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HIV-associated nephropathy (HIVAN) is an important cause of secondary focal

glomerulosclerosis that occurs primarily in persons of African ancestry with advanced HIV

disease. Although HIVAN is characterized by severe proteinuria and rapid progression

to end stage renal disease without treatment, the phenotype is markedly attenuated by

treatment with antiretroviral medications. HIV infection of glomerular and tubular epithelial

cells and subsequent viral gene expression is a key contributor to HIVAN pathogenesis

and the kidney can serve as reservoir for HIV strains that differ those in blood. HIV gene

expression in renal epithelial cells leads to dysregulation of cellular pathways including

cell cycle, inflammation, cell death, and cytoskeletal homeostasis. Polymorphisms in the

APOL1 gene explain the marked predilection of HIVAN to occur in persons of African

descent and HIVAN. Since HIVAN has the strongest association with APOL1 genotype

of any of the APOL1-associated nephropathies, studies to determine the mechanisms

by which HIV and APOL1 risk variants together promote kidney injury hold great promise

to improve our understanding of the pathogenesis of APOL1-mediated kidney diseases.

Keywords: HIV, AIDS, HIV-associated nephropathy, proteinuria, chronic kidney disease, podocyte, renal tubular

epithelial cell, APOL1

EPIDEMIOLOGY AND CLINICAL PRESENTATION OF
HIV-ASSOCIATED NEPHROPATHY

HIV-associated nephropathy (HIVAN), was first described early in the HIV epidemic in U.S. urban
centers serving large numbers of HIV-positive persons of African descent. In the early 1990’s,
HIVAN was the most rapidly increasing cause of ESRD in the U.S., however, the widespread use
of combination antiretroviral therapy (cART), in addition to markedly reducing the incidence of
mortality and progression to AIDS, has resulted in a marked reduction in the incidence of classic
HIVAN (1). While the incidence of ESRD attributed to HIVAN has declined since the introduction
of cART, it has not dropped as dramatically as mortality or progression to AIDS (2). Since the
phenotype of HIVAN is markedly attenuated by cART (1, 3), resulting in much lower levels of
proteinuria and slower progression to severe CKD/ESRD (reducing likelihood of kidney biopsy),
and the United States Renal Data System no longer collects data on HIV seropositive status, it is
difficult to reliably estimate the current incidence/prevalence of HIVAN.

Patients with classic HIVAN present with rapidly progressive renal failure in conjunction with
severe proteinuria andmost have advanced HIV disease/AIDS with of CD4 counts<200 cells/mm3.
These patients typically have enlarged hyperechoic kidneys on ultrasound with a bland urine
sediment (4, 5). This classic presentation is rarely encountered in patients receiving cART. There
are no serologic tests that accurately predict the presence of HIVAN and since HIV-positive patients
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are at increased risk for comorbidities that increase the risk
of kidney disease, including diabetes mellitus and hepatitis C
infection, HIVAN can only be definitively diagnosed by kidney
biopsy.

There have been isolated case reports of HIVAN occurring
in HIV-2 positive patients but the incidence of kidney disease
in the setting of HIV-2 infection is unknown (6). Though the
mechanism by which HIV-2 causes kidney disease has not been
studied, since the HIV-2 genome encodes most of the same
genes as HIV-1, it is plausible that the pathogenesis of HIVAN
occurring in HIV-1 and HIV-2-positive patients is similar (7).

HISTOPATHOLOGY

HIVAN is characterized by the presence of FSGS and is
most commonly associated with the collapsing variant (8).
Proliferation and hypertrophy of overlying glomerular epithelial
cells is often present, which can result in the presence of
pseudocrescents [Figure 1, (9)].

Tubulointerstitial disease is an important component of the
histopathology of HIVAN and may overshadow the severity of
glomerular injury. Classic findings include dilation of tubular
into “microcysts” (at least three times the diameter of normal
adjacent tubules) and interstitial fibrosis and inflammation (8).

