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Cardiovascular diseases (CVDs) are the leading cause of death in China. Conventional

diagnostic methods are dependent on advanced instruments, which are expensive,

inaccessible, and inconvenient in underdeveloped areas. To build a novel dried blood

spot (DBS) detection strategy for imaging CVDs, in this study, a total of 12 compounds,

including seven amino acids [homocysteine (Hcy), isoleucine (Ile), leucine (Leu), valine

(Val), phenylalanine (Phe), tyrosine (Tyr), and tryptophan (Trp)], three amino acid derivatives

[choline, betaine, and trimethylamine N-oxide (TMAO)], L-carnitine, and creatinine, were

screened for their ability to identify CVD. A rapid and reliable method was established

for the quantitative analysis of the 12 compounds in DBS. A total of 526 CVD patients

and 200 healthy volunteers in five provinces of China were recruited and divided into the

following groups: stroke, coronary heart disease, diabetes, and high blood pressure.

The orthogonal projection to latent structures-discriminant analysis (OPLSDA) model

was used to characterize the difference between each CVD group. Marked differences

between the groups based on the OPLSDA model were observed. Based on the

model, the patients in the three training sets were mostly accurately categorized into the

appropriate group. In addition, the receiver operating characteristic (ROC) curves and

logistic regression of each metabolite chosen by the OPLSDA model had an excellent

predictive value in both the test and validation groups. DBS detection of 12 biomarkers

was sensitive and powerful for characterizing different types of CVD. Such differentiation

may reduce unnecessary invasive coronary angiography, enhance predictive value, and

complement current diagnostic methods.

Keywords: cardiovascular diseases, biomarker, risk prediction, DBS, metabolomics

INTRODUCTION

Cardiovascular diseases (CVDs) and cerebrovascular diseases refer to all heart and cerebral diseases
related to vasculopathy, which mainly include coronary heart disease (CHD), hypertension, and
stroke (1). Diabetes mellitus is a risk factor for CVD (2). CVD is a serious threat to the health of
humans, especially middle-aged and older people over 50 years old, who have a high prevalence,
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high disability, and high mortality rate. Up to 30 million people
die of CVD every year worldwide (3). The age-standardized death
rate attributable to all CVDs in the US population was 223.9 per
100,000 (4). Stroke and ischemic heart disease were the leading
causes of death in China in 2017 (5). Even when utilizing themost
advanced and sophisticated treatments available, more than 50%
of survivors are unable to take care of themselves (3).

Studies have shown that the pathogenesis of CVD may
be due to blood vessel lesions, which are secretive, gradual,
and systemic, and it is difficult to identify obvious clinical
symptoms in the early stage (6). Finding reasonable and effective
biomarkers to diagnose, classify, and guide the treatment of
CVD has always been a focus of clinical diagnostics (1). CVD
is essentially a metabolic disease (7). At present, a series of
relatively mature and widely clinically used biomarker tests have
provided an important reference for the diagnosis and treatment
of CVD. The more mature cardiovascular markers mainly
include the blood vessels themselves, markers of the coagulation
system (such as platelets and fibrinolysis), lipid metabolism
and inflammatory markers, plaque calcification, non-calcified
detachment predictive markers, and organ damage markers,
such as myocardial injury and brain injury markers. However,
these diagnostic methods require advanced instruments and
are expensive, requiring patients to enter the hospital for
examination; additionally, these methods are difficult to fully
develop implementing in underdeveloped areas.

Dried blood spot (DBS) technology that can be stored
stably enables new possibilities for bioanalytical procedures
that can be beneficial for patients, health care providers, and
laboratories, and the technology can be inexpensive (8). The
sampling can be performed in a non-hospital environment and
is suitable for large-scale disease screening (9). DBS technology
also reduces the sample processing burden and is characterized
by straightforward waste disposal. A DBS method was applied
for the detection of metabolites toward hypertension and healthy
controls (10). This study aimed to screen and validate CVD
biomarkers that can be measured by DBS testing. In this article,
we selected 12 biomarkers [choline, betaine, trimethylamine
N-oxide (TMAO), creatinine, L-carnitine, homocysteine (Hcy),
isoleucine (Ile), leucine (Leu), valine (Val), phenylalanine
(Phe), tyrosine (Tyr), tryptophan (Trp)] from the literature
that may characterize CVD features. After quantifying the
12 biomarkers in DBSs, the orthogonal projection to latent
structures-discriminant analysis (OPLSDA) model was used to
screen the potential biomarkers. Then, the receiver operating
characteristic (ROC) curve and logistic algorithm were applied
to three validation sets to verify whether the selected markers
could characterize the occurrence of CVD for clinical diagnosis
and risk prediction.

