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Summary
Cholangiocarcinoma (CCA) is a rare primary liver cancer associated with high mortality and few
systemic treatment options. The behaviour of the immune system has come into focus as a potential
treatment modality for many cancer types, but immunotherapy has yet to dramatically alter the
treatment paradigm for CCA as it has for other diseases. Herein, we review recent studies describing
the relevance of the tumour immune microenvironment (TIME) in CCA. Various non-parenchymal
cell types are critically important in controlling CCA progression, prognosis, and response to sys-
temic therapy. Knowledge of the behaviour of these leukocytes could help generate hypotheses to
guide the development of potential immune-directed therapies. Recently, an immunotherapy-
containing combination was approved for the treatment of advanced-stage CCA. However, despite
level 1 evidence demonstrating the improved efficacy of this therapy, survival remained suboptimal.
In the current manuscript, we provide a comprehensive review of the TIME in CCA, preclinical
studies of immunotherapies against CCA, as well as ongoing clinical trials applying immunother-
apies for the treatment of CCA. Particular emphasis is placed on microsatellite unstable tumours, a
rare CCA subtype that demonstrates heightened sensitivity to approved immune checkpoint in-
hibitors. We also discuss the challenges involved in applying immunotherapies to the treatment of
CCA and the importance of understanding the TIME.
© 2023 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the
Liver (EASL). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
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Introduction
Cholangiocarcinoma (CCA) is the second most
common primary liver cancer type and an aggres-
sive malignancy associated with poor prognosis.1,2

Most patients with CCA are diagnosed at an
advanced stage, at which point there are limited
therapeutic options. Hence, curative surgical treat-
ment is limited to a small subset of patients with
early-stage tumours. The first-line therapy for
unresectable CCA is either gemcitabine plus platin-
based chemotherapy3 or the recently approved
durvalumab in combination with chemotherapy,4

though both regimens are associated with subopti-
mal efficacy and response rates. Several targeted
therapeutic agents have been approved for a mi-
nority of cases in the second-line setting, including
pemigatinib and futibatinib for FGFR2 (fibroblast
growth factor receptor 2)-rearranged CCA as well as
ivosidenib for IDH1 (isocitrate dehydrogenase 1)
mutated CCA.5–7 Despite these advances, the overall
prognosis for patients with CCA is very poor, with a
median survival of less than 1 year,3 hence, novel
treatment strategies are urgently needed.

Immunotherapy has been a major breakthrough
in cancer research in the last decade, with many
promising applications still being discovered. The
ability of the immune system to recognise non-self
tumour components is often inhibited by a variety
of cancer intrinsic mechanisms that promote im-
mune evasion. One prominent reason is the
exhaustion of activated lymphocytes typified by
upregulation of inhibitory markers, including pro-
grammed cell death protein 1 (PD1), cytotoxic T
lymphocyte-associated antigen-4 (CTLA-4), and T-
cell immunoglobulin domain and mucin domain-3
(TIM3). Tumour cells, as well as the surrounding
stromal cells, often express or secrete the ligands of
these inhibitory proteins, including programmed
cell death 1 ligand 1 (PD-L1). Secreted inhibitory
cytokines such as vascular endothelial growth factor
(VEGF) or transforming growth factor beta (TGF-b)
further inhibit the activation of lymphocytes. The
principle of first-generation immune checkpoint
inhibitors (ICIs) is to reinvigorate the potential of the
host immune system to target and eradicate malig-
nant cells. Checkpoint inhibitors have proven to be
effective when used as monotherapies or in combi-
nation for multiple common epithelial tumour
types, including non-small cell lung cancer, colo-
rectal adenocarcinoma, and, despite a generally
immunosuppressed microenvironment, advanced
hepatocellular carcinoma (HCC).

Numerous efforts have been made to profile the
immune microenvironment of CCA to identify
(X. Chen).
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Key points

� Accumulating data from clinical studies has shown that immuno-
therapy is associated with manageable toxicity and safety in patients
with CCA.

� Currently the overall therapeutic benefit of immunotherapy for CCA is
still very limited.

� Profiling the immune microenvironment of CCA will provide new in-
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potential targets for traditional immunotherapy. Additionally,
accumulating evidence from promising preclinical studies and
preliminary clinical data suggest that “second-generation”
checkpoint inhibition or cellular-based immunotherapies might
be effective against CCA.8,9 Herein, we review our current under-
standing of the tumour immunemicroenvironment (TIME) of CCA
and discuss the recent and emerging developments in immuno-
therapy for CCA.
sights that could guide the development of novel immune-targeting
therapy or combination therapy for CCA treatment.

� There remain major challenges to the effective application of immu-
notherapies for CCA, including disease heterogeneity, difficulties con-
ducting clinical trials, and a lack of adequate experimental models for
basic and translational research.
The tumour immune microenvironment of CCA
CCAs are adenocarcinomas arising from biliary cells, although it
has been reported that the tumours may also originate from
hepatic stem cells or mature hepatocytes.10 A key histological
feature of CCA is that tumour cells are often surrounded with
dense desmoplasia populated by cancer-associated fibroblasts. It
has been reported that the fibrotic tumour microenvironment,
plus the infiltrated innate immune cells, such as tumour-
associated macrophages (TAMs) and myeloid-derived suppres-
sor cells (MDSCs), facilitate the immunosuppressive TIME of CCA
(Fig. 1 and Table 1).11 Recent high-throughput genomic and
transcriptomic analyses, as well as single-cell RNA-sequencing
(scRNAseq) studies, have helped to define a comprehensive ge-
netic and immunological landscape of CCA.12–14

Herein, to analyse the potential of treatments that modulate
certain components of the TIME, we review different preclinical
CCA
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studies on each immune cell type in the liver, both within the
context of CCA and beyond. In general, the liver is traditionally
considered to be an immune-privileged organ.15,16 The immu-
nosuppressive microenvironment in the liver is regulated by
innate lymphoid cells, regulatory T cells (Tregs), dendritic cells
(DCs), macrophages/Kupffer cells, and MDSCs, and pro-/anti-in-
flammatory cytokines, to prevent excessive immune responses to
pathogen- and damage-associated molecular patterns derived
from microorganisms absorbed via the intestine.15 Although this
immunosuppressive microenvironment is essential to maintain
the dynamic balance of physiological functions in the liver, the
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Table 1. Summary of immune cells in CCA tumours.