There are no specific immunofluorescence findings in
HIVAN, however, as these patients often have increased plasma
levels of immunoglobulins and coexisting infections, variable
amounts of immunoglobulins and/or complement may be
present and if prominent, may reflect the presence of a
superimposed immune complex disease. Electron microscopy
reveals podocyte foot process effacement, normal basement
membrane thickness, absence of immune deposits, and presence
of endothelial cell tubuloreticular inclusions, which likely reflect
high circulating interferon levels present in patients with HIVAN
(8).

INFECTION OF RENAL EPITHELIAL CELLS
BY HIV

HIV can infect renal tubular epithelial cells (RTEc), podocytes,
and parietal epithelial cells and this infection is not specific to
HIVAN but also occurs in patients with other forms of kidney
disease, including HIV-positive patients with diabetic kidney
disease (10, 11). Since renal epithelial cells do not normally
express CD4, the primary receptor for HIV-1, or the co-receptors
CCR5 and CXCR4 (12), the mechanisms by which infection
occurs remain incompletely understood. Ray et al. reported that
cell-free clinical HIV viral isolates were able to infect human
RTEc via a CD4-independent mechanism and that HIV-infected
mononuclear cells were able to mediate direct cell-cell transfer of
HIV to RTEc (11).

More recently, investigators demonstrated that transfer of
HIV directly from infected lymphocytes to RTEc was markedly
more efficient than infection by cell free virus and that cell-cell
viral transfer did not require expression of CD4 on target cells
or the HIV envelope protein (Env) and was mediated in part, by

FIGURE 1 | Periodic acid–Schiff stained kidney biopsy from a patient with

HIVAN demonstrating collapsed glomerulus with focal global sclerosis and

overlying pseudocrescent composed of proliferating glomerular epithelial cells.

There is also prominent tubular atrophy and interstitial fibrosis.

heparan sulfate proteoglycans (13). Importantly, further studies
showed that infected RTEc can also transfer HIV to uninfected
primary T lymphocytes, suggesting that the infected RTEc may
serve as a viral reservoir capable of infecting lymphocytes (14).
These observations have important implications beyond the
pathogenesis of HIVAN as they demonstrate that therapies aimed
at fully curing HIV infection will need to include strategies to
eliminate HIV infection in the kidneys.

Infection of renal epithelial cells is also an important issue in
the context of kidney transplantation as a recent study involving
19 HIV-positive patients who received HIV-negative kidney
allografts, found that 13 allografts had detectable HIV RNA
in podocytes and/or RTEc, despite having undetectable plasma
viral RNA. Moreover, those with infected kidneys had greater
podocyte and RTEc injury andmore rapid loss of kidney function
(15).

A recent study elucidated a novel mechanism by which
HIV-1 infects human podocytes (16). Podocytes cultured from
children with HIVAN supported low level productive infection
when exposed to cell free virus. The ability of cell-free HIV-
1 to infect these podocytes was dependent upon the presence
of the HIV envelope (env) gene and cell surface proteoglycans.
Expression of transmembrane TNFα promoted HIV infection
and subsequent integration into genomic DNA. The role of
transfer of HIV-1 from infected mononuclear cells to podocytes
was not investigated in this study.

The renal epithelium may also harbor viral strains that
differ from those in blood from the same patient. In one
study, investigators used laser capture microdissection to isolate
DNA from RTEc in kidney biopsies from patients with
HIVAN. Analysis of HIV sequences amplified from this DNA
demonstrated diversity in the viral env sequences, suggesting
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ongoing replication and evolution of the virus. Further,
comparison of kidney-derived sequences to those amplified from
blood revealed that kidney and blood-derived viral sequences
clustered separately, suggesting that the renal epithelium is
a separate viral compartment that may harbor unique viral
quasispecies (17). Recent work from Blasi, et al demonstrated
similar findings using urine specimens. They found that 12 of 24
patients with HIV RNA detectable in plasma also had virus in
their urine. Analysis of viral env sequences from blood and urine
revealed that urine-derived sequences clustered separately from
blood-derived sequences (18).

Studies in macaques demonstrated that the ability of
chimeric simian-human immunodeficiency (SHIV) viral clones
to cause glomerular and tubular injury varied significantly,
strongly suggesting that viral sequence variation is an important
determinant of kidney disease (19). It is not known whether
patients’ kidneys harbor quasispecies with distinct variations in
HIV genes that mediate renal injury or alter response to cART.
Whether glomerular epithelial cells can serve as viral reservoirs
also remains to be determined.

