosS(X) % + sin9(A) %] (8)

where the MW phase 9(A), MW detuning 8(A), and MW Rabi frequen-
cy Q(A) are all tunable and can be time dependent in experiment. The
usual Pauli operators satisfy 6.| +z) = +|+z) and [cos (B,0)c, + sin
(OM)0,] | +2) = £]+,), where the states | ;) are given in Eq. 5.

By setting the MW detuning to 8(A) = 0, we achieved the Hamil-
tonian in Eq. 4, which in terms of the Pauli operators reads

Hy (1) = Q%) [cos(egx) % +sin(0,) %

By varying the parameter A, the system eigenstates follow the geo-
desics along the equator of the Bloch sphere where the north and south
poles are defined by the states | * z). Here, the energy gap Q(}) is
directly controlled by the amplitude of the MW field. On the other
hand, by using a constant Rabi frequency (L) = A and a tunable fre-
quency detuning 8(A) = B,()), we obtained the LZ Hamiltonian Hj z(A)
given in Eq. 7.

Adiabatic evolution by continuous driving with a

constant gap

Consider a conventional adiabatic driving where a constant ampli-

tude driving field rotates around the z axis, with the Hamiltonian

H\) =3 Qe 1% 6 ¢'2%-%*, which is parameterized by A = /T along

a circle of latitude with 6¢ = 6,c0s0 + 6,sin0 in a total time T. The dif-

ference of the accumulated dynamic phases at A = 1 on the two eigen-

states is ¢ = QT. One can show that the system evolution at A = 1 reads
U= ef’%eg‘sfexp [

,,% (006 — egoz)} (9)
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The ideal adiabatic evolution is obtained by using Eq. 9 in the
adiabatic limit T — o (i.e., ¢ — o)

Undia = lim U = e*iéegczeiéegcuseﬁe e*i%q)ce
T—oo

Without the part of dynamic phases, U,4;, describes geometric evo-
lution, and for a cyclic evolution (i.e., 65 = 21), the geometric evolution is
described by the Berry’s phases +m(cos6 — 1). By comparing U,g;, and U
or by using the results of (20), the nonadiabatic correction is given by

1
Ugia = exp {15 (60— chose)ce} U’ (10)

with
1
U' = exp [_li(q)oe - egcz)}

In the adiabatic limit T'— oo (ie., ¢ — o0), Uy, = I is the identify
operator. We note that, when the phase factor of the state is irrelevant,
one can perform perfect state transfer by this driving if the initial state is
prepared in an initial eigenstate of the driving Hamiltonian H(A) (i.e., an
eigenstates of 6g). From Eq. 10, Uy;, is diagonal on the basis of 6o when
U’ o< I As a consequence, when U’ o I and | V) is prepared as an
eigenstate of 6¢ [and hence H(A = 0)], the evolved state U | ;) matches
the target state U,qi, | 'P';) up to a phase factor. For the case of the evo-

lution along the geodesic (e.g., 6 = n/2) and , /¢ + 92 = 2kn (k =
1,2, ...),we had U’ o< I and therefore a perfect population transfer
for the initial eigenstates of o,.

Numerical simulations

In the simulations, we modeled dephasing noise and random fluc-
tuations by adding them to the Hamiltonian (Eq. 8) via 8(A) —
(L) + §p and QL) — Q(A)(1 + §;). Here, §, is the dephasing noise
from static and time-dependent magnetic field fluctuations with a
T, = 1.7 us. §; is the random static changes in the driving ampli-
tude. §, follows the Gaussian distribution with the mean value p =
0 and the SD ¢ = 2x x 130 kHz. The probability density of §; has
the Lorentz form £(8, v) = 1/{my[1 + (8,/y)*]} with y = 0.0067. All
the parameters in the distribution function were extracted from
fitting the free induction decay and the decay of Rabi oscillation.

