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ABSTRACT

The sequence-dependent structural variability and
conformational dynamics of DNA play pivotal roles
in many biological milieus, such as in the site-specific
binding of transcription factors to target regulatory
elements. To better understand DNA structure, func-
tion, and dynamics in general, and protein���DNA
recognition in the ‘iB’ family of genetic regulatory
elements in particular, we performed molecular
dynamics simulations of a 20-bp DNA encompassing
a cognate iB site recognized by the proto-oncogenic
‘c-Rel’ subfamily of NF-iB transcription factors.
Simulations of the iB DNA in explicit water were
extended to microsecond duration, providing a
broad, atomically detailed glimpse into the structural
and dynamical behavior of double helical DNA over
many timescales. Of particular note, novel (and
structurally plausible) conformations of DNA devel-
oped only at the long times sampled in this simula-
tion—including a peculiar state arising at�0.7ms and
characterized by cross-strand intercalative stacking
of nucleotides within a longitudinally sheared base
pair, followed (at�1ms) by spontaneous base flipping
of a neighboring thymine within the A-rich duplex.
Results and predictions from the microsecond-
scale simulation include implications for a dynamical
NF-iB recognition motif, and are amenable to testing
and further exploration via specific experimental
approaches that are suggested herein.

INTRODUCTION

DNA is often viewed as a relatively rigid biological
macromolecule (1–3), with RNA and proteins thought of

as exhibiting broader ranges of both intrinsic three-dimen-
sional structural variability as well as dynamical flexibility.
This perspective of a locally rigid, globally flexible biopo-
lymer is consistent with the rather passive biological role
of DNA as the repository of genetic information—the
genome is read-out by the process of transcription. Links
between structure and potential biological functions (both
normal and aberrant) have been explored for conforma-
tions that deviate from the standard B-form double helix—
including such varieties as multi-stranded triplexes, quad-
ruplex structures found in telomeric G-rich tracts, cruci-
forms adopted by inverted repeats, hairpins and slipped
structures and so on (4). However, beyond these alterna-
tive secondary structures, it is also becoming increasingly
apparent that the structure and dynamics of the canonical
Watson–Crick DNA double helix on a very local (base
pair) level play pivotal roles in specific biological functions,
such as the site-specific binding of transcription factors to
target DNA elements. This idea of a functional role for
sequence-specific DNA fine structure and dynamics is
embodied in the concept of ‘indirect readout’ (5,6), wherein
features of protein���DNA recognition are dictated by
subtle conformational and dynamical properties of DNA
beyond the stereochemical code provided by the specific
linear array of chemical functionalities that line the
major and minor grooves for a given nucleotide sequence.
Despite the vast literature dedicated to DNA structural

biology since the first atomic-resolution crystal structures
of both left- (7) and right-handed (8) double helices, many
aspects of DNA structure and dynamics remain unclear—
including the intrinsic coupling between structure and
conformational dynamics that is the basis of indirect read-
out. For instance, controversy surrounds the relative
significance of extrinsic/environmental factors (such as
hydration and counterion-binding) versus intrinsic fac-
torsm (such as local base pair interactions) in mediating
sequence-specific DNA fine structure, as gauged by helical
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axis bending, groove widths and related properties (9–12).
Quantitative frameworks have been developed for the
description of DNA structure in terms of the local geome-
try of bases, base pairs (bp), bp steps and higher-order
structural units [e.g. (13)], but progress in elucidating
those structural and dynamical phenomena thought to
occur via transient, short-lived intermediates [such as
occurs in base flipping (14,15)] remains hindered by the
difficulty of using existing experimental methods to extract
dynamical information at both atomic resolution and over
the potentially relevant timescales (ns!ms). Emblematic
of this difficulty, crystallographic models generally repre-
sent spatially and temporally averaged structures of indi-
vidual molecules, the averages being taken over more than
1012 unit cells (a conservative estimate, for micrometer-
sized crystals of typical cell dimensions) and time periods
greater than hundreds of milliseconds (a conservative
estimate, for exposure with high-brilliance synchrotron
X-rays). Thus, detailed knowledge remains somewhat
obscure of the factors modulating the mean structural
and conformational properties of DNA, the dynamical
processes mediating inter-conversions between these
average conformational states, and the interactions of
these (sub-)states with transcription factors, histone
proteins, intercalators, groove-binding drugs and other
relevant species. Computational approaches such as mole-
cular dynamics (MD) simulation (16) provide an alterna-
tive route towards exploring biomolecular structure and
dynamics in fully atomic detail, and have yielded a wealth
of nucleic acid simulations over the past dozen years
[reviewed in (17)].
The NF-kB transcription factor family illustrates the