PATHOMECHANISMS OF HIVAN

Role for HIV Genes in Causing HIVAN
The HIV-1 genome encodes 9 genes (Figure 2). Numerous in
vitro and animal models have been used to study the mechanisms
by which viral infection of renal epithelial cells can lead to
HIVAN. The most commonly used model (“Tg26”) is transgenic
for an HIV provirus lacking the gag and pol genes. These
mice develop severe proteinuria, progressive kidney failure, and
histologic kidney injury that closely models HIVAN (20). Since
gag and pol encode the major structural and enzymatic viral
proteins, these mice do not produce virus, thereby demonstrating
that viral replication is not necessary for the HIVAN phenotype.
Numerous transgenic rodent models have been generated,
expressing various HIV genes using different promoters and
together, these studies demonstrate that expression of nef and/or
vpr is sufficient to generate the full HIVAN phenotype and the
remaining genes are not necessary for the HIVAN phenotype in
rodents (21).

Nef is a 27–34 kD myristoylated protein with important
roles in the HIV lifecycle. Nef promotes viral transcription
and activation of T cells, while helping infected cells to avoid
immune surveillance by decreasing cell surface expression of
several receptors including CD4, CXCR4, CCR5, and major
histocompatibility complex class I (MHC-I) (22). Nef also has
myriad effects upon cellular signaling, including activation of Src
family kinases (23).

Vpr is a 14 kD protein that is important for nuclear import
of HIV preintegration complexes. Vpr also has several other
important effects upon infected cells, including inducing cell
cycle arrest in G2/M phase and is an important mediator of
HIV-induced injury and death (24).

Tat is critical for transactivation of HIV transcription in
human cells, but is less active in murine cells due to lack of
cyclin T1 in the mouse genome (25), which may explain why Tat
does not have an important role in murine HIVAN models (26).

However, in vitro studies using human cells suggest that Tat may
contribute to glomerular injury in HIVAN, in part, via its ability
to upregulate proinflammatory cytokines (27, 28).

Mechanisms of Glomerular Injury
Cell Cycle Dysregulation and Dedifferentiation
During the course of glomerular development, podocytes
undergo proliferation and maturation through exquisitely
controlled developmental programs, resulting in mature
podocytes, which are terminally differentiated and unable to
proliferate (29). Cell cycle dysregulation and aberrant podocyte
cell cycle reentry is a hallmark of HIVAN pathogenesis. It
has long been appreciated that in HIVAN, the proliferation
marker Ki67 is expressed in podocytes overlying glomerular
capillaries as well as in cells comprising the pseudocrescents
surrounding the glomerular tufts in HIVAN biopsies and
HIV-transgenic mice (9, 30). Though most early work in the
field identified these cells as podocytes, more recent studies
suggest that some or all cells comprising pseudocrescents in
HIVAN and non-HIVAN collapsing FSGS may be parietal
epithelial cells (PECs) (31). These discrepant findings may be
explained by subsequent studies demonstrating that parietal
epithelial cells may express podocyte genes at low levels (32)
and studies in mice showing that PECs can be recruited
onto glomerular tufts in the setting of glomerular injury
(33, 34).

The cyclin dependent kinase (CDK) inhibitors p27 and p57
are highly expressed in podocytes and help to maintain them
in a quiescent state by inhibiting activation of CDKs (35).
p27 and p57 are down regulated in podocytes in HIVAN
biopsies, thereby permitting CDK activation and entry into the
cell cycle. In addition, Nef induces activation of Src family
kinases in podocytes, which subsequently leads to activation
of Stat3 and MAPK-induced proliferation and dedifferentiation
(36). Blocking these pathways prevents HIV-induced podocyte
proliferation and/or dedifferentiation and restores expression
of key podocyte proteins including synaptopodin and WT-
1 (36–38). Notch signaling pathways are also activated in
HIVAN and inhibition of Notch signaling using a gamma
secretase inhibitor prevents podocyte proliferation induced by
Nef and Tat in vitro (39). Other signaling pathways that have
been implicated in the pathogenesis of podocyte proliferation
and/or dedifferentiation in HIVAN include retinoic acid receptor
signaling (40) mammalian target of rapamycin (mTOR) (41) and
Kruppel-like factors (42, 43).