Abbreviations: CVD, cardiovascular disease; CHD, coronary heart disease; DBS,
dried blood spot; ROC, receiver operating characteristic; TMAO, trimethylamine
N-oxide; Hcy, homocysteine; Ile, isoleucine; Leu, leucine; Val, valine; Phe,
phenylalanine; Tyr, tyrosine; Trp, tryptophan; HI, healthy individual; HBP, high
blood pressure; BMI, body mass index; DBP, diastolic blood pressure; OPLSDA,
orthogonal projection to latent structures-discriminant analysis; VIP, variable
importance in the projection.

MATERIALS AND METHODS

Biomarker Screening
A literature search was conducted using the PubMed and
EMBASE databases, and the Preferred Reporting Items for
Systematic Reviews andMeta-Analyses (PRISMA) statement was
used (11). The search terms were “cardiovascular diseases” OR
“coronary artery disease” OR “stroke” OR “diabetes mellitus”
AND “metabolite” OR “metabolomics” OR “biomarkers.” There
was no language restriction, and the period covered database
inception until October 31, 2017. Our inclusion criteria were as
follows: (1) study subjects were humans; (2) study subjects had
only metabolic syndrome but no other diseases; and (3) studies
reported changes in metabolites in the plasma or serum resulting
from metabolic syndrome. To further compile a comprehensive
list of relevant literature, manual searches of the reference
lists in book chapters and gray literature were conducted.
The key metabolites associated with CVD are summarized
in Supplementary Table 1. Considering the compatibility of
DBS sampling and mass spectrometry analysis, 12 compounds
(choline, betaine, TMAO, creatinine, L-carnitine, Hcy, Ile, Leu,
Val, Phe, Tyr, Trp) were selected for clinical validation.

Participants
The study protocol was approved by the Ethics Committee of The
First Affiliated Hospital of Soochow University. Male and female
adults who were diagnosed with stroke, CHD, diabetes, and high
blood pressure (HBP) as well as healthy individuals (HIs) were
recruited from five provinces (Hebei, Shaanxi, Liaoning, Ningxia,
and Shanxi) in China. Participants fully understood the risks and
benefits of the study and provided informed consent. Capillary
blood was spotted on paper cards (whatman filter paper) by
direct application from the fingertip. According to the severity of
the diseases, patients with CVD were divided into four groups:
stroke, CHD, diabetes, and HBP. Patients in one group may
have also had subsequent complications. That is, if a patient had
stroke, diabetes, CHD, and HBP, s/he would be assigned to the
stroke group (Table 1).

Dried Blood Spot Extraction and
Methodology Validation
For preparation of calibration curves and quality control (QC)
of the metabolites, DBSs spiked with known concentrations were
used. The concentration ranges of 12 metabolites are shown
in Table 2. Six-millimeter (diameter) DBS was placed in a 96-
well protein precipitation plate, 20 µl of 10 mg/ml dithiothreitol
(DTT) was added to each well, and the plate was shaken at 600
rpm for 5min. Then, 300 µl mixed extracting solution [0.1%
formic acid–acetonitrile containing 5 µl internal standard (IS)]
was added to each well and shaken at 600 rpm for 30min. The
extraction solution was filtered by 0.02 MPa and collected. Each
sample was diluted with 200 µl of 80% (V/V) acetonitrile water
solution and mixed at 600 rpm for 5min. All of the calibration
curves were computed by plotting the relative peak area ratios of
analyte to IS vs. the plasma concentrations of each analyte using
a weight factor of 1/x2 at each concentration.
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TABLE 1 | Population characteristics in communities study (Five provinces: Hebei, Shaanxi, Liaoning, Ningxia, and Shanxi).

HI

(n = 200)

Stroke

(n = 151)

CHD

(n = 173)

Diabetes

(n = 105)

HBP

(n = 97)

Mean age, years (SD) 64.5 (11.3) 64.6 (7.8) 65.4 (8.9) 64.1 (6.9) 59.3 (11.9)

Sex

Men 100 (50%) 89 (58.9%) 84 (48.6%) 52 (49.5%) 47 (48.5%)

Women 100 (50%) 62 (41.1%) 89 (51.4%) 53 (50.5%) 50 (51.5%)

Mean BMI, kg/m² (SD) 23.2 (3.5) 25.3 (3.4)** 25.6 (4.1)** 24.8 (3.6)** 25.6 (3.6)**