many potential complexities of protein���DNA recogni-
tion. This family occurs in a wide variety of eukaryotes
and regulates a similarly broad array of cellular pathways,
ranging from morphogenesis in insects to adaptive immu-
nity in humans (18). The five mammalian NF-kBs
[p50, p52, p65 (RelA), c-Rel and RelB] contain an �300-
residue Rel Homology Region (RHR), consisting of two
immunoglobulin-like folds joined by a flexible linker. NF-
kBs associate into homo- and hetero-dimers that modulate
gene expression by binding to target kB DNA-enhancer
sites. The remarkably loose kB consensus sequence
50GGGRNWYYCC30 [N=any nucleotide, R=purine,
Y=pyrimidine (often Thy) and W=Ade or Thy] con-
sists of two ‘half sites’ (underlined). The 5-bp GGGRN
half sites are preferentially bound by p50 and p52 sub-
units, while RelA, RelB and c-Rel prefer the 4-bp
YYCC half sites. Thus, in addition to immense sequence
variability and intrinsically different NF-kB-binding pre-
ferences for different half sites, kB elements also vary in
length. Known kB sites can be grouped into 9-bp ‘class I’
sites (4+1+4 arrangement, for c-Rel and RelA homo-
dimers) and 10- or 11-bp ‘class II’ sites (5+1+5, for p50
and p52 homodimers). However, even the above rules
and consensus sequences are likely to be too restrictive:
Some sequence-specific trends are known, but there is
great degeneracy in terms of both (i) optimal DNA
sequences for a given NF-kB dimer and (ii) the relative
affinities of different NF-kB dimers for a given kB DNA
sequence (18). Thus, an outstanding question in the

NF-kB field is the detailed mechanism of indirect read-
out—What are the determinants of sequence-specific bind-
ing of NF-kB to target kB sites? Biophysical studies have
demonstrated that NF-kB���DNA-binding affinity is lar-
gely entropically driven (19), but the issue of site specificity
remains far murkier, with it now thought that ‘the con-
formation and flexibility of kB DNA sequences play a
critical role in the recognition of NF-kB dimers’ (20).

Therefore, as an initial step in elucidating protein���DNA
recognition and the mechanism of indirect readout in
the context of differential binding of NF-kB transcription
factors to kB DNA elements, we performed MD simula-
tions of a 20-bp kBDNAof known structure (Figure 1, S1).
This DNA duplex consists of the sequence d(GGGTTT
AAAGAAATTCCAGA), and encompasses a kB element
(underlined) recognized by the c-Rel NF-kB homodimer
and its oncogenic variant ‘v-Rel’ (21). Simulations of the
DNA were extended to the microsecond timescale, afford-
ing insights that would have remained undiscovered in
a shorter simulation. Unanticipated kB DNA structural
transitions discovered at the long times sampled in this
trajectory include cross-strand intercalative stacking
(‘XSIS’) of nucleotides followed by spontaneous base flip-
ping at a neighboring nucleotide, as well as a peculiar minor
groove-bound ‘barbed’ terminus. In addition to illuminat-
ing the microsecond-scale structural and dynamical beha-
vior of this particular kB sequence, the simulation provides
a broad, atomic-resolution glimpse into the dynamical
properties of two turns of double helical DNA over a
wide range of timescales (nine orders of magnitude). The
terascale body of data presents opportunities for detailed
analyses of methodological issues (such as the approxima-
tions inherent in the empirical force fields used in MD),
but the present report focuses instead upon the intriguing
XSIS, flipping and barbing transitions, as well as suggest-
ing specific experimental ideas which could be used to
test and further explore the simulation-based predictions.
While technical issues pertaining to force field parameter-
ization lie beyond the scope of the present work, an initial
assessment of the quality of this extended trajectory was
made by considering microsecond-scale DNA backbone
dynamics in terms of potential BI/BII and a/g backbone
substate sampling problems.

MATERIALS AND METHODS

The work proceeded in stages of (i) system selection, con-
struction and preparation; (ii) calculation of classical MD
trajectories; and (iii) data processing and analysis. These
stages are described later, and further detailed in the
Supplementary material. The starting structure was
a 20-bp DNA encompassing the kB site of a CD28
response element, drawn from a crystal structure of this
duplex bound to the (c-Rel)2 NF-kB homodimer (21). This
9-bp class II kB DNA consists of 4-bp ‘half sites’
(Figure 1a, S1). Because the dynamics of this particular
DNA are of interest as part of a broader NF-kB-related
project, the structure of c-Rel-bound kB DNA was used
directly and not rebuilt into canonical B-form. A virtue of
the 20-bp duplex used in these studies (versus a shorter
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fragment limited to just the kB site) is that the region of
primary interest—the 9-bp kB site—is embedded in two
helical turns of DNA, making it less susceptible to poten-
tially spurious end-effects. The simulation system was con-
structed by immersing the duplex in a truncated
octahedron of explicit water (Figure 1b, S1). As described
in the Supplementary material, design of the periodic
boundary conditions accounted for the calculated hydro-
dynamic properties of this DNA fragment (Figure S1e),
such that a minimal clearance of 20 Å was maintained
between periodic images at all times (this distance being
35 Å for the starting configuration). The final system was
prepared via (i) addition of hydrogens; (ii) successive
rounds of energy minimization of protons and DNA
atoms; (iii) addition of 38 Na+ counterions; (iv) placement
of an initial shell of interstitial waters around the neutra-
lized DNA�Na+ system; and (v) addition of bulk water
and ions (Na+ and Cl–). The resultant (over-sized) rectan-
gular cell was trimmed to yield the final mecon. The final
61 439-atom system consisted of the kB DNA duplex
accompanied by (i) 20 030 molecules of TIP3P water (22);
(ii) 38 Na+ counterions; and (iii) an additional 20 Na+ and
20 Cl– ions, providing a final [NaCl] �50mM [chosen so
as to mimic the conditions of DNA-binding experiments
with this and related kB elements (23)]. As a final prepara-
tory step, the DNA was allowed to adapt to the aqueous
ionic environment (and, likewise, the solvent structure to
relax around the DNA and remove unfavorable contacts)
by a multi-stage protocol involving incremental relaxation
of harmonic restraints on DNA atoms over a total of
10 000 cycles of potential energy minimization.