Podocyte function is highly dependent upon maintenance
of a complex and dynamic cytoskeleton. In HIVAN, there is
widespread foot process effacement, which is due, in part to
cytoskeletal dysregulation. Activation of Src kinase by HIV
gene expression leads to activation of Rac1 and inhibition of
RhoA, which results in loss of actin stress fiber formation (44).
HIV Tat has recently been shown to promote fibroblast growth
factor-2 mediated dysregulation of MAPK and RhoA in human
podocytes in vitro (28). Moreover, HIV gene expression also
reduces expression of podocyte genes, such as synaptopodin, that
are important mediators of cytoskeletal integrity (45, 46).
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FIGURE 2 | Schematic diagram of the HIV-1 genome.

Cellular Injury and Death
Several studies have delineated mechanisms of HIV-induced
podocyte death. Since podocytes are terminally differentiated
cells, aberrant reentry of podocytes into the cell cycle can lead
to mitotic catastrophe (47). Nef expression in HIV infected
glomerular epithelial cells may induce death of podocytes via
this mechanism while inducing proliferation of parietal epithelial
cells in an attempt to replace podocytes. Many podocyte genes are
dysregulated by HIV infection in vitro and in animal models and
genes with likely roles in HIV-induced podocyte death include
APOL1 (discussed below) (48–50), Fas (51), KLF6 (52), p53 (53),
and p66ShcA (54), the NLRP3 inflammasome (55).

In the pre-cART era, small clinical studies suggested that
treatment with ACE inhibitors improved renal outcomes in
HIVAN (56, 57). Several studies have also demonstrated that ACE
inhibitors and angiotensin receptor blockers (ARBs) also prevent
renal injury in HIV transgenic mice (58, 59). Interestingly, the
protective effects of ARBs in HIV-transgenic mice appear to be
independent of blockade of angiotensin II receptor type 1 on
podocytes (60).

Dysregulated cell-cell and cell-matrix adhesion also contribute
to glomerular injury in HIVAN. Sidekick-1 (Sdk-1) is a
transmembrane immunoglobulin family protein that mediates
cell-cell adhesion. HIV expression increases Sdk-1 expression
which is primarily detected in glomerular pseudocrescents
HIV-transgenic mice. Sdk-1 mediated dysregulation of cell-cell
adhesionmay contribute to the clustering of glomerular epithelial
cells that is characteristic of collapsing glomerulopathy inHIVAN
(61, 62). HIV expression also suppresses activation of the small
GTPase RAP1 by increasing expression of RAP1GAP, which is
a negative regulator of RAP1. RAP1 is an important regulator
of cell-cell and cell-matrix adhesion. Reduced RAP1 expression
reduces β1-integrin abundance, leading to podocyte detachment
and glomerulosclerosis in mice (63). Major mechanisms of HIV-
induced glomerular injury are summarized in Figure 3.

Tubulointerstitial Injury in HIVAN
Cell Cycle Dysregulation
Though Ki-67 is also upregulated in RTEc in HIVAN biopsies, it
is not clear whether this is a primary pathogenic process or is an
adaptive response to replace RTEc undergoing apoptosis. Also,
though Ki-67 is commonly used as a marker of proliferation, it is
expressed during all phases of cell cycle other than G0 (64). Since
Vpr causes G2/M phase arrest and dysregulated cytokinesis in
RTEc in vitro and in mice (65, 66), it is possible that the increased
Ki-67 in RTEc in HIVAN reflects increased proportion of cells

that arrested in cell cycle phases other than G0 and not ongoing
proliferation per se. Moreover, since G2/M phase arrest of RTEc
has recently been demonstrated to be an important mechanism
contributing to tubulointerstitial injury and fibrosis in non-HIV
kidney injury in mice (67), it is likely that mechanisms of cell
cycle dysregulation in HIVAN may have direct relevance to our
understanding of the tubulointerstitial injury in other proteinuric
kidney diseases.