DBP (SD) 75.4 (8.2) 90.7 (17.2)** 89.9 (15.4)** 86.6 (14.7)** 93.5 (13.8)**

Complication

CHD, (Unknown)# NA 26, 17.2% (2, 1.3%) NA NA NA

Diabetes, (Unknown)# NA 7, 4.6% (5, 3.3%) 7, 4.0% (6, 3.4%) NA NA

Hypertension NA 133 (88.1%) 126 (72.8%) 64 (61.0%) NA

Use therapeutic drugs within a month NA 120 (79.5%) 128 (74.0%) 70 (66.7%) 32 (27.8%)

Smoking

Current smoker 74 (37.0%) 27 (17.9%) 40 (23.1%) 22 (21.0%) 25 (25.8%)

Never smoker 126 (63.0%) 124 (82.1%) 133 (76.9%) 83 (79.0%) 72 (74.2%)

Drinking 26 (13.0%) 12 (7.9%) 18 (10.4%) 7 (6.7%) 21 (21.6%)

Farm work 140 (70.0%) 62 (41.1%) 95 (54.9%) 52 (49.5%) 64 (66.0%)

Education attainment, years (SD) 6.5 (3.6) 5.3 (3.4) 4.3 (3.6) 5.1 (3.6) 4.9 (3.5)

#Some missing values for this category. NA = not applicable. BMI = body-mass index.
**P < 0.01 vs. HI.

HI, Healthy individuals; CHD, Coronary Heart Disease; HBP, High Blood Pressure.

Data Acquisition
Ultra-performance liquid chromatography (UPLC) separation
was performed on a Waters ACQUITY UPLC R© BEH HILIC
column (2.1 × 100mm, 1.7µm) at 40◦C at a flow rate of
0.4 ml/min. The autosampler was conditioned at 4◦C, and the
injection volume was 5 µl. The two mobile phases consisted
of 0.1% formic acid−10 mmol/L ammonium formate in water
(solvent A) and acetonitrile (solvent B). Separation was carried
out in 5min under the following conditions: 0∼1min, 80% B;
1∼2min, 80∼70% B; 2∼2.5min, 70% B; 2.5∼3min, 70∼80% B;
and 3∼5min, 80% B.

An API 4000 mass spectrometer equipped with an
electrospray ionization (ESI) source (AB SCIEX, USA) was
used to acquire mass spectra profiles. The optimized operating
parameters were as follows: source voltage, 5.0 kV (positive
mode); and curtain gas (CUR), 30 psi. Quantitation was
performed using MRM mode to monitor the protonated
precursor to product ion transition. The compound-dependent
parameters, such as m/z, declustering potential (DP), focusing
potential (FP), collision energy (CE), and cell exit potential
(CXP) were optimized and are shown in Table 2.

Logistic Algorithm and Statistical Analysis
MS data were processed using AB SCIEX Analyst 1.6 software,
and compound concentrations of DBS samples were calculated.
Compound concentrations of DBS samples, participant
characteristics [body mass index (BMI), age, diastolic blood
pressure (DBP), and sex], and clinical diagnoses were analyzed
using the logistic algorithm based on the genetic algorithm
to fit the grid model. To verify model accuracy and hopefully
national promotion, data from 358 participants in two provinces

(test phase, Hebei and Shaanxi) were analyzed as a training set
for building the model, and data from 368 participants in the
other three provinces (Liaoning, Ningxia, and Shanxi) were used
for model validation to verify the accuracy of the model.

OPLSDA was applied to explore the differences in metabolic
profiles between each group to identify the response variables
that contributedmost strongly to the model (SIMCA version 13.0
Umetrics AB, Umea, Sweden). The model was evaluated using
three quantitative parameters: R2X is the explained variation
in X, R2Y is the explained variation in Y, and Q2 is the
predicted variation in Y. The values of Q2 approaching one
indicate the perfect fit of the model. Variable importance in
the projection (VIP) >1 contributed most to the model and
the prediction. In addition, one-way ANOVA with Bonferroni
and Hochberg correction was applied for each metabolite. Heat
maps were generated using R GUI after standardization between
groups (Supplementary Figure 1). ROC analysis and logistic
regression analysis were performed to differentiate different
CVD categories. The cutoff value was calculated by maximizing
Yoden’s index with equal weighting for sensitivity and specificity.
Statistical analyses were performed using SPSS software version
19.0 (IBM Corp., Armonk, New York). A p-value of <0.05 was
considered statistically significant.

RESULTS

Participant Characteristics
In this study, the 726 enrolled participants (Table 1) belonged
to five groups: no CVD or other diseases (HI group, n = 200),
stroke (n = 151), CHD (n = 173), diabetes (n = 105), and HBP
(n= 97). The distributions of sex and age among the CVD groups
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TABLE 2 | MS/MS detection parameters and calibration curves of 12 compound with the internal standard.