Standard methods were used to compute MD trajec-
tories [see e.g. (24)]. Initial equilibration stages of heating
and restrained dynamics (Figure S2 and the submatrix
in Figure 2a) were followed by 1020 ns of unrestrained,
production-level dynamics. Simulations were performed
in the isobaric-isothermal ensemble (constant NPT). Pres-
sure and temperature were maintained at 1 atm and 300K,
with temperature controlled via Langevin dynamics for
all non-hydrogen atoms, and pressure regulated via a
hybrid Nosé–Hoover Langevin piston (25). Long-range
electrostatics were treated by the smooth particle mesh
Ewald algorithm (26), with a grid density better than
1/Å in every direction. Non-bonded short-range interac-
tions were calculated within a spherical cutoff of 10.0 Å
(a smooth switching function was applied from 9!10 Å).
The SHAKE algorithm (27) was used to constrain bonds
between hydrogens and parent heavy atoms, enabling a
2.0 fs integration time step without compromising either
bulk thermodynamic quantities (Figure S2) or structural
stability of the trajectory (Figure S3). Further compu-
tational efficiency was afforded using a well-established
multiple time-stepping scheme (28). Simulations were
computed in 1.0-ns bins, with trajectory coordinates
written every 1.0 ps. The trajectory was extended to the
microsecond timescale via scripts for automatically linking
time slices i ! i+1, enabling indefinite propagation of
the simulation in a semi-autonomous manner on a host of
available Linux clusters. Trajectories were computed using
NAMD (29) and the parm94 force field. Of the many
force fields commonly used in biomolecular simulations,

the parm94 version of the standard Amber force field was
chosen for the sake of consistency and comparability with
the wealth of existing DNA simulations that used this
particular parameter set. Issues of force field selection
and usage present a ‘moving target’, due to continuous
developments in this field, and it may be argued that
extensive conformational sampling (such as is achieved
on the microsecond timescale) overcomes potential arti-
facts that may arise in shorter simulations—i.e. sampling
and artifact are somewhat orthogonal and counterba-
lanced effects, and what may appear as ‘artifact’ at short
(ns) times is effectively ‘washed-out’ in the limit of longer
(ms) timescales. Further details pertaining to force field
selection, analysis steps, and issues specific to a simulation
of this length are provided in the Supplementary material.

RESULTS AND DISCUSSION

The results are presented in five main areas: microsecond-
scale trajectory stability, the cross-strand intercalative
stacking transition, a base flipping event, a ‘barbed’ ter-
minus, and trajectory validation in terms of microsecond-
scale sampling of DNA backbone substates. As with any
simulation-based work, our computational findings could
be viewed as more suggestive than conclusive, and can
be considered as a way to generate atomically detailed
hypotheses about the dynamical mechanism underlying a
complex biomolecular transition (in this case, XSIS and
flipping). Thus, explicit connections to experiment are
drawn in two distinct ways (primarily towards the end
of each subsection): (i) Existing data which bear upon
particular results are interleaved into the discussions of
those results, as are (ii) Specific proposals for experiments
that might be suitable in testing our predictions.

Trajectory stability and conformational variability
on the microsecond timescale

Simulations of the kB DNA element (Figure 1, S1) were
extended past one ms. This lengthy timescale was achieved
using an optimized code exhibiting particularly efficient
parallel scaling [NAMD; ref. (29)], in conjunction with
optimal hardware/network architectures and scripts
designed to propagate simulations in a minimally super-
vised and essentially uninterruptible manner. Trajectories
were thereby calculated over extensive periods of wall
clock time (nearly 1 year), yielding roughly one terabyte
of DNA simulation data for this >60 000-atom system.
Persistence of the structural integrity of the 20-bp duplex
on the microsecond timescale is notable (Figure S3),
as MD simulations are typically performed for DNA
fragments shorter than the two helical turns reported
here (e.g. dodecamers), and are generally limited to
shorter durations (e.g. <20–30 ns); exceptions are recent
studies of counterion-binding in a 60-ns simulation by
Beveridge and co-workers (12), two 50-ns trajectories of
a different dodecamer by Várnai and Zakrzewska (30),
and the recent microsecond-scale Dickerson dodecamer
trajectories used in force field parameterization studies
(31). In terms of simulation reliability and ion-related
force field artifacts, it should be noted that the recently
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studied problem of KCl aggregation as a result of possibly
imbalanced Lennard–Jones parameters (32) was not found
to be an issue in the simulations reported here; this is
not an unexpected result, given the comparatively low
(�50mM) NaCl concentration in this kB DNA system.
The many approximations and assumptions which