Cellular Injury and Death
Apoptosis is increased inHIVAN biopsies, with the greatest levels
of apoptosis found in RTEc (68, 69). Vpr expression induces
apoptosis in RTEc in vitro, which is mediated via persistent
unregulated activation of ERK, resulting in caspase 8 activation,
which cleaves BID to tBID, leading to mitochondrial membrane
permeablization and apoptosis (65). Mitochondrial injury and
Vpr-induced apoptosis are dependent upon expression of the
ubiquitin-like protein FAT10 (70). Interestingly, suppression of
FAT10 expression prevents apoptosis primarily in cells with Vpr-
induced hyperploidy in vitro.

Homeo-domain interacting protein kinase 2 (HIPK2) has also
recently been implicated in the pathogenesis of HIV-induced
RTEc apoptosis and tubulointerstitial fibrosis. HIPK2 expression
is increased, primarily in tubular cells in HIV-transgenic mice
and in HIVAN biopsy specimens and promotes RTEc apoptosis
via activation of p53, TGF-β-SMAD3, and Wnt/Notch pathways
which together promote tubulointerstitial fibrosis (71).

Inflammation
The predominant transcriptional response of RTEc after HIV
infection is increased expression of proinflammatory mediators,
many of which are NF-κB and interferon-inducible genes (72,
73). A primary role for NF-κB-induced inflammation in the
pathogenesis of HIVAN is supported by studies demonstrating
that pharmacologic NF-κB inhibition prevents renal disease in
two different murine models of HIV-induced kidney disease
(74, 75). Further, clinical studies (primarily from the pre-cART
era) demonstrated that glucocorticoid treatment is associated
with improved renal outcomes in HIVAN (76–78) and that the
primary histologic change observed after treatment is reduced
tubulointerstitial inflammation (79).

Treatment of HIV-transgenic mice with the mTOR inhibitor
sirolimus is also protective against the HIVAN phenotype in
HIV-transgenic mice. Sirolimus was shown to reduce HIV
transcription in podocytes in vitro and in mice (80) and prevent
expression of mediators of epithelial mesenchymal transition
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FIGURE 3 | Schematic diagram demonstrating major mechanisms by which HIV-1 infection promotes glomerular and tubular injury.

(81) in these models. Since mTOR inhibition can have myriad
cellular effects, including immunosuppression and activation of
autophagy (a cytoprotective and immunomodulatory pathway),
it is likely that many pathways are involved in mTOR-induced
protection in murine models of HIVAN.

Major mechanisms of HIV-induced tubular injury are
summarized in Figure 3.

Role of Apoliproprotein L1 Variants in
HIVAN
Epidemiology
The risk of HIVAN in persons of African ancestry is much higher
than in other racial/ethnic groups and black race is associated
with a 12.2-fold increased risk of HIVAN (82). The genetic
basis of this disparity was elucidated in a seminal study in
2010 in which the authors reported that variants of the APOL1
gene, which encodes the Apolipoprotein L1 (ApoL1) protein,
are strongly associated with risk of kidney disease. Two variants
(G1 and G2) are associated with increased risk of kidney disease
compared to wild type (G0). The G1 allele encodes two missense
mutations in the APOL1 protein whereas G2 encodes a two-
amino acid deletion (Figure 4). Kidney risk attributed to the
G1 and G2 alleles generally occurs in an autosomal recessive
pattern and persons who are homozygous for either allele or
compound heterozygous for G1 and G2 are at approximately
equally increased risk of kidney disease (83).

Persons with APOL1 high risk genotypes are at 10.5- and
7.3-fold increased risk of developing non-HIV related FSGS and
hypertension-attributed ESRD, respectively (83, 84). Remarkably,
subsequent studies found that APOL1 high risk genotypes are

associated with 29-fold increased risk of HIVAN in African
Americans and an 89-fold increase risk in South Africans and
HIV-positive patients are at 50% lifetime risk of developing
HIVAN without antiretroviral treatment (85, 86). Importantly,
though nearly all studies have demonstrated that heterozygosity
for APOL1 risk alleles does not increase the risk of kidney disease,
Kasembeli et al reported that in HIV positive South Africans,
heterozygosity for the G1, but not the G2 allele, was associated
with increased risk of HIVAN (86). Though this observation
requires replication in another cohort, if true, it may be due to
differences in genetic admixture of the South African population
or environmental factors.