Target Precursor/product ion DP EP CE CXP Regression equation Correlation (r) Accuracy Linear range (µmol/L)

Betaine 118.1/41.9 56 10 75 2 y = 0.0174x + 0.0259 0.9928 94.5∼109% 5∼400

Choline 103.8/60.0 101 10 25 12 y = 0.0435x – 0.00316 0.9982 91.7∼106% 0.5∼40

TMAO 76.0/58.0 41 10 27 6 y = 1.55x – 0.021 0.9988 97.7∼104% 0.25∼20

Creatinine 114.0/86.1 46 10 17 16 y = 0.0178x + 0.00184 0.9983 96.2∼109% 2.5∼200

L-Carnitine 162.0/59.9 61 10 29 10 y = 0.116x + 0.0277 0.9961 92.3∼113% 1∼100

Hcy 136.0/90 46 10 15 8 y = 0.121x – 0.000856 0.9967 90.7∼104% 0.5∼40

Ile 132.0/69.00 51 10 25 6 y = 9453x + 3323 0.9983 94.3∼104% 2∼200

Leu 132.0/43.00 56 10 35 2 y = 2.1703x + 2.2E03 0.9976 94.3∼104% 2∼200

Val 118.2/72.000 26 10 15 3 y = 0.0406x + 0.0583 0.9947 96.8∼107% 10∼500

Phe 166.1/119.9 46 10 19 10 y = 0.112x + 0.067 0.9942 94.9∼108% 2.5∼200

Tyr 182.1/165.2 46 10 13 16 y = 19804x + 402 0.9983 94.3∼104% 2∼200

Trp 205.1/188.1 31 10 15 16 y = 64904x – 2643 0.9987 95.0∼105% 2.5∼200

Choline d9# 113.0/69.0 26 10 25 6

Betaine d9# 127.1/68.0 66 10 27 4

TMAO d9# 85.0/66.0 41 10 29 12

Creatinine d3# 117.0/88.9 61 10 11 8

L-Carnitine d3# 165.1/103.1 56 10 23 10

Val-C13# 119.0/72.0 41 10 15 6

Phe-C13# 167.1/120.1 41 10 19 12

Hcy-d4# 140.0/94.00 36 10 17 2

# Internal Standard.

DP, Declustering Potential; EP, Entrance Potential; CE, Collision Energy; CXP, Collision Cell Exit Potential.

and healthy group were not significantly different. The BMI and
DBP levels of CVD patients were significantly higher than those
of the healthy volunteers. This result was consistent with previous
reports, as BMI and DBP are high risk factors for CVD (2, 12, 13).

The training set included 358 participants from Hebei
and Shaanxi (96 HI, 74 stroke, 73 CHD, 65 diabetes,
and 50 HBP volunteers). Their characteristics are shown in
Supplementary Table 2. Compared with HI subjects, CVD
patients had higher levels of BMI and HBP and a low proportion
of smoking and farm work. Interestingly, the higher the disease
risk, the greater the percentage of medication use found.

The validation sets from Liaoning, Ningxia, and Shanxi
included 368 participants. Their demographic information is
shown in Supplementary Tables 3–5. The higher levels of BMI
and HBP and the low proportion of smoking and farm work of
CVD patients found in the test phase were also found in these
three data sets.

Method Validation
The method was validated for linearity, extraction recovery,
accuracy, and precision in this study. Detailed results of
the methodology validation are provided in Table 2 and
Supplementary Tables 6, 7.

Cross-Comparisons Between and Within
Cardiovascular Disease Groups
Twelve biomarkers including amino acids, amino acid
derivatives, L-carnitine, and creatinine were measured in
DBS samples. The OPLSDA model was used to characterize

the difference between each CVD group and to find discrepant
compounds via variable importance in the projection (VIP).
We also validated the patient classification in the three training
groups by establishing the OPLSDA model. There were obvious
differences between the groups in the OPLSDAmodel (Figure 1),
which provides a theoretical basis for us to establish a prediction
model. In Figure 1, we can see that according to the established
OPLSDA model, the patients in the three training groups
were mostly categorized into the appropriate group. The
metabolites with VIP values >1.0 were considered potential
differential metabolites. Individuals with various types of CVD
were compared to HI and with each other, characterizing
specific metabolites.

Clear differences were identified, and the three quantitative
parameters are shown in Supplementary Table 8. The
metabolites with VIP values >1.0 are shown in Table 3.
Concentration changes associated with Hcy, Lle, Ile, Trp, and
creatinine were the most significant in all paired comparisons.