underlie empirical force fields for biomolecular simula-
tions—simplified potential energy functional forms, para-
meterizations against short simulations, neglect of atomic
polarizability, etc.—motivated careful monitoring of this
unusually long kB simulation, in terms of both thermo-
dynamic properties (Figure S2) and structural parameters
such as coordinate root-mean-square deviations (RMSD;
Figure S3). Successful equilibration and stabilization
is evident over both short (ns) and long (ms) times.
Although RMSD is a less than ideal metric of DNA struc-
tural similarity, comparisons of each trajectory snapshot
to canonical A- and B-form DNA suggest the presence of
relatively long-lived (>5-ns) states that are closer in struc-
ture to A- than B-DNA (Figure S3f, RMSDB>RMSDA

grey-shaded areas at �0.7 ms). An RMSD measure mod-
ified by a multiplicative term linearly scaled by the dis-
tance of an atom to the center of the DNA (Figure S3)
confirms the expected result that the duplex termini are

the most dynamical regions (i.e. account for the bulk of
the RMSD).

Fine-grained differences between DNA conformations
over various time spans of the trajectory were assessed by
pairwise RMSD matrices, computed over periods ranging
from ns ! ms. As shown in Figure 2 and S4, short-time

Figure 1. Overview of the kB DNA element and simulation system.
The microsecond-scale dynamics of the kB DNA element shown in
this sequence schematic (a) were explored, the MD simulation system
consisting of the 20-bp duplex immersed in a bath of explicit water and
50mM NaCl (b; dark blue line indicates perimeter of cut-away frontal
slice). This particular kB DNA sequence is bound by the (c-Rel)2
NF-kB homodimer, and is essentially a composite recognition element
consisting of AGAA and TTCC kB ‘half sites’. Much of the interesting
structural and dynamical behavior of this A/T-rich duplex (A-rich
regions are accentuated in red) arose within the nonameric kB element
(grey background in a, CPK spheres in b), including the cross-strand
intercalative stacking (XSIS) and base flipping events.

Figure 2. Conformational plasticity of the kB DNA duplex on the ns
and ms timescales, as assessed by pairwise RMSD matrices. Matrices
of pairwise coordinate RMSDs are shown for the first 10 ns of the
trajectory (a) and over the course of the entire microsecond-long
production run (b). The first and last timesteps are indicated (e.g. in
b, t1 is the structure after exactly 1.0 ns of equilibration), as are trajec-
tory sampling frequencies (dt) and the min/max RMSD values used for
linearly scaled coloring of matrix elements (color bars at right).
Features of the heating and equilibration strategy are evident in the
10 ns matrix, including the imposition of restraints over the first �400
ps (dark region in a), as well as subsequent drift towards a stable,
equilibrated structure (intense yellow stripe); the submatrix correspond-
ing to this initial 1-ns equilibration period is delimited by green lines.
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(ns-scale) matrices capture those features of the trajectory
which may be expected, such as the restrained dynamics
phase of the equilibration period (first ns) corresponding
to very low RMSD values and differing significantly from
the remainder of the trajectory (Figure 2a). The long-time
(ms-scale) matrix represents >1012 pairwise comparisons
(Figure 2b); significant off-diagonal basins of increased
structural similarity/dissimilarity in this matrix illustrate
that the notion of an average DNA structure is not an
accurate representation of the true ensemble of thermally
accessible conformational states in the microsecond-scale
dynamics of DNA. [A similar point has been made by
Beveridge et al. (33).] Patterns of intense variability in
the microsecond matrix (e.g. the striping at long times in
Figure 2b) show that much of the structural variability
arises only beyond �0.6–0.7 ms. These patterns also
served as initial hallmarks of the large-scale structural tran-
sitions which were subsequently identified as a base flip-
ping event (Figure 2b, orange arrow) and a cross-strand
intercalative stacking transition (Figure 2b, yellow arrow).

Cross-strand intercalative stacking (XSIS)

An intriguing example of DNA structural plasticity and
conformational polymorphism that emerged only at long
times involves disruption of a Watson–Crick base pair via
cross-strand intercalative stacking (‘XSIS’) of the bases in
the previously intact pair. This atypical XSIS state devel-
ops into a stable, persistent form between�0.7 and 0.75 ms,
and occurs at the (A�T)12 bp in an A/T-rich region near
the center of the kB recognition element (Figure 1a).
The aforementioned patterns of variability in pairwise
RMSDs (Figure 2, S4) suggested the large-scale structural
perturbations accompanying the XSIS transition. Visual
analysis of the trajectory (Supplementary Movie A),

as well as calculation of bundles of kB DNA conformers
and corresponding averaged structures over discrete time
windows (Figure 3), revealed the cross-strand base stack-
ing that characterizes the XSIS state. This transition
involves essentially complete abrogation of the (A�T)12
pair, such that the constituent bases (Ade1,12 and Thy2,9)
longitudinally shear apart and assume a nearly coaxial
rather than coplanar arrangement—i.e., they become
stacked upon one another (Figure 4c–e), with the A1,12