The APOL1G1 andG2 alleles are unique to persons of African
ancestry, which is explained by the fact that these alleles arose
relatively recently in Africa. Even within Africa, the prevalence
of these alleles varies widely—the prevalence of the G1 allele
is highest in western African countries including Ghana and
Nigeria where the prevalence of the allele is >40%, but the
prevalence of the G2 allele is more variable at 6–24% (87). In
the United States, the prevalence of the G1 and G2 alleles in
African Americans is 20–22 and 13–15% respectively, and 10–
15% have high risk APOL1 genotypes. Due to the transatlantic
slave trade that occurred from Western Africa the sixteenth to
the nineteenth centuries, the APOL1 risk alleles are also found
among persons living in the Caribbean and Latin America at
highly variable frequencies (88).

Putative Mechanisms of APOL1-Mediated Kidney

Injury
The mechanisms by which APOL1 variants promote killing of
trypanosomes may provide important insights into how they
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FIGURE 4 | Schematic diagram of major APOL1 protein domains and G1 and G2 sequence variants.

FIGURE 5 | Schematic diagram demonstrating putative mechanisms by which HIV-1 infection and APOL1 together promote kidney injury.

promote renal injury. APOL1 functions in part, as an innate
immune response protein, and is induced by interferons and
TNF-α (89). APOL1 is unique to a few primate species and is not
encoded in the genomes of non-primate species. Trypanosoma
brucei rhodesiense causes African Sleeping Sickness in humans
who are homozygous for the APOL1G0 allele because it produces
SerumResistance Associated (SRA) protein, which binds APOL1,
preventing it from killing the parasite. The changes in APOL1
encoded by the G1 and G2 alleles prevent the SRA protein
from binding/inactivating APOL1, thereby protecting persons
harboring one or both of these alleles from African Sleeping
Sickness induced by Trypanosoma brucei rhodesiense (90).

APOL1 can be expressed in numerous cell types and tissues,
especially in the presence of interferons and/or TNFα (89). There
are also several isoforms of APOL1, most of which contain an N-
terminal signal peptide, which is likely necessary for extracellular
secretion. The liver is the source of most circulating APOL1
protein, which is complexed in HDL3 particles, which are also
synthesized in liver (91). There are also APOL1 isoforms that

lack the N-terminal signal peptide sequence (Figure 4) and are
expressed as intracellular proteins (49). Plasma APOL1 levels do
not correlate with risk of kidney disease (92, 93). Moreover, in
the setting of kidney transplantation, the presence of high risk
APOL1 genotypes in the kidney donor, but not the recipient,
is strongly associated with adverse allograft outcomes (94–96).
These data strongly suggest that local production of APOL1
in kidney cells is more important than circulating APOL1 in
promoting kidney injury.

Nearly 15% of African Americans have high risk genotypes,
the majority of whom never develop kidney disease. Additional
factors or “second hits” are therefore necessary to unmask
the deleterious effects of APOL1 upon the kidney. Several of
these second hits have been identified, including exogenous
interferon administration (89), lupus nephritis (97, 98), and
sickle cell disease (99), but HIV is the most potent “second
hit” to promote kidney disease in persons with high risk
APOL1 genotypes (85, 86). HIVAN is therefore an important
model disease, the study of which may hold important
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insights mechanisms by which APOL1 promotes kidney
disease. Putative mechanisms by which APOL1 and HIV-
1 may together promote kidney injury are depicted in
Figure 5.