Differential Metabolites and Diagnosis of
Cardiovascular Disease via Dried Blood
Spots
Through 10 comprehensive cross-comparisons of different
groups, seven differential metabolites were confirmed. The
concentrations of all the metabolites in HI and individuals
in the different CVD groups are summarized in Table 3 and
Supplementary Tables 9–11.
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FIGURE 1 | Orthogonal projection to latent structures-discriminant analysis (OPLSDA) prediction modeling to characterize the difference between each cardiovascular

disease (CVD) group using the test samples with the 12 metabolites (A–J). There were obvious differences between the groups in the OPLSDA model. According to

this prediction model, individuals in the three training groups could be categorized into the correct region of the prediction set. HI, healthy individual; CHD, coronary

heart disease; HBP, high blood pressure.

As summarized in Table 3, the accurate diagnosis of different
types of CVD is fundamental for precision medicine. The criteria
for biomarkers were VIP >1.0 in each OPLSDA model was
used for differential diagnosis. The ROC curves, on the basis
of the logistic regression of each metabolite from the test set,
are displayed in Supplementary Figure 2; the areas under the
curve (AUCs), sensitivity, and specificity were used to evaluate
the prediction accuracy. The patient characteristics, including
BMI, age, gender, and DBP, were also taken into consideration.
Although it has no effect in many models, it still improves
the AUC for a few models, especially in HBP vs. stroke (0.762
vs. 0.653; Figure 2, Supplementary Figure 2). This means that
patient characteristics partially characterize CVD.

The AUC, sensitivity, and specificity were 0.997, 98.0%, and
100% for HI vs. HBP (Figure 2A); 1.000, 100%, and 100%
for HBP vs. diabetes (Figure 2B); 0.924, 80.8%, and 91.7%
for HI vs. CHD (Figure 2C); 0.999, 100%, and 97.9% for
HI vs. stroke (Figure 2D); 0.893, 81.5%, and 80.0% for HBP
vs. diabetes (Figure 2E); 0.928, 89.0%, and 90.0% for HBP
vs. CHD (Figure 2F); 0.762, 77.0%, and 68.0% for HBP vs.
stroke (Figure 2G); 0.907, 76.7%, and 92.3% for diabetes vs.
CHD (Figure 2H); 0.875, 85.1%, and 81.5% for diabetes
vs. stroke (Figure 2I); and 0.938, 93.2%, and 82.2% for
CHD vs. stroke (Figure 2J); respectively. For additional cross-
comparisons, AUCs ranged from 0.519 to 1.000, sensitivities
from 52.3 to 100%, and specificities from 35.3 to 100% in the
other three-center external validation sets, which are shown in
Supplementary Figures 3–8. The logistic regression curve and
cutoff values in all cross-comparisons in the test phase are shown
in Supplementary Tables 12, 13.

Based on the highest prediction sensitivity and specificity of
the ROC in the test phase, the optimal cutoff values were 0.63
for HI vs. HBP (Figure 2K), 0.50 for HI vs. diabetes and HI

vs. CHD (Figures 2L,M), 0.27 for HI vs. stroke (Figure 2N),
0.55 for HBP vs. diabetes (Figure 2O), 0.57 for HBP vs. CHD
(Figure 2P), 0.58 for HBP vs. stroke and diabetes vs. CHD
(Figures 2Q,R), 0.51 for diabetes vs. stroke (Figure 2S), and 0.45
for CHD vs. stroke (Figure 2T). The cutoff values were then
used to predict the different types of CVD in the test phase
and external sets. The predictive accuracy was 100% for HI vs.
HBP, HI vs. diabetes and HI vs. stroke, 86.4% for HI vs. CHD,
79.1% for HBP vs. diabetes, 89.4% for HBP vs. CHD, 72.6% for
HBP vs. stroke, 84.1% for diabetes vs. CHD, 83.5% for diabetes
vs. stroke, and 87.8% for CHD cs. stroke in the test phase
(Table 4). The predictive accuracy of the three-centered external
validation sets was shown in Supplementary Tables 14–20, and
other results of the laboratory diagnostic evaluation indicators
obtained by the compounds we selected are shown in Table 4 and
Supplementary Tables 14–20.

As shown in Table 5, there was a difference in the
concentration of the 12 metabolites between each group. For
example, the level of Trp is the highest in the HI group, while
Leu is the lowest among the HI group. After stepwise regression,
we foundmulti-collinearity between Leu and Ile and deleted Ile in
subsequent studies. The calculated value can be obtained through
our calculation equation (Supplementary Tables 12, 13). After
comparing with the cutoff value, high PPV and NPV values can
be obtained (Table 4); in other words, different groups could
be characterized.

DISCUSSION

As a sensitive and effective technology, DBS was first used
for newborn screening (14–16), then it is widely successfully
applied to the diagnosis of other diseases (17, 18). Our work
describes a targeted metabolomics assessment of 526 patients
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TABLE 3 | Statistical analysis of diagnostic biomarkers: discovery phase.