staggered towards the 50 direction and the cross-strand
partner T2,9 translated towards the 30 direction (with
respect to the 50!30 path of the parent strand along the
global helical axis). Though fundamentally different from
the longitudinal breathing mechanism proposed by Harvey
over 20 years ago for B $ Z DNA conversion (34), the
XSIS transition is similar in spirit, insofar as stretching of
the local backbone along the helical axis creates free space
to accommodate an additional object (the new ‘object’
being a longitudinally sheared base in XSIS, versus a pro-
pagating cavity which accommodates intact base pairs as
they flip their a/b ring faces in the Harvey model). There is
also a degree of structural similarity between XSIS and the
pattern of inter-strand interactions arising during simula-
tions of duplexes subject to an applied tension, leading to a
stretched ‘S’-form DNA (35); however, any relationship
between S-DNA and XSIS is unclear (i.e. the similarity
may be a purely geometric result arising upon lengthening
of any double helical arrangement of planar, interacting
groups).
The XSIS transition can be monitored by both geo-

metric and physicochemical parameters. Among the stan-
dard rigid-body parameters describing local bp and bp
step geometry, the intra-bp Stagger (Sz) is particularly
suitable for capturing the XSIS process (Figure 4a, S6).
Likewise, the cross-strand mutual base overlap area

Figure 3. DNA polymorphism: A ‘barbed’ terminus, cross-strand intercalative stacking (‘XSIS’) and spontaneous base flipping. The XSIS, base
flipping, and barbed terminus transitions are illustrated in these bundles of kB DNA conformers, superimposed to a common reference structure over
time spans ranging from the initial 1-ns equilibration period (a) and ensuing 100 ns of dynamics (b) to the final 320 ns of the 1021-ns trajectory (c!f).
Snapshots of the DNA backbone within each bundle are indicated as thin lines (equally spaced in time), and progress within each time series is
indicated by grading of backbone colors from red (first) ! grey ! blue (last). Locally averaged structures were computed (stick representation for
non-hydrogen atoms and tan-colored backbone), as were the mean global helical axes (green spline); for clarity, base and deoxyribose rings are
colored red (strand-1) and blue (strand-2), and bases of the 9-bp kB element are rendered as spheres. Regions of greatest structural perturbation are
also illustrated as space-filling spheres: (i) the cytosine of the ‘barbed’ (G�C)1 terminus (lavender); (ii) the sheared (A�T)12 which is the focal point of
the XSIS transition (yellow); and (iii) the neighboring (A�T)13 thymine, which is extruded from the helical stack in the base flipping event (orange).
Note that the persistence of the perturbed positions of the barbed (C2,20), flipped (T2,8), and staggered XSIS [(A�T)12] bases at these sites—even in
structures averaged over 100-ns blocks of time—indicates that these are stable, long-lived conformational states rather than transient, metastable
intermediates in the DNA dynamics.
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described in Figure 5 [and ref. (36)] measures the degree of
inter-strand stacking of the bases participating in XSIS,
and can be seen to be a highly sensitive gauge of XSIS-like
transitions (including the possibility of discerning asym-
metric behavior of the two 50- and 30-shearing bases).
Disruption of the local helical stack due to XSIS is accom-
panied by compensating (inversely correlated) changes
in the bp and bp step parameters of neighboring nucleo-
tides (Figure 4a, S6). Although the perturbative effect of
this transition does not propagate very far along either
direction of the duplex in terms of these geometric

parameters (Figure S6), the timing of the XSIS transition
nearly coincides with formation of a barbed terminus
(described later), suggesting some degree of dynamical
coupling between sites >10 bp apart in sequence
(Figure 1a). As may be expected from the geometry of
the double helix, local groove width is one of the strong-
est structural correlates of XSIS (Figure 4b): The transi-
tion coincides with perturbation of the proximal minor
groove, wherein an initially widened groove over the
�0.6!0.74-ms time span (relative to the �5.8 Å width
in canonical B-form DNA and the even narrower width

Figure 4. Time-evolution and structural correlates of the XSIS transition. Time series of the base pair Stagger parameter (a) and minor groove
widths (b) capture the structural changes accompanying XSIS. The Stagger (Sz) quantifies axial displacement of complementary bases with respect to
the local bp reference frame, and therefore serves as an ideal descriptor of the XSIS transition; correlations between the XSIS bp [(A�T)12; yellow]
and the 50 neighboring pair [(A�T)11; red] are evident in these Sz time series (a). Similarly, correlated disruptions of local groove geometry are evident
in the trajectory of minor groove widths for bp steps near the XSIS site (b). Structures of the kB DNA at various timepoints beyond �750 ns
illustrate (c) the onset of XSIS, (e) a fully developed XSIS state, and (f) a (relatively infrequent) state exhibiting an extreme degree of XSIS and
corresponding to a highly bent helical geometry. Local Na+ counterion populations are shown as semi-transparent density isosurfaces (d), averaged
over either 1-ns (light green) or 10-ns (dark green) windows; the view into the major groove in the left half of (d) is identical to that in (c), with CPK
spheres omitted for clarity. Conventions used in this and subsequent time series plots include: data are plotted in scatter form for only the latter half
of the trajectory (sampled every 5 ps) and only within �1 nt of the sites of XSIS (yellow) and flipping (green); locally averaged values (5-ns window)
are drawn as solid lines; coloring and numbering conventions are provided in a topmost sequence schematic (bp steps are indicated by semicircular
arcs); A/T-rich regions are accentuated by red coloring; and the kB element is demarcated in grey.
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characteristic of A-tracts) rapidly constricts in the
50 direction. These structural features spur great interest
in the possible roles of condensed counterions in triggering
and/or modulating XSIS-like transitions.