Though several types of kidney cells have been reported to
produce APOL1 in vivo, including podocytes, tubular epithelial
cells, endothelial cells, and vascular smooth muscle cells (100,
101), it remains unclear which cells are the most important
targets of APOL1-induced injury. Moreover, while cytokines
strongly induce APOL1 expression in vitro and many of these
same cytokines are commonly increased in the context of
chronic kidney injury, APOL1 expression in biopsy specimens
from patients with HIVAN has been reported to be lower
than control specimens. Though it is possible, if not likely
that APOL1 expression is increased at some point in the
course of the disease process, it is not clear whether increased
expression of APOL1 is an important contributor to disease
pathogenesis. This point also has important implications with
regard to relevance of current in vitro and animal models of
APOL1-mediated injury, most of which rely on overexpression
of APOL1 at non-physiologic levels or expression of APOL1
transgenes in animals that normally lack APOL1 in their
genomes.

Numerous publications have elucidated potential mechanisms
by which APOL1 risk alleles may promote kidney injury but
relatively few have focused upon APOL1-mediated injury in
the context of HIV infection. APOL1 kills trypanosomes by
inserting into acidified endosomes, which when recycled to the
plasma membrane at neutral pH become high conductance
cation channels, resulting in rapid swelling and lysis of the
parasite (102). Forced overexpression of APOL1 G1 and G2
alleles induce greater cytotoxicity than the G0 allele in vitro
(49, 50, 89) but it remains unclear whether APOL1 promotes
kidney injury via its function as a channel. Transgenic mice
expressing the G0 or G2 alleles of APOL1 in podocytes under
control of the nephrin promoter do not develop kidney disease
(103) but mice expressing the G2 but not the G0 allele in
podocytes under control of the podocin promoter developed
FSGS lesions (48). Podocyte injury induced by the G2 allele
in the latter study was associated with impaired endosomal
trafficking and autophagic flux, leading to pyroptosis (48). In
vitro studies with human podocytes found that HIV infection
markedly increased the toxicity of APOL1 overexpression
(50).

The results of a recent provocative study suggest that APOL1-
induced cytotoxicity and channel function may be artifacts of in
vitro overexpression and that these effects may not occur when
APOL1 is expressed at physiologic levels (104). Since this study
used inducible APOL1 in immortalized cell lines, additional
studies are needed to determine if this observation is relevant
in primary kidney cells. However, it is clear that since nearly
all previous studies on the role of APOL1 in inducing cellular
injury used overexpression models, further studies are needed

in which APOL1 is expressed at physiologically relevant levels in
physiologically relevant cells.

Future Perspectives
Though antiretroviral medications have emerged as an effective
strategy for the prevention and treatment of kidney disease in
HIV-positive persons, there remains an urgent need for research
to answer key questions with important implications for the care
for all persons living with HIV and/or kidney disease including:
(1) How do antiretroviral medications prevent/treat HIVAN
without reducing HIV infection of renal epithelial cells? (2)
Does the kidney harbor viral strains with unique antiretroviral
resistance patterns? (3) Is it possible to eradicate HIV-1 from
the kidney without worsening kidney injury by killing infected
epithelial cells? (4) How do APOL1 risk variants promote renal
injury and why is HIV-1 such a potent “second hit” in persons
with APOL1 high risk genotypes? (5) Since HIVAN is the
only “APOL1 nephropathy” with an effective treatment available
(antiretrovirals), can insights into the pathogenesis of HIVAN
inform treatment of APOL1-associated kidney disease in HIV-
negative patients? (6) How can we develop in vitro and animal
models that faithfully model the in vivo function(s) of APOL1?

CONCLUSIONS

HIVAN is caused by infection of renal epithelial cells in
genetically susceptible persons. In addition to its importance
in HIVAN pathogenesis, the infected renal epithelia can
serve as a viral reservoir that must be addressed in future
attempts to cure HIV-positive patients. HIV-infection induces
dysregulation of host genes and several cellular pathways,
including inflammation, cell cycle, cytoskeletal homeostasis, and
cell death. Polymorphisms in the APOL1 gene account for
the majority of excess risk of HIVAN attributed to African
ancestry and of all APOL1-associated nephropathies, HIVAN has
the strongest association with APOL1 risk genotypes. Though
antiretroviral therapies have markedly reduced the burden of
HIVAN in HIV-positive patients, studies to elucidate how
HIV increases susceptibility to kidney disease in persons with
high risk APOL1 genotypes promise to provide key insights
that may help develop novel strategies for the prevention
and treatment of APOL1 nephropathies in HIV-negative
patients.
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