Cell types Anti-tumour/tumour-promoting Comments Ref.

CD3+/CD8+ T Anti-tumour Associated with favourable survival and lower recurrence risk 21
Tregs Tumour-promoting A poor prognostic marker in patients with resected CCA

Treg-specific MEOX1 expression causes enhanced suppression and
reduced survival

21,48

CD8+ T Anti-tumour Significantly reduced in the CCAs 22
MAIT cells Anti-tumour MAIT cells are cytotoxic innate-like T cells whose infiltration into

tumours positively correlates with favourable
anti-tumour immune response and long-term survival

24

NKT cells Anti-tumour NKT cells have potent cytotoxic and immunomodulatory effects 25
CD68+CD163+
macrophages

Tumour-promoting Positively correlated with the infiltration of Tregs and neo-
vascularisation in tumours, as well as poor survival outcome

34

CD68+ macrophages Tumour-promoting Related to the increased microvascular density within the primary
tumours

35

Macrophages Tumour-promoting Inflammatory macrophages required for WNT pathway activation in
CCA tumours

36

PD-L1+ macrophages Tumour-promoting Positively correlated with high PD1-expressing CTLs and a risk
factor for survival outcome

101

MDSCs Tumour-promoting Blockade of TAM leads to a compensatory infiltration of MDSCs in
CCA models, resulting in impaired T-cell response and immune
escape

37

MDSCs Tumour-promoting Depletion of MDSCs abrogated tumour progression in the subcu-
taneous CCA model

38

CXCR2+ PMN-MDSCs Tumour-promoting Its recruitment within the liver depends on CXCL1-secreting hepa-
tocytes driven by gut microbial products

39

NK cells Anti-tumour Prolongs survival outcomes 40
Neutrophils Tumour-promoting Associated with poor prognosis and high tumour recurrence rate 42,43
Neutrophils Tumour-promoting Neutrophils recruited into CCA tumours by chemokine CXCL5 via

PI3K-Akt and extracellular signal-regulated kinase 1/2 signalling
pathways

44

CCA, cholangiocarcinoma; MAIT, mucosal-associated invariant T; MDSC, myeloid-derived suppressor cell; NK, natural killer; NKT, natural killer T; TAM, tumour-associated
macrophage; Tregs, regulatory T cells.
implications of this intrinsic tolerogenic state on the effective-
ness of immunotherapy during the initiation and progression of
CCA must be fully considered, as evidenced by liver metastasis-
specific acquired resistance of otherwise sensitive tumour
subtypes.17
Immunological landscape and immune cell composition in
CCA (low-resolution data)
According to the immune cell composition and function in CCA
tumours,18 the TIME can be divided into four distinct subtypes. In
one study, 46% of CCAs belonged to the immune desert group,
which presents very weak immune signature expression, while
13% of CCA tumours showed high infiltration of lymphocytes and
strong activation of inflammatory cells and fibroblasts. The other
two types were characterised by their low expression of
lymphoid signatures (19%) and mesenchymal features of acti-
vated fibroblasts (22%). Notably, the inflamed subtype was
associated with the longest survival, suggesting that the TIME
plays an important role in tumour control.

T cells in CCA
T cells are a highly heterogeneous population of cells including
CD8 cytotoxic T lymphocytes (CTLs), CD4 helper T cells, and
CD4+CD25+FOXP3+ Tregs. Both CD8 and CD4 helper T cells
exhibit anti-tumour effects through a number of mechanisms
and can be further divided into several sub-populations.19,20 The
infiltration of CD3+ and CD8+ T cells into CCA tumours is asso-
ciated with favourable survival and lower recurrence risk, while
the infiltration of Tregs is a poor prognostic marker in patients
with resected CCA.21 In one study, Tregs were found in compa-
rable quantities in HCC and CCA, but the prevalence of CTLs,
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which represent the anti-tumour response, was significantly
reduced in CCA compared to HCC.22

Other T cells function primarily through innate-like mecha-
nisms, including mucosal-associated invariant T cells (MAITs)
and natural killer T (NKT) cells. MAITs are highly enriched in the
liver tissue and respond to MR1-restricted epitopes.23 The infil-
tration of MAITs into tumours positively correlates with favour-
able anti-tumour immune responses and predicts long-term
survival.24 NKT cells recognise CD1d-restricted epitopes and
can have potent cytotoxic and immunomodulatory effects. Some
CCA cell lines have been found to express CD1d and can stimu-
late NKT cells in vitro,25 a property that has not yet been explored
in detail but could potentially serve as a biomarker for CCAs with
NKT immunoreactivity.

T-cell penetration and expression of surface markers in CCA
have particular mechanistic and therapeutic importance for ICI.
Cancer cells have been found to express PD-L1 to escape attack
from T cells via the PD-L1/PD1 axis by promoting tumour-
infiltrating lymphocyte (TIL) apoptosis.26 Elevated PD-L1
expression is correlated with tumour pTNM stage and poor
overall survival (OS), and is inversely correlated with CD8+ TILs
in CCAs.27,28 In addition to PD-L1, the expression of HLA-I mol-
ecules may be associated with the infiltration of CTLs, and a
positive correlation between HLA-I and CD8+ cells has been
demonstrated in CCA.29 Positive HLA-I expression combined
with negative PD-L1 expression, as well as high CD8+ T-cell
frequencies at the tumour border area, have both been associ-
ated with a favourable clinical outcome in patients with CCA.29,30

The latter point may be underappreciated, as infiltration of CTLs
and CD4 helper cells appears to be blocked spatially at the
tumour margins. Finally, PD1 and CTLA-4 expression on the
surface of T cells were increased in lymphocytes within the CCA
3vol. 5 j 100723



Review
lesions, suggesting increased T-cell exhaustion that may be
amenable to targeting by ICI therapies.31

Macrophages in CCA
Macrophages are another promising target in CCA that may in-
fluence the TIME both directly and indirectly.32 Like tumour cells,
TAMs found in CCA may contribute to the immunosuppressive
TIME via antigen presentation and expression of ligands for T-
cell exhaustion markers. In fact, TAMs are identified to be the
main source of PD-L1 both in human and murine CCA tumours 37.
The level of PD-L1 expression on macrophages positively corre-
lated with the quantity of high-PD1-expressing CTLs and was a
negative prognostic factor 101.