An initial assessment of potential coupling between the
counterion atmosphere and structural transitions such as
XSIS was made by calculating number densities of Na+

ions within 15 Å of the kB DNA over the course of the
trajectory, with populations being averaged over 1-, 10-
and 100-ns windows centered on the ‘early’ (Figure 4c),
‘middle’ (Figure 4e) and ‘extreme’ (Figure 4f) states of
XSIS. These results (Figured 4d and unpublished data)
are consistent with known structural trends—e.g. prefer-
ential localization of Na+ density near more strongly elec-
tronegative regions of nucleoside bases (Ade N6/7, Thy
O2, etc.). Consistent with many X-ray, NMR and MD
studies indicating cation-dependent minor groove narrow-
ing (9,11,12), the severely constricted minor groove near
the XSIS site (Figure 4c and e) exhibits the highest ampli-
tude peak in the 10-ns window-averaged Na+ density map
(Figure 4d, right panel). Nevertheless, the detailed linkage

between groove-localized Na+ ions and structural tran-
sitions such as XSIS remains unclear; given the lengthy
timescales over which the XSIS and flipping events
evolve (>100 ns from initial onset to final resolution), it
is likely that the local ionic environment (relaxing on the
ns timescale for monovalent cations) ‘responds’ to (rather
than drives) the large-scale structural transitions of XSIS
and flipping.
The XSIS transition and its potential role in kB

DNA dynamics is a novel finding attributable to the
microsecond-scale sampling of our trajectory, and it
should be emphasized that this simulation-based result is
more predictive than conclusive. Solution NMR studies of
other kB DNA elements have been pioneered by
Hartmann and colleagues (37); however, to our knowl-
edge, MD simulations of a kB DNA have not been per-
formed. Therefore, prior knowledge of what may be
anticipated in the microsecond-scale behavior of this kB
DNA is limited, and no a priori assumptions were imposed
with regards to the computed behavior of this DNA frag-
ment. Simulation caveats notwithstanding, it should be
noted that numerous experimental data from both NMR
and crystallography support or are consistent with
an XSIS-like transition. Observations of severe groove-
bending immediately preceding XSIS (e.g. Figure 4f) are
consistent with NMR data showing a pronounced (�208)
bend towards the major groove in a related kB DNA (37).
Also, several lines of crystallographic evidence are consis-
tent with the XSIS phenomenon. Early studies of poly(A)
and (CA)n tracts by Klug, Moras and others (38,39) have
revealed a ‘zipper’ pattern of bifurcated hydrogen bonds
along the axial stack. These favorable i1���j2 and j1���i2
hydrogen bond interactions (in the notation of Figure 5)
recapitulate the edge/edge interactions which occur
between bases in both the initial and final stages of
XSIS: initial, as aromatic base planes begin shearing to
the ‘early’ state illustrated in Figure 4d; and final, as the
XSIS thymine (T2,9) begins hydrogen bonding to the
‘wrong’ cross-strand adenine (A1,13) and eventually resol-
ving the XSIS state by leading to flipping of its T2,8 neigh-
bor. Independent structural work on G�A mismatches
found a similar pattern of (i/j)1���(j/i)2 cross-strand bifur-
cated hydrogen bonds (40), suggesting such cross-strand
interactions as a fundamental feature of DNA deformabil-
ity. Perhaps most relevantly, Reid and coworkers have
amassed a large body of NMR results showing that flank-
ing G�A mismatches [such as occur in human centromeric
(GGA)2 segments] can induce the shearing of intervening
bases into a ‘GA-bracketed G-stack’ similar to the XSIS
state reported here [see e.g. (41,42)]. These experimental
data concur with our prediction of a microsecond-scale
XSIS-like transition at the junction of kB half sites.

Base flipping at the junction of iB half sites

The most intriguing and unanticipated result to emerge
in the long-time dynamics of kB DNA is a spontaneous
base flipping event. Because of its high activation barrier,
such a transition is considered a ‘rare event’, thought to
occur only infrequently in the equilibrium dynamics of
a DNA duplex at room temperature [reviewed in (43)].