Metabolites VIP value Fold change p-value* p-value#

HI vs. HBP

Hcy 1.86 1.27 <0.0001 <0.0001

Trp 1.71 0.61 <0.0001 <0.0001

Leu 1.47 1.38 <0.0001 <0.0001

HI vs. Diabetes

Trp 1.80 0.51 <0.0001 <0.0001

Leu 1.39 1.53 <0.0001 <0.0001

Hcy 1.30 1.18 <0.0001 <0.0001

HI vs. CHD

Trp 1.81 0.76 <0.0001 <0.0001

Leu 1.25 1.16 <0.0001 <0.0001

TMAO 1.23 1.39 0.0002 0.0002

Creatinine 1.15 1.12 0.0556 0.0540

HI vs. Stroke

Hcy 1.68 1.26 <0.0001 <0.0001

Leu 1.43 1.45 <0.0001 <0.0001

Trp 1.38 0.70 <0.0001 <0.0001

HBP vs. Diabetes

Trp 1.74 0.84 0.337 0.228

Hcy 1.54 0.93 0.0021 <0.0001

TMAO 1.29 1.53 0.0144 0.0143

Val 1.19 1.13 0.0856 0.0821

Creatinine 1.09 1.17 0.0811 0.0779

HBP vs. CHD

Hcy 2.20 0.78 <0.0001 <0.0001

Leu 1.25 0.84 0.0015 <0.0001

Trp 1.12 1.25 0.0105 0.0104

Creatinine 1.06 1.14 0.2167 0.1958

HBP vs. Stroke

Creatinine 1.84 1.19 0.0258 0.0255

Trp 1.51 1.14 0.5432 0.4256

L-Carnitine 1.48 1.20 0.0380 0.0373

Diabetes vs. CHD

Trp 1.66 1.49 <0.0001 <0.0001

Hcy 1.51 0.84 <0.0001 <0.0001

Leu 1.48 0.76 0.029 0.028

Val 1.05 0.86 0.0075 0.075

Diabetes vs. Stroke

Trp 2.62 1.41 <0.0001 <0.0001

Hcy 1.37 1.09 0.0002 <0.0001

L-Carnitine 1.06 1.14 0.0749 0.0722

CHD vs. Stroke

Hcy 2.19 1.28 <0.0001 <0.0001

Leu 1.47 1.25 <0.0001 <0.0001

VIP, Variable Importance for the projection of OPLSDA model; HI, Healthy individuals;

CHD, Coronary Heart Disease; HBP, High Blood Pressure.

*One-way ANOVA with Bonferroni correction.

#One-way ANOVA with Hochberg correction.

with CVD and 200 healthy volunteers in five provinces of
China. Models constructed from the 12 metabolites showed
significant pattern differences between healthy people and

patients and between patients of all types. There were at
least three significantly regulated metabolites in the DBS
samples in each group. The combination of metabolic
biomarkers provides excellent predictive value for distinguishing
between each disease type and healthy people and those
with disease.

Common risk factors for CVD include serum lipids
(specifically including total cholesterol, triglycerides, and
apolipoproteins), as well as C-reactive protein (CRP) and Hcy
(19). Hcy is a degradation product of the process of protein
metabolism. Under normal circumstances, Hcy in the blood
participates in the body’s transsulfuration and transmethylation
processes with the aid of enzymes and vitamin B6 and folic acid,
is degraded to cysteine, and converted into partial proteins (20).
When metabolic disturbances occur, if Hcy cannot be degraded,
it will accumulate in the body. A high concentration of Hcy can
cause damage to the inner wall of the blood vessel and thickening
and roughening of the intima of the blood vessel, forming
plaque, which can narrow or even block the lumen, resulting in
insufficient blood supply to the artery being incomplete, which
leads to atherosclerosis and CHD (21). Numerous studies have
shown that hyperhomocysteinemia is an independent risk factor
for CVD (22).

The intestinal microbiota metabolism of L-carnitine
and choline promotes the development of CVD (23–25).
Intestinal microorganisms can use excessive amounts of
choline, betaine, and L-carnitine as sources of carbon energy,
and their unique trimethylamine lyase can break CN bonds.
Trimethylamine (TMA) is released as a metabolic waste
product and enters the liver through the portal vein. TMA
is further oxidized by the liver’s secreted flavin-containing
monooxygenase 3 (FMO3) to form TMAO (26). TMAO is
associated with cholesterol metabolism, insulin resistance,
platelet aggregation, thrombosis, vascular inflammatory
response, and atherosclerotic plaque formation, which may
lead to atherosclerosis, heart failure, hypertension, and
stroke. Gut microbiota-derived TMAO is emerging as a
new potentially important cause of increased cardiovascular
risk (27, 28).