In addition, TAMs can polarise to promote either tumour
progression (M2) or pro-inflammatory processes (M1). TAM
polarisation may be influenced by the cytokines IL-13, IL-34,
and osteoactivin secreted by tumour cells, which are strong
differentiation factors for macrophage shaping toward TAM-
like features, contributing to tumour invasion both in vitro
and in vivo.33 The M2 CD68+CD163+ macrophages may mediate
their immunosuppressive effects indirectly through mecha-
nisms such as the infiltration of Tregs and neovascularisation in
CCA tumours, correlating with poor survival.34 However, tar-
geting TAMs in advanced CCA may not be straightforward. The
infiltration of CD68+ macrophages appears to be significantly
increased in locally advanced primary tumours compared to
metastatic sites, possibly related to increased microvascular
density within the primary tumours.35 Also paradoxically, in-
flammatory macrophages appear to be required for WNT
pathway activation in CCA tumours, as macrophage depletion
or WNT signalling inhibition resulted in CCA tumour regres-
sion.36 Thus, the decision to investigate macrophage depletion
in CCA using newer targeted therapies or biologics may be
complicated by discrepancies between their phenotype and
function in the TIME. Further research is needed to understand
their intricate biology and predict the effects of TAM
modulation.

MDSCs in CCA
Separate from TAMs, MDSCs are characterised by their immu-
nosuppressive characteristics, which have been observed in
numerous malignancies. MDSCs appear to have a tumour-
promoting function that overlaps with that of TAMs, as sug-
gested by the observation of a compensatory infiltration of
MDSCs after the blockade of TAMs in CCA models, resulting in
impaired T-cell responses and immune escape.37 Studies have
uncovered the tumour-promoting activities of MDSCs in CCA, as
depletion of MDSCs in the subcutaneous CCA model abrogated
tumour progression.38 However, factors that cause MDSC
recruitment may be dependent on the organ-specific context of a
tumour – a quality that subcutaneous models of CCA do not
capture. In an orthotopic mouse model of CCA established in the
context of colitis, CXCR2+ polymorphonuclear MDSC (PMN-
MDSC) recruitment within the liver was demonstrated to be
dependent on CXCL1-secreting hepatocytes driven by gut mi-
crobial products.39 Such an indirect mechanism of tumour pro-
motion by the compromised gut barrier is particularly relevant in
Western patients for whom inflammatory bowel disease plays a
causative role in carcinogenesis and points to an underappreci-
ated role of the gut microbiome in the TIME of CCA. Thus, MDSCs
represent a promising target for immunomodulation-based
therapeutics for CCA.
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NK cells in CCA
NK cells are potently cytotoxic lymphocytes with established
roles in other tumour types, yet studies on the role of NK cells in
CCA pathogenesis are quite limited. It has been shown that the
high expression of CXCL9, induced by IFN-c, is correlated with
abundant NK cell infiltration into CCA tumours and improved
survival outcomes.40 Furthermore, an antibody neutralizing
MICA/B, the soluble NKG2D decoy shed from tumour cells, can
increase IFN-c secretion and degranulation of NK cells co-
cultured with CCA tumour cells ex vivo.41 While NK cells could
have promising anti-tumour functions, high-dimensional anal-
ysis suggests that their viability may be compromised in CCA
(see below), making their relevance questionable.

Neutrophils in CCA
Neutrophils are a subtype of polymorphonuclear cells that act as
first-responders in inflammatory processes through direct cyto-
toxicity and release of chromatin into the extracellular space.
Multiple studies have demonstrated that neutrophils within CCA
lesions are associated with poor prognosis and a high rate of
tumour recurrence.42,43 It has been shown that neutrophils can
traffic into CCA lesions via the overexpressed chemokine CXCL5,
a member of the CXC-type chemokine family, through the PI3K-
Akt and extracellular signal-regulated kinase 1/2 signalling
pathways.44 However, the precise roles of neutrophils during
CCA pathogenesis remain to be determined.

NGS data on TIME (high-resolution data)
scRNAseq illuminates the transcriptomes of individual cells with
unparalleled granularity and has been revolutionary in our un-
derstanding of tumour cells and the TIME. In the first scRNAseq
study of the human liver, MacParland et al. analysed the tran-
scriptional profiles of 8,444 parenchymal and non-parenchymal
cells.45 Two distinct CD68+ macrophage populations were
identified. One population was characterised as inflammatory
with enriched expression of LYZ, CSTA, CD74, and the second
population of macrophages was characterised as tolerogenic. In
addition, three clusters of effector T cells were identified as
tissue-resident memory ab T cells (CD8+CD69+), unconventional
cd T cells (T-bet+CD161+CD16+) and phosphoantigen-reactive cd
T cells in the liver. Furthermore, the heterogeneity of NK and NKT
cells in the human liver was identified by clustering three pop-
ulations – CD56+ NK cells, CD56-CD8A+ NKT, and CD56+CD8A+
NKT cells, which express different kinds of chemokine ligands,
granzymes, and killer cell lectin-like receptors.46 This study
provided a framework of the physiological subsets of liver-
resident immune cells, allowing for analysis of their alterations
in the context of CCA.