Experimental setup

The experiments were performed with a home-built optically detected
magnetic resonance platform, which consists of a confocal microscope
and an MW synthesizer (fig. S5). A solid-state green laser with a
wavelength of 532 nm was used for initializing and reading out the
NV spin state. The light beam was focused on the NV center through
an oil immersion objective (numerical aperture, 1.4). The emitted fluo-
rescence from the NV center was collected by a single-photon counting
module (avalanche photodiode). Here, we used an NV center em-
bedded in a room-temperature bulk diamond grown by chemical vapor
deposition with [100] faces. It has '>C isotope of natural abundance and
nitrogen impurity less than 5 parts per billion. To lift the degeneracy of
the | mg = + 1) states, a static magnetic field of 510 G was provided by a
permanent magnet. The magnetic field was aligned by adjusting the
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three-dimensional positioning stage on which the magnet was mounted
and by simultaneously monitoring the counts of the NV center. The
direction of the magnetic field was well aligned when the counts showed
no difference between with and without the magnet. Manipulation of
the NV center was performed by MW pulses applied through a home-
made coplanar waveguide. The MW pulses were generated by the I/Q
modulation of the Agilent arbitrary wave generator (AWG) 81180A
and the vector signal generator (VSG) E8267D and then amplified by
the Mini Circuits ZHL-30W-252+. An atomic clock was used to syn-
chronize the timing of the two. The AWG supplies the I and Q data with
a frequency of 400 MHz, and the VSG generates the 3898-MHz carrier.
The output frequency is 4298 MHz, which matches the transition fre-
quency between the NV m, = 0 and m = + 1 states.

Experimental sequences

As the magnetic field is 510 G, we first applied the green laser for 3 s to
initialize the NV center electronic spin to the level of m, = 0 and to po-
larize the adjacent '*N nuclear spin simultaneously (38). The prepara-
tion of the NV electron spin in an equal superposition state of m, = 0
and mj = 1 was realized by applying an MW m,/2 (r,/2) pulse, i.e., by the
rotation around the x (y) axis with an angle of /2. Then, the NV elec-
tron spin was driven according to a desired path. To experimentally
characterize the evolution path, we sampled the path with several points
and measured the spin state through tomography. m,/2 or ©,/2 pulses
were applied to read out the off-diagonal terms. Last, the spin state was
read out by applying the laser pulse again and measuring the spin-
dependent fluorescence. Typically, the whole sequence was repeated
10° times to get a better signal-to-noise ratio. The schematic diagram
of the pulse sequence is shown in fig. S6.

In driving the NV electron spin along the path given in Eq. 5, we
used an on-resonant MW field and swept the MW phase 6\ with
the path parameter A. In driving the NV electron spin along the path
of the LZ Hamiltonian (Eq. 7), the MW phase was a constant, A was set
by the Rabi frequency, and B, was the MW frequency detuning that
varied as B, = — Acot(0,1). For continuous driving, the path parameter
A varies with a constant rate dA/dt = f,o. In the jumping protocol, A
jumps from point to point: A = A; = (2N)’1(2j -Dwithj=12,...,
N. In this work, the jumping protocol had a constant driving Rabi fre-
quency Qg and A = A;if (j — 1)T/N < ¢ < jT/N for a path with N pulses
applied in a total time T. In the experiments with the back-forward mo-
tion along the geodesic, we reversed the order of the parameter A in the
backward path, that is, in the jumping protocol, we repeated the subse-
quent parameters (A;, Ay, ..., AN — 1> Ans Ans AN — 15 -+ » Ao, Ap), while for
the standard protocol of continuous driving, we used the rate d\/dt = f,
for a forward path and the rate d\/dt = — f,., for a backward path and
repeated the process.

We removed the irrelevant dynamic phases if the initial state was not
prepared in an initial eigenstate to reveal the geometric evolution. At the
beginning of state readout, we compensated the dynamic phases by ap-
plying an additional driving with an MW 1 phase shift (i.e., Q — — Q) at
the point of the target state for a time equalling to the time for adiabatic
evolution. This additional driving did not change the geometric phases
and state transfer because it was applied at the final path point.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/6/eaax3800/DC1

Fig. S1. Transition of adiabatic control from a constant gap to a gap with energy level crossings.
Fig. S2. Robustness of the jumping protocol against different kinds of control noise.
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Fig. S3. Enhancing the robustness of jumping protocol in the presence of control noise.
Fig. S4. Coherence protection during adiabatic evolutions.

Fig. S5. Sketch of the experimental setup.

Fig. S6. Experimental pulse sequence.
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