Creatinine is a product of muscle metabolism in the
human body. Its level is related to renal function. Long-term
hypertension or heart failure can cause kidney damage, which in
turn increases creatinine levels (29).

Val, Leu, and Ile are known as branched-chain amino
acids (BCAAs). Elevated BCAAs are associated with numerous
systemic diseases, including cancer, diabetes, and heart failure
(30, 31). Elevated levels of BCAAs activate mammalian target
of rapamycin complex 1 (mTORC1) and downstream p70
ribosomal S6 kinase (S6K1), which block the insulin signaling
pathway by inducing insulin receptor substrate 1 (IRS-1) serine
phosphorylation, causing insulin resistance (32). High levels of
BCAAs may also travel to skeletal muscle, interfere with the
accumulation of lipid metabolites, and cause skeletal muscle
insulin resistance when degraded in the muscle (30). BCAAs
drive vascular fatty acid transport and cause insulin resistance
(33). Insulin resistance is an independent and important risk
factor for CVD. Insulin resistance aggravates CVD by causing the
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FIGURE 2 | Diagnostic outcomes and prediction accuracies with population characteristics. (A–J) The receiver operating characteristic (ROC) curves, on the basis of

the logistic regression of each metabolite from the test set. (K–T) The prediction accuracies by the biomarkers in the test phase and validation sets were compared

between each group. HI, healthy individual; DM, diabetes mellitus; CHD, coronary heart disease; HBP, high blood pressure.

occurrence and development of abnormal glucose metabolism,
impacting lipid metabolism, decreasing nitric oxide (NO)
production, inducting hypertension, and reducing fibrinolytic
activity (34).

During the development of CVD, interferon-γ-mediated
inflammation accelerates the degradation of Trp into
downstream metabolites (35). Trp could be catalyzed by an
alternative inducible indoleamine-pyrrole 2,3-dioxygenase
under certain pathophysiological conditions, such as CVD,
which consequently increases the formation of kynurenine
metabolites. The kynurenine pathway plays a key role in
the increased prevalence of CVD (36), and we also found
that individuals in the CVD group had a lower level of
Trp than in the healthy subjects in this study (Table 5 and
Supplementary Tables 9–11). In addition, clinical studies have
revealed that Phe and Tyr metabolic abnormalities are also
closely related to CVD (35, 37, 38). However, no differences were
found between the groups in our study.

In the ROC model we established, most sensitivity and
specificity values were high. Only the HBP and stroke groups
were poorly classified: sensitivity and specificity were 77.0%
and 68.0% in the test phase, respectively. Since 90.5% of stroke
patients enrolled in our study also had HBP, we speculate that it
is difficult to distinguish between the two groups.

DBS sampling as a microsampling technology has gained
interest for many new applications. Increased interest in
DBS technology in various fields enables new possibilities in
bioanalytical procedures that can be beneficial for patients, health
care providers, and laboratories (8). Very large potential from an
economical point of view was also shown for DBS technology.
The cost for collecting a DBS sample was estimated to be only
20–25% of that of a conventional venous blood sample (8).
Moreover, DBS sampling can be performed in a non-hospital
environment with a finger or heel prick by a technician or
by the patient himself or herself after training. Less reactivity
of analytes was found because the adsorption and drying of

Frontiers in Cardiovascular Medicine | www.frontiersin.org 7 October 2020 | Volume 7 | Article 542519

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Liu et al. CVD Diagnosis With DBS

TABLE 4 | Diagnostic test evaluation index of our model in the test phase with population characteristics.

Group Sensibility Specificity Accuracy TPF FPF PPV NPV

HI vs. HBP 98.0% 100.0% 100.0% 0.0% 2.0% 100.0% 100.0%

HI vs. Diabetes 100.0% 100.0% 100.0% 0.0% 0.0% 100.0% 100.0%

HI vs. CHD 80.7% 91.7% 86.4% 8.3% 19.3% 86.8% 78.4%

HI vs. Stroke 100.0% 97.9% 100.0% 2.1% 0.0% 100.0% 100.0%

HBP vs. Diabetes 81.5% 80.0% 79.1% 20.0% 20.0% 81.5% 76.0%

HBP vs. CHD 89.0% 90.0% 89.4% 10.0% 11.0% 92.9% 84.9%

HBP vs. Stroke 77.0% 68.0% 72.6% 32.0% 23.0% 77.0% 66.0%

Diabetes vs. CHD 76.7% 92.3% 84.1% 7.7% 23.3% 91.8% 77.9%

Diabetes vs. Stroke 85.1% 81.5% 83.5% 18.5% 14.9% 84.0% 82.8%

CHD vs. Stroke 93.2% 82.2% 87.8% 17.8% 6.8% 84.1% 92.3%

TPF, true positive fraction; FPF, false positive fraction; PPV, positive predictive value; NPV, negative predictive value; HI, Healthy individuals; CHD, Coronary Heart Disease; HBP, High

Blood Pressure.