Ma et al. published the first scRNAseq analysis of human liver
cancers for both HCC and CCA. It was found that VEGF may play
an important role in TIME reprogramming.14 Except for malig-
nant cells, VEGF was mainly expressed by TAMs within the
tumour immune compartment. Furthermore, the infiltrated T
cells showed significantly different expression profiles based on
tumours’ transcriptomic diversity scores – an algorithm that
estimates the correlation of gene expression and copy number
variation in each tumour sample.47 It was found the top-ranking
genes in T cells derived from high diversity (above median di-
versity value) tumours, which were associated with poor sur-
vival outcomes, were mainly enriched in the epithelial-
mesenchymal transition and myogenesis process. However, T
cells derived from low diversity (below median diversity value)
4vol. 5 j 100723



tumours were associated with a better survival outcome than the
highly diverse tumours and were mainly enriched in allograft
rejection, oxidative phosphorylation, IFN-a/IFN-c response, and
proliferation pathways, indicating these cells may still have anti-
tumour and/or cytotoxic activities.14 Although this study was not
specific for CCA, it suggested an important link between the
transcriptomic properties of primary tumour cells and T-
cell function in the liver, which may have utility as a novel
biomarker.

The major power of scRNAseq in cancer immunology lies in
its ability to identify novel immune subsets and the factors/
pathways on which they are dependent. In a subsequent
scRNAseq study of eight human CCAs, it was found that prolif-
erating CD8 T cells in CCAs express exhaustion markers, such as
lymphocyte-activation gene 3 protein (LAG3), TIM3, and T-cell
immunoreceptor with Ig and ITIM domains (TIGIT), suggesting
they are hyporeactive.13 In addition, although NK cells in the
tumour adjacent tissue appeared to be activated, based on high
expression of cytotoxic markers, the intratumoral NK cells had a
transcriptional profile reflecting hypoxia and apoptosis. Finally,
Tregs in tumours were found to express inhibitory markers,
including TIGIT, CTLA-4 and TNFR-related protein superfamily 18,
indicating they could be highly immunosuppressive.13 Another
study utilising scRNAseq showed that the transcription factor
MEOX1 in Tregs caused immunosuppression and correlated with
survival in patients with CCA.48 Other large studies using
scRNAseq to examine the TIME of HCC and CCA identified LAYN
as a novel activation marker in both CD8+ T cells and Tregs,49 as
well as CCL4+ neutrophils, which are important immunosup-
pressive cells that are enriched in CCA.50 While the number of
studies is still limited, the wealth of data generated from
scRNAseq has revealed several new transcriptional states and
subtypes of cells within the TIME that hold great promise for
future investigations into novel targets specific for CCA.
Preclinical CCA immunotherapy
The immunosuppressive mechanisms of the TIME in CCA sup-
port the investigation of immunotherapies against CCA. Due to
the lack of adequate animal models of CCA, early studies typically
employed in vitro co-culture techniques or xenograft models. For
example, it was reported that the cytokine-induced killer cells
co-cultured with DCs suppressed the growth of human CCA cells
in SCID mice.51 Another study showed that the combined treat-
ment with cytokine-induced killer cells and cetuximab, an
epidermal growth factor receptor inhibitor, demonstrated sig-
nificant cytotoxicity to human CCA cells in vitro.52 Aspartate-b-
hydroxylase is a type 2 transmembrane protein which is widely
expressed in many cancer types, including CCA. Using a rat CCA
model, Noda et al. showed that aspartate-b-hydroxylase-exposed
DCs had significant cytotoxicity against CCA cells and increased
tumour-infiltrating CD3+ T cells, leading to the inhibition of CCA
growth and metastasis.53 A similar study found enhanced T-cell
cytotoxicity in a model using monocyte-derived DCs loaded with
PRKAR1A, another protein that is overexpressed in CCA tumour
cells, compared with conventional DCs.54 Neutralizing IL-10 and
TGF-b increased the production of IFN-c and enhanced the DC-
mediated cytotoxicity of CTLs against CCA tumour cells
in vitro.55 While these studies are useful as proof-of-concept
investigations into CCA antigens and antigen-presenting cells,
their design may not accurately reflect the complex interactions
that occur in an in vivo system.
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Recently, multiple mouse models of CCA have been devel-
oped, including cell lines56 and in vivo delivery of certain onco-
genic constructs.57,58 These tools significantly facilitate the
preclinical studies of immunotherapies against CCAs in immune-
competent mice, allowing for relevant in vivo examination of the
TIME. For example, using a syngeneic orthotopic mouse model of
CCA, Loeuillard E et al. reported that the TAMs recruited from the
bone were the main source of PD-L1 in CCA and played key roles
during tumour progression. However, blockade of TAMs led to a
compensatory accumulation of an immunosuppressive signature
subset of Ly6CloLy6Ghi PMN-MDSCs. This effect counteracted the
anti-tumour effect of depleting TAMs in this CCA mouse model.
Dual blockade of TAMs and PMN-MDSCs facilitated the anti-
tumour effect of anti-PD1 in CCA.37 Such treatment combina-
tions and multi-subtype depletions demonstrate an important
application of these newer immunocompetent mouse models of
CCA, especially their utility in predicting compensatory effects in
a plastic cell type such as TAMs. As noted above, TAM polar-
isation oversimplifies the link between phenotype and function,
which another group studied using an immunocompetent model
of CCA. Establishing that TAMs were major immunosuppressive
cells within CCA TIMEs, the authors showed that tumour cell-
derived granulocyte macrophage colony-stimulating factor
(GM-CSF) recruited and polarised TAMs, and blocking GM-CSF
suppressed mouse CCA growth, leading to prolonged survival.59

GM-CSF canonically promotes M1 macrophage differentiation,
which promotes tumour immune responses, while M-CSF pro-
motes M2 macrophage differentiation, which promotes tumour
growth and metastasis, and is correlated with poor outcomes.60

Immunocompetent mouse models of CCA are also being
applied to investigations of combination therapies involving ICIs.
It was reported that, although increased expression of PD-L1 is
often observed in CCA tumours, CCA barely responds to anti-PD-
L1 treatment,8,61 suggesting intrinsic resistance to ICIs. However,
ICIs may be useful as part of combination therapies to overcome
resistance. For example, Diggs L et al. reported that activation of
antigen-presenting macrophages and DCs with an anti-CD40
antibody led to a moderate response in murine CCA models,
but a combination of anti-CD40 and anti-PD1 exhibited a sig-
nificant anti-tumour effect in vivo.8 A recent study showed that
trametinib, a mitogen-activated kinase inhibitor, upregulated the
expression of PD-L1 on CCA tumour cells. However, it also
increased the immunogenicity of tumour cells by upregulating
their MHC-I expression. The combination of trametinib and anti-
PD-1 inhibited tumour growth in several CCA models by
increasing the number of effector memory CD8+ and CD4+ T
cells, as well as CTLs, in the liver.62

In summary, the recent preclinical studies support the
possible usefulness of immunotherapy, especially in the setting
of combination therapy, against CCA.