Figure 5. Cross-strand base overlap areas as a gauge of XSIS. The
geometric area of overlap between the planes of nearest-neighbor
bases provides a measure of the extent of stacking (e.g. aromatic �–�
interactions). Of the four distinct intra- and inter-strand combinations
for a base-paired dinucleotide step (i1/i2, j1/j2, i1/j2, j1/i2; see schematic
inset), the diagonal terms serve as a particularly sensitive gauge of the
degree of cross-strand stacking (i.e. XSIS). The i1/j2 (a) and j1/i2 (b)
values are nearly zero for a canonical (non-XSIS) step distal to the
XSIS site [(GT/AC)3; grey traces], affording an internal control over
the latter 0.5 ms of the trajectory. Raw values of the overlap area are
shown as points (color-coded as in the legend), with 5-ns window-aver-
aged values drawn as solid lines and local maxima (within a 5-ns
neighborhood) indicated as step patterns. Note that both cross-strand
terms capture the development of XSIS as an abrupt rise at �700 ns,
with the reciprocity broken by a greater sensitivity of the i1/j2 term (b)
to structural perturbations in the 600–700 ns range preceding XSIS.
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Indeed, flipping of a thymine base at the junction of kB half
sites (Figure 1a) arose only near the end of the microse-
cond-long kB trajectory (Figures 2b, 3e and f), at �950 ns
as measured by several geometric criteria (Figure 6, S6; see
later). It is interesting that flipping occurred at (A�T)13,
immediately adjacent to the disrupted (A�T)12 XSIS site.
The thymine base that is the focal point of this transition
(T2,8) can be seen to twist entirely out of the double helical
stack via the major groove (Supplementary Movie B),
thereby eliminating the (A�T)13 Watson–Crick bp and
yielding an apyrimidinic lesion (Figure 3e, f and 6b).
Concomitant closure of the newly formed lesion by pairing
of the 30 neighboring thymine (T2,9; of the XSIS pair) to
the orphan adenine (A1,13) suggests the model of XSIS-
facilitated flipping presented later.
The flipping transition can be monitored by the time-

evolution of (i) local bp and bp step parameters; (ii) cor-
related changes in local helical geometry (e.g. minor
groove structure); and (iii) physicochemical quantities
such as base overlap areas and the solvent-accessible sur-
face area of the flipping base. Of the standard parameters
used to describe bp and bp step geometry (13), the
Opening (�) angle is a useful descriptor of the flipping
transition (Figure 6a). [Note that � is not the same as
the angular parameters developed as reaction coordinates
in landmark studies of forced flipping by the groups of
Lavery [an inclination-independent construction account-
ing for local helical geometry; see (44)] and MacKerell
[a center-of-mass pseudodihedral; see (45)]. The distance
between complementary bases is also a useful descriptor of
the flipping transition (dCOG, Figure 6b), with the advan-
tage that it is independent of the relative angular orienta-
tion between base-centered reference frames. As is the case
with XSIS, significant redundancy and correlation exists
within two distinct types of data: (i) The time-evolution of
the various other rigid-body bp and bp step parameters
are naturally coupled to � and also serve (to varying
degrees) as reporters of the flipping event; for example,
the translational Slide (Dy) and angular Tilt (�) of a bp
step are rather sensitive to flipping, whereas the Roll (r)

is less so (Figure S6). (ii) Time series of a given parameter
across the different base pairs and base pair steps near
the XSIS (A�T)12 and flipping (A�T)13 sites are correlated
[see, for instance, the flanking (A�T)11 bp lying 50 to the
XSIS site; Figure 4–6, S6]. In terms of local helical geo-
metry, an intriguing negative correlation exists between
the dynamics of the minor groove widths at bp steps
bracketing the XSIS and flipping sites—(AA/TT)11 and
(AA/TT)12 on the 50 side and (TT/AA)14 on the 30 side
(with respect to strand-1; Figure S1). The somewhat nar-
rowed minor groove on the 30 side of the flipped T2,8

(suggesting the B0 form of DNA) significantly widens
(Figure 4b, blue trace), whereas the significantly widened
minor groove on the 50 side of the flipping/XSIS site dras-
tically narrows (Figure 4b, yellow and red). The crossover
point between these minor groove transitions (Figure 4b,
�750 ns) marks the onset of XSIS; the subsequent flipping
event is evidenced by a further (smaller-scale) perturbation
in the 30 groove widths (Figure 4b, blue and green traces
at �950 ns).

Comparison of the microsecond-scale kB DNA flipping
event to the vast literature on both experimental (15) and
computational (43) studies of base flipping is hampered by
the single observation of this transition, as well as the fact
that, to our knowledge, this is the first suggestion for
a possible role for base flipping in kB DNA dynamics
(i.e. kB flipping data do not exist). Much of the existing
flipping work focuses upon protein-facilitated (‘activated’)
flipping, rather than the spontaneous (‘passive’) flipping
reported here (15). However, numerous experiments have
established that spontaneous DNA and RNA base flipping
occurs, the methods ranging from chemical approaches
[such as trapping a transiently flipped base in a macrocyclic
host molecule (46)] to NMR-based measurements of imino
proton exchange (47,48). On a related note, Dickerson and
coworkers discovered a novel instance of intermolec-
ular intercalation in the crystal structure of a hybrid
DNA/RNA duplex (49), an implication being that such
‘base pair swapping’ occurs via spontaneous base flipping.
Most notably, very recent crystallographic work has

Figure 6. Correlated disruptions at the junction of kB half sites: resolution of XSIS via spontaneous base flipping. The spontaneous (A�T)13 base
flipping event at roughly 950 ns (�200 ns after the onset of XSIS) can be characterized by the standard base pair Opening (s) parameter (a), as well
as by the distance between the complementary bases in a given pair (b). The latter measure (dCOG) is taken as the distance between the centers of

geometry of the bases, and is calculated from the Shear, Stretch and Stagger as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2
x þ S2

y þ S2
z

q
. A sample structure of the flipped state is shown

(b; inset), with the distance between the extrahelical base (T2,8) and its cross-strand partner (A1,13) indicated as a dashed magenta-colored line. Other
diagrammatic and graphical conventions are as in Figures 3 and 4.
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revealed a base extruded from the stack of a related HIV-1
kB DNA element, corroborating our prediction that base
flipping may occur in kB DNA (50).