TABLE 5 | Concentrations (µmol/L) of 12 differential metabolites in the test phase.

Metabolites HI (n = 96) HBP (n = 50) Diabetes (n = 65) CHD (n = 73) Stroke (n = 74) p-value for trend

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD

Betaine 88.2 ± 36.8 79.5 ± 33.8 76.0 ± 32.7 79.5 ± 21.6 86.0 ± 28.8 0.092

Choline 27.2 ± 9.8 33.3 ± 18.5 34.6 ± 18.8 28.9 ± 9.4 32.9 ± 13.9 0.003

TMAO 1.3 ± 0.9 1.4 ± 1.1 2.1 ± 1.8 1.8 ± 1.1 1.7 ± 1.2 <0.001

Creatinine 48.7 ± 11.3 47.9 ± 13.0 55.9 ± 23.2 54.6 ± 13.8 56.8 ± 17.2 <0.001

L-Carnitine 29.4 ± 9.0 27.9 ± 10.8 28.7 ± 10.4 30.6 ± 8.5 33.5 ± 13.5 0.021

Hcy 20.1 ± 3.1 25.4 ± 2.9 23.7 ± 2.8 19.8 ± 5.7 25.4 ± 3.6 <0.001

Ile 25.8 ± 7.5 37.0 ± 10.8 41.1 ± 14.6 30.6 ± 9.6 38.8 ± 12.3 <0.001

Val 152.0 ± 38.1 166.9 ± 44.3 189.1 ± 52.6 163.3 ± 38.3 181.7 ± 49.9 <0.001

Leu 89.3 ± 24.6 123.2 ± 35.1 136.5 ± 46.9 103.7 ± 31.3 129.6 ± 39.9 <0.001

Phe 51.0 ± 13.0 53.5 ± 13.6 57.2 ± 15.6 53.6 ± 14.3 57.1 ± 17.3 0.037

Tyr 43.3 ± 11.1 47.6 ± 14.5 50.6 ± 15.6 48.0 ± 13.7 52.2 ± 19.6 0.002

Trp 42.1 ± 12.1 25.6 ± 7.2 21.5 ± 5.3 31.9 ± 14.2 29.3 ± 8.5 <0.001

HI, Healthy individuals; CHD, Coronary Heart Disease; HBP, High Blood Pressure.

blood on a solid phase facilitated shipment and storage and
reduced costs. Most pathogenic factors are inactivated during
blood adsorption and drying, resulting in safer sample handling
(39). At present, there are many methods for the clinical
diagnosis of CVD, such as computerized tomography (CT),
coronary angiography (40), and image-based cardiac diagnosis
withmachine learning (41). However, in remote rural areas, these
methods are relatively lacking and difficult to implement. Blood
sampling is relatively simple and convenient but often difficult
to transport and preserve. We have developed a sensitive and
powerful DBS detection and logistic algorithm, and better sample
stability could be observed. Samples that can be stored at room
temperature and the DBS method allow for more convenient
blood collection, easier transportation, lower detection cost were
also considered, and high forecast accuracy. Convenient and
inexpensive multidimensional diagnostic methods are important
for people, especially in relatively isolated rural areas and
are suitable for clinical diagnosis in areas with undeveloped
medical facilities.

Study Limitations
First, the cardiovascular risk models built in this paper
remain incomplete. Analyses of more compounds, such as
unsaturated fatty acids, are recommended in future studies.
Second, our study population consisted of middle-aged to
elderly patients in five provinces of China. Younger age
groups with suspected or confirmed CVD could be considered.
Third, our strategy requires a mass spectrometry facility,
which is not common in some underdeveloped regions, and
the equipment is very expensive. Transport of DBS to a
qualified laboratory for testing is required in future studies;
the scope could be broadened to include other provinces
and other ethnicities within Asia, other races, and larger
sized samples.

CONCLUSIONS

We analyzed 12 biomarkers from DBSs to characterize
CVD features. This improved evaluation can lead to the
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clinical diagnosis of CVD. Novel algorithms predict and
differentiate between CVD types; such differentiation
may reduce unnecessary invasive coronary angiography,
enhance predictive value, and complement current
diagnostic methods.
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