CCA immunotherapy in clinical practice
Despite an increased understanding of the tumour microenvi-
ronment in CCA, the application of novel and repurposed im-
munotherapies has been challenging. The rarity and
aggressiveness of CCA have caused progress to be slow and in-
cremental, exemplified by the 12-year gap between the ABC-02
and TOPAZ-1 trials, demonstrating an improved survival in the
order of weeks. Herein, we discuss select biologic-based immu-
notherapies in the treatment of CCA that are approved or show
experimental promise. Cell-based immunotherapies for CCA are
discussed elsewhere.63–66
5vol. 5 j 100723
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CCAs with MSI-H and TMB-H status
Two well-characterised molecular subtypes within various tu-
mours, including CCAs, are tumour mutation burden high (TMB-
H) and microsatellite instability high (MSI-H). Both TMB-H and
MSI-H are associated with an increase of tumour-specific neo-
antigens,67,68 leading to robust recognition and activation of
immune cells and, often, excellent response to ICI-based
immunotherapy.69,70 A comprehensive genomic analysis of 260
biliary tract cancers found that 14 cases (5.9%) were classified as
hypermutated, and only five of these harboured inactivating
mutations in mismatch-repair genes.71 In a cohort study of 352
CCA samples analysed by next-generation sequencing, 2.0% of
tumours were identified as MSI-H, while 4.0% were classified as
TMB-H based on a cut-off of 17 somatic missense mutations per
Mb.72

Despite their rarity, there are several reports that patients
with CCA tumours harbouring TMB-H experienced significant
ongoing anti-tumour responses to anti-PD-1 antibody immu-
notherapy.73,74 Two patients with CCA and high insertion-
deletion ratios achieved complete response by combining PD1
blockade with chemotherapy.75 In another patient with
advanced MSI-H CCA, although the expression of PD-L1 and the
infiltrated CTLs were not elevated, there was a strong and du-
rable response to pembrolizumab therapy.76 Recently, more
studies have reported similar dramatic anti-tumour or even
complete tumour responses.77–80

Results from a phase II study (NCT01876511) evaluating anti-
PD1 immunotherapy for progressive metastatic carcinomas
included four patients with ampullary cancer or CCA. Surpris-
ingly, the response rates of patients with MSI-H colorectal cancer
were similar to those of patients with non-colorectal cancers,
including CCA.81 Based on these promising results, the trial was
expanded to further evaluate the efficacy of anti-PD1 immuno-
therapy in 12 different tumour types with advanced mismatch-
repair deficiency. It was reported that three of the four
enrolled patients experienced stable disease, while another
experienced a complete response. These results suggest that
neoantigens generated by cancer cells caused by MSI-H genomes
lead to the enhanced sensitivity of CCA to PD1-blockade in a
manner similar to other cancer types.68 These promising results
accelerated the approval of anti-PD1 immunotherapy for adult
and paediatric patients with unresectable or metastatic solid
tumours, including CCA, that harbour MSI-H and have pro-
gressed following prior treatment.

KEYNOTE-158, a larger trial, evaluated the efficiency of
pembrolizumab for 233 patients with MSI-H advanced non-
colorectal cancer who failed on prior therapy, including 22
CCAs. The combined objective response rate (ORR) was 34.3%,
median progression-free survival (mPFS) was 4.1 months, and
median overall survival (mOS) was 23.5 months. Specifically, in
the CCA cohort, two patients achieved a complete response and
seven patients a partial response. The ORR of 40.9% for CCA was
similar to other cancers, and a similar mPFS (4.2 months) and
mOS (24.3 months) were observed.82 These results were
remarkable but not unexpected based on previous smaller
studies of single-agent nivolumab, in which all responders were
found to have a MSI-H profile.83 Together, these promising re-
sults in the MSI-H/TMB-H subset of CCA have significantly
altered the prognosis for this unique population that responds
to ICI favourably, opening up the possibility for further
application of immunotherapy to patients lacking these
biomarkers.
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PD-L1 as a biomarker for ICI immunotherapies
Unfortunately, the results from ICI monotherapy for TMB-L/MSI-
L CCAs have been unencouraging, and there are no approved
immunotherapy-alone regimens for CCA. Some investigations
have focused on finding biomarkers in CCA that correlate with
response to ICI (Table 2). PD-L1 expression within the tumour is
such a marker for the prediction of anti-tumour responses to ICI
therapy across multiple tumour types.84 It has been found the
PD1/PD-L1 axis is both expressed in CCA tumour cells as well as
its TILs,85 suggesting the potential for responses to anti-PD1 or
anti-PD-L1 immunotherapy. In a phase Ib trial (Keynote 028)
evaluating the anti-tumour efficacy of pembrolizumab in PD-L1-
positive (>−1% on immunohistochemistry) CCA tumours, a 13%
ORR was observed in 24 patients.86,87 In a larger trial of 104
enrolled patients with CCA (Keynote 158), a total ORR of 5.5% was
reported, with ORRs of 6.6% and 2.9% in patients with PD-L1-
positive (n = 61) and PD-L1-negative (n = 34) tumours, respec-
tively.86 In a phase II multi-institutional trial of nivolumab, a PD-
L1 antagonist, it was found that the positive expression of PD-L1
in tumours was associated with significantly prolonged PFS.83

Despite PD-L1 expression correlating with response, these re-
sults suggest that both pembrolizumab and nivolumab mono-
therapy showed only modest efficacy for patients with CCA, and
intrinsic tolerance mechanisms need to be overcome in order to
unlock the efficacy of ICI.

ICI-based combination therapy for CCA
Based on both preclinical and clinical data showing that ICIs have
limited efficacy in CCAs, many clinical trials have attempted to
combine ICIs with other ICIs, chemotherapy, locoregional ther-
apy, or targeted therapies to improve response rates (Table 2).

The ABC-02 trial demonstrated the superiority of gemcitabine
plus platin-based chemotherapy to gemcitabine monotherapy.3

Interestingly, it was found that the chemotherapy regimen
upregulates the expression of PD-L1 and MHC-I molecules in
tumour cells,88,89 and stimulates the infiltrated immune cells by
inhibiting the immunosuppressive cells,90 thus providing a
rationale to combine ICIs with standard of care (gemcitabine and
cisplatin) (Table 2). In a phase II study of nivolumab in combi-
nation with gemcitabine and cisplatin chemotherapy, 15 patients
achieved an objective response in 27 response-evaluable pa-
tients, of whom five patients (18.6%) had a complete response,
and the disease control rate was 92.6%. Meanwhile, an encour-
aging ORR of 61.9% was achieved in the 21 chemotherapy-naive
patients. The mPFS in this study was 6.1 months and the mOS
was 8.5 months, respectively, and the toxicity profile of nivolu-
mab in combination with chemotherapy was acceptable.91

More recently, results from the phase III TOPAZ-1 trial
demonstrated an improvement in overall survival for patients
with CCA treated with durvalumab (an anti-PD-L1 antibody) in
combination with gemcitabine and cisplatin,4 the first since the
ABC-02 trial. mOS was 12.8 months in the durvalumab combi-
nation group and 11.5 months in the placebo treatment group,
and rates of grade 3/4 adverse events were comparable. On post
hoc analysis, only modest survival effects were seen in subgroups
defined by PD-L1 expression, and over 50% of patients had an
unknown MSI status. Nonetheless, this big achievement
emphasised the promise of combining CCA immunotherapy with
chemotherapy and led to the recent approval of this combination
therapy for CCA in the US.4 A similar phase I study was per-
formed in Japan, where relatively favourable results have already
been achieved by combining nivolumab with cisplatin plus
6vol. 5 j 100723



Table 2. Summary of completed and ongoing clinical trials of ICI-based CCA immunotherapy*.

NCT number Interventions ICI general name Phase Status Enrolment
(estimated)

Ref.

ICI monotherapy
NCT01876511 Pembrolizumab/MK-3475 Anti-PD1 II Completed 41 81
NCT02829918 Nivolumab Anti-PD1 II Completed 54 83
NCT03695952 Nivolumab or pembrolizumab Anti-PD1 Recruiting 100
NCT02054806 Pembrolizumab Anti-PD1 I Completed 24 86
NCT02628067 Pembrolizumab Anti-PD1 II Recruiting 104 82,86
Dual ICIs therapy

NCT04969887 Nivolumab+ipilimumab Anti-PD1+anti-CTLA4 II Recruiting 240
NCT02443324 Pembrolizumab+ramucirumab Anti-PD1+anti-VEGFR2 I Completed 155 102
NCT03704480 Durvalumab+tremelimumab Anti-PD-L1+anti-CTLA4 II Completed 106 95
NCT04238637 Durvalumab+tremelimumab Anti-PD-L1+anti-CTLA4 II Recruiting 50
NCT01938612 MEDI4736+tremelimumab Anti-PD-L1+anti-CTLA4 I Completed 269
NCT03849469 XmAb22841+pembrolizumab Bispecific anti-CTLA4/LAG3

+Anti-PD1
I Recruiting 242

NCT03833661 M7824 Bispecific anti-PD-L1/TGF-b II Completed 159 103
Combined ICI + chemotherapy

NCT03311789 Nivolumab+GEMCIS Anti-PD1 I/II Completed 30 91
NCT03111732 Pembrolizumab+XELOX Anti-PD1 II Completed 11 104
NCT03092895 SHR-1210+apatinib or FOLFOX4/GEMOX Anti-PD1 II Completed 152 96,105
NCT03486678 SHR-1210+GEMOX Anti-PD1 II Completed 38 97
NCT04782804 Tislelizumab+capecitabine Anti-PD1 I/II Recruiting 30
NCT03796429 Toripalimab+gemcitabine Anti-PD1 II Recruiting 40
NCT04961788 Toripalimab+GEMOX Anti-PD1 II Recruiting 30
NCT04506281 Toripalimab+lenvatinib+GEMOX Anti-PD1 II Recruiting 128
NCT04669496 Toripalimab+lenvatinib+GEMOX Anti-PD1 II/3 Recruiting 178
NCT04413734 Triprilumab+GEMCIS Anti-PD1 II Recruiting 120
NCT03101566 Nivolumab+ipilimumab+GEMCIS Anti-PD1+anti-CTLA4 II Recruiting 75
NCT03058289 Pembrolizumab+ipilimumab +INT230-6 Anti-PD1+anti-CTLA4 I/II Recruiting 180
NCT05007106 MK-7684 A+Chemotherapy Anti-PD1 and anti-TIGIT.

Co-formulation
II Recruiting 480

NCT04217954 Toripalimab+bevacizumab+HAIC Anti-PD1+anti-VEGF II Recruiting 32
NCT03046862 Durvalumab+GEMCIS Anti-PD-L1 II Completed 128 106
NCT04308174 Durvalumab+GEMCIS Anti-PD-L1 II Recruiting 45
NCT03478488 KN035+GEMOX Anti-PD-L1 3 Recruiting 480
NCT04066491 Bintrafusp alfa+GEMCIS Bispecific Anti-PD-L1/TGF-b II/3 Completed 512 103
Combined ICI + targeted therapy

NCT04642664 Camrelizumab+apatinib Anti-PD1 II Completed 22 107
NCT04454905 Camrelizumab+apatinib Anti-PD1 II Recruiting 50
NCT03250273 Nivolumab+entinostat Anti-PD1 II Completed 44
NCT04704154 Nivolumab+regorafenib Anti-PD1 II Recruiting 200
NCT03639935 Nivolumab+rucaparib Anti-PD1 II Recruiting 35
NCT03895970 Pembrolizumab+lenvatinib Anti-PD1 II Recruiting 50
NCT05010681 Sintilimab+lenvatinib Anti-PD1 II Recruiting 25
NCT04010071 Toripalimab+axitinib Anti-PD1 II Recruiting 60
NCT04211168 Toripalimab+lenvatinib Anti-PD1 II Recruiting 44
NCT04641871 Sym021+Sym023 +irinotecan

hydrochloride
Anti-PD1+anti-TIM3 I Recruiting 100

NCT03201458 Atezolizumab+cobimetinib Anti-PD-L1 II Completed 77 108
NCT04298008 Durvalumab+AZD6738 Anti-PD-L1 II Recruiting 26
NCT03991832 Durvalumab+olaparib Anti-PD-L1 II Recruiting 78
NCT03996408 TQB2450+anlotinib| Anti-PD-L1 I/II Recruiting 42
Combined ICI + targeted interventions

NCT01853618 Tremelimumab+ablation anti-CTLA4 I/II Completed 61 109
NCT04299581 Camrelizumab+cyoablation Anti-PD1 II Recruiting 25
NCT03898895 Camrelizumab+radiotherapy Anti-PD1 II Recruiting 184
NCT04295317 SHR-1210+capecitabine+surgery Anti-PD1 II Recruiting 65
NCT04866836 Tislelizumab+radiotherapy Anti-PD1 II Recruiting 20
NCT02866383 Nivolumab+ipilimumab+radiotherapy Anti-PD1+anti-CTLA4 II Recruiting 160
NCT03482102 Durvalumab+tremelimumab+radiotherapy Anti-PD-L1+anti-CTLA4 II Recruiting 70
NCT03937830 Durvalumab+bevacizumab+tremelimumab+TACE Anti-PD-L1+anti-VEGF

+ anti-CTLA4
II Recruiting 22

NCT04708067 Bintrafusp alfa+hypofractionated radiotherapy Bispecific Anti-PD-L1/TGF-b I Recruiting 15

(continued on next page)
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Table 2 (continued)

NCT number Interventions ICI general name Phase Status Enrolment
(estimated)

Ref.

Other

NCT04278144 Pembrolizumab+BDC-1001 Anti-PD1 I/II Recruiting 390
NCT04460456 Pembrolizumab+SBT6050 Anti-PD1 I Recruiting 294
NCT04301778 Durvalumab+SNDX-6352 Anti-PD-L1+anti–CSF–1a II Recruiting 30

* These clinical trials (https://www.clinicaltrials.gov/) were included from their first start date until March 20, 2022. A search strategy was developed in combination with the
Medical Subject Headings, Emtree and text terms, include ‘liver cancer’, ‘liver tumor’, ‘biliary cancer’, ‘biliary tumor’, ‘biliary tract cancer’, ‘biliary carcinoma’, ‘chol-
angiocarcinoma’, ‘intrahepatic cholangiocarcinoma’, ‘ICC’, ‘iCCA’, ‘CCA’, ‘immunotherapy’, ‘immune checkpoint blockade’, ‘immune checkpoint inhibitor’, ‘anti-PD1’, ‘anti-PD-
L1’, ‘anti-CTLA4’, ‘anti-TIM3’. According to the retrieved results, camrelizumab, cemiplimab, nivolumab, pembrolizumab, sintilimab, Sym021, tislelizumab and toripalimab,
were classified as anti-PD1; atezolizumab, durvalumab, and envafolimab were classified as anti-PD-L1; tremelimumab and ipilimumab were classified as anti-CTLA4. CCA,
cholangiocarcinoma; ICI, immune checkpoint inhibitor; GEMOX, gemcitabine and oxaliplatin; GEMCIS, gemcitabine and cisplatin; FOLFOX4, oxaliplatin, folinic acid and 5-
fluorouracil; HAIC, hepatic artery infusion chemotherapy; TACE, transarterial chemoembolisation; XELOX, oxaliplatin and capecitabine.
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gemcitabine chemotherapy; in this study, the combination was
associated with a reported mOS of 15.4 months and a mPFS of 4.2
months.92 In the combination group, 11 of 30 patients had an
objective response compared with only 1 of 30 patients in the
nivolumab monotherapy group, in whom mOS and mPFS were
5.2 and 1.4 months, respectively.92

Currently, there are over 25 ICI combination-based clinical
trials for CCA treatment (Table 2). For example, a phase II study
combining nivolumab with ipilimumab for advanced biliary
tract cancer enrolled 39 patients (20 men and 19 women) who
all received prior chemotherapy and had no MSI. The mPFS and
mOS were 2.9 months and 5.7 months, respectively. This
combination therapy showed improved efficacy when
compared with results from a separate trial using anti-PD1
monotherapy.83,93 In a phase I study evaluating durvalumab
(anti-PD-L1) combined with tremelimumab (anti-CTLA-4) in
Asian patients with CCA, the durvalumab monotherapy group
(n = 42) had a median OS of 8.1 months, and the combination
group (n = 65) had a median OS of 10.1 months.94 While the
treatment-related adverse events were comparable between
the two groups, the combination group had one treatment-
related death, pointing to the difficulty of combining immu-
notherapy regimens. Another promising phase II trial was
terminated before reaching the study endpoint due to an un-
expected increase of anaphylactic adverse events from
combining durvalumab, tremelimumab, and paclitaxel. The
dose-limiting toxicities were observed in five patients in the
combination group (n = 10).95

Further studies are testing enhanced ICI blockade of estab-
lished targets. A phase II trial evaluating first-line combination
camrelizumab, a humanized high-affinity PD-1 IgG4 monoclonal
antibody, plus oxaliplatin-based chemotherapy for advanced
biliary tract cancer, enrolled 92 patients: 29 received camreli-
zumab plus FOLFOX (5-fluorouracil, leucovorin and oxaliplatin)
while 63 received GEMOX (camrelizumab plus gemcitabine and
oxaliplatin). The authors reported a combined objective response
rate of 16.3%, a mPFS of 5.3 months, and an mOS of 12.4
months.96 In a similar study, 37 patients with advanced biliary
tract cancer were recruited to evaluate the efficacy and safety of
camrelizumab plus gemcitabine and oxaliplatin as the first-line
treatment. Fifty-four percent of patients (20/37) experienced
an objective response, and a mPFS of 6.1 months and an mOS of
11.8 months, with a manageable safety profile, were reported for
the combination therapy.97 In a cohort study comparing the ef-
ficacy and safety of PD-1 inhibitors plus chemotherapy (n = 75)
and chemotherapy alone (n = 59) as first-line treatments for
patients with advanced CCA, though no significant differences
were found in the ORR and disease control rate between the two
JHEP Reports 2023
groups, a significantly longer mPFS was observed in the combi-
nation group (5.8 months vs. 3.2 months, p = 0.004).98

In summary, multiple clinical trials are currently examining
the therapeutic efficacy of ICI-based combination therapy against
CCA. Most of the trials are still in early phases. Nevertheless, we
expect that during the next few years, the results from these
ongoing clinical trials may provide novel therapeutic options for
the treatment of this deadly malignancy.
Future directions and challenges
Patients suffering from CCA are in urgent need of new systemic
therapies. Despite the established efficacy of ICI monotherapy for
the minority of patients whose CCAs carry TMB-H or MSI-H ge-
notypes, the introduction of immunotherapy into treatment reg-
imens for CCA broadly has been slow for several reasons. First,
unlikeHCC, clinical trials for CCAare challenging toperformdue to
its low incidence, making it difficult to demonstrate or disprove
the efficacy of any new therapy prospectively without the coor-
dination of an international clinical trial. Second, chol-
angiocarcinoma cells and the overall liver microenvironment
demonstrate particularly strong resistance to immunotherapies
that are otherwise effective in other cancer types/sites, making
treatment combinations necessary. Third, the lack of identifiable
biomarkers means that the majority of CCAs are treated the same
way, despite divergent driver mutations and anatomic sites.

Fortunately, the diverse molecular landscape of CCA is being
actively addressed. In addition to approved targeted therapies for
known driver mutations of intrahepatic CCA, the preclinical
studies reviewed above demonstrate unique mechanistic attri-
butes that may explain the relative resistance of CCA to therapy.
Some of these molecular features are being addressed by second-
generation ICIs (Table 2), including TIGIT-, LAG3-, or TGF-b-tar-
geting therapies; however, further identification of biomarkers
will be critical to this effort. The introduction of large scRNAseq
studies in patients with CCA have already identified various
different immune cell types and tumour cell states that may
serve as suitable biomarkers for future therapeutics. The results
should be combined with other omics studies, including whole-
exome sequencing, copy number variations, proteomics and
metabolomics. These integrated studies will provide a compre-
hensive picture of CCAs and their immune microenvironments.
The results will also be critical for the development of novel
immunotherapies or combined immunotherapies and targeted
therapies for CCA treatment.

However, significant challenges remain. One of the major
challenges is that CCA is a heterogenous disease on multiple
levels. Anatomically, CCAs consist of three subsets that have
8vol. 5 j 100723
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distinct driver mutations, histological features1,2,99 and possibly
distinct responsiveness to immunotherapies. Indeed, based on
the TOPAZ-1 clinical trial, it appears that durvalumab/gemcita-
bine/cisplatin combination therapy is much more effective
against intrahepatic CCA than extrahepatic CCA.4 This issue has
not been adequately addressed in clinical and preclinical studies.

In addition, the success of these future approaches will
depend on access to preclinical testing in CCA, and until recent
years, mouse models for CCA have been lacking. For CCA cell
lines, few of them are commercially available. In most cases,
intrahepatic CCA, distal CCA, and gallbladder cancer cell lines are
used interchangeably.100 Mouse CCA models include chemically
induced CCA, such as thiocetamide-induced CCA, as well as
genetically engineered mouse CCA models. The latter includes
transgenic/knockout mouse models, as well as mouse CCAs
produced by hydrodynamic injections. All of these models have
been used to investigate the therapeutic efficacy of immuno-
therapies. Most of these murine CCA models are intrahepatic
CCA models and few perihilar or distal CCA models exist. Clearly,
additional efforts are required to develop clinically relevant
mouse CCA models that harbour the various genetic alterations
seen in human CCAs, especially for perihilar or distal CCAs.

Although immunotherapy has been used for advanced CCA
treatment in combination with chemotherapy in the first-line
JHEP Reports 2023
setting, response rates and clinical outcomes are still subopti-
mal. It would be of great significance to identify biomarkers of
predictive or prognostic value. Clinical biospecimens, including
blood, urine, tumour samples and radiographs, collected during
the trials will be valuable for this purpose by enabling re-
searchers to dissect tumoral responses and the dynamic immune
landscape of CCA using current cutting-edge omics technologies.
These findings will help to guide the design of different immu-
notherapy/chemotherapy combinations, with the ultimate aim of
improving outcomes. Additionally, drug resistance has been
linked to failure of targeted and immunological therapies, and
elucidation of drug resistance mechanisms will be helpful for the
study of next-generation immunotherapies or combination
therapies. As multiple modalities are on the table for the treat-
ment of advanced CCA, selection and sequencing of therapies for
individual patients will become an important consideration.

In summary, immunotherapy against CCA presents exciting
opportunities as well as unique challenges. The combined efforts
of basic scientists, translational researchers and clinicians will be
required to advance this field. In the future, we must improve
our understanding of the molecular mechanisms underlying CCA
pathogenesis, develop better and representative small animal
models for CCA, and identify biomarkers for patient selection
and international collaborative clinical trials.
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