Discovery of kB DNA base flipping in the microsecond
regime is a fortuitous result, as NMR studies of other
DNA sequences find that this process occurs on a longer
timescale (ms), inaccessible to equilibriumMD simulation.
Nonetheless, that the base which flips is a thymine is con-
sistent with the relative pyrimidine versus purine energy
barrier, as well as with NMR exchange data revealing that
(i) the lifetime of an A�T bp is generally shorter than G�C
pairs (47) and (ii) spontaneous A�T opening is the basis
for recognition of extrahelical bases (Ura/Thy) in the
uracil glycosylase DNA repair system (51). (As discussed
later, the junction of half sites in kB elements is almost
always an A�T bp.) Also, with regards to characteristic
timescales for flipping—and the base pair opening or
‘breathing’ which necessarily precedes it—previous simu-
lation work has found spontaneous breathing on the ns
timescale for a difluorotoluene-substituted A�F pair (52).
Flipping of T2,8 via the major groove is consistent with
both experimental studies (53) and recent theoretical work
(45,54,55) on flipping pathways. Strong coupling between
base flipping and helical axis bending was found in early
theoretical work (56) as well as more recent computational
studies (55). Consistent with those findings and the afore-
mentioned NMR studies (37), the kB DNA exhibits sig-
nificant helical axis bending in a most extreme state of
XSIS preceding the base flipping event (Figure 4f).

Finally, we note that the kB flipping reported here is
not necessarily inconsistent with NMR-based findings of
generally slower A�T opening in A-tracts (47). As with
any computational or experimental approach, the NMR
exchange methodology rests upon various assumptions
and approximations. In particular, known limitations
and caveats of this technique include (i) assumptions of
two-state behavior (entirely open/closed bps); (ii) ambi-
guity of the actual physical process being detected (acces-
sibility of exchanged protons versus complete base
extrusion); (iii) the neglected structural and dynamical
influence of ions (such as the ammonia exchange catalyst
used in these studies) on local DNA structure (57); and
(iv) intrinsic detection limits (ms timescales being the
lower bound). Similar NMR studies have shown that
A�T opening strongly depends on sequence context, and
is also sensitive to oligonucleotide length (58). Most sig-
nificantly, the structural basis of greater A�T lifetimes in
A-tracts is assumed to stem from a presumably narrower
(and more rigid) minor groove in these tracts [(43) and
references therein]. However, the minor groove of the kB
element does not exhibit this behavior immediately prior
to the XSIS ! flipping cascade (Figures 4b and S6), and
therefore does not adhere to this assumption. It should be
reiterated that ultimate assessment of predicted kB base
flipping will require future experimental studies.

XSIS-facilitated flipping?

XSIS and base flipping appear to be intimately linked.
Coupling between XSIS at (A�T)12 and base flipping
at the 30 neighboring (A�T)13 is reflected in the

time-evolution of numerous structural parameters between
�750 ns (onset of XSIS) and 950 ns (onset of flipping). This
particular 200-ns period is immediately preceded by per-
turbation of local helical structure, as quantified by, e.g.
minor groove widths in the vicinity of these bp steps. We
suggest that cross-strand intercalative stacking may facil-
itate passive, spontaneous base flipping—i.e. flipping in the
absence of proteins that can actively extrude, bind and
stabilize flipped bases [e.g. DNA methyltransferases
(15,59) and glycosylase repair enzymes (60)]. Such a mech-
anismmay be especially true in the case of the particular A/
T-rich region at the center of the kB DNA (Figure 1),
as this segment is highly degenerate, of low-sequence com-
plexity, and is therefore amenable to ‘strand-slippage’
deformations (61,62). In this model, the central Ade (n)
in an ���AAnA��� tract undergoes a thermally induced,
transient breathing event (52,63), staggers into an XSIS-
like state (quantified by Sz), and then, in re-annealing to
the complementary strand by re-forming the A�T pair,
does so with a neighboring (n� 1) thymine instead of the
original cross-strand partner. Evidence for such a mechan-
ism is provided by static snapshots (Figures 4 and 6) and
averaged structures (Figures 3 and S4), and most clearly by
visual inspection of the process as it occurs (Supplementary
Movies A, B, D). Note that an A-rich region of the low-
complexity ���AAA��� form found at the junction of kB half
sites (rather than a different permutation across the
strands, such as ���ATAT���) is perhaps the ideal sequence
on which such a mechanism could act, as it would be more
amenable to such n! n� 1 slippage than other configura-
tions of base pairs.
Evaluation of our model for XSIS-facilitated flipping in

DNA (kB or otherwise) ultimately requires experimental
data. Specific studies using experimental and/or computa-
tional techniques can be envisaged as being particularly
well-suited for exploring the XSIS transition, the base flip-
ping event, and the key coupling between these events that
we posit as a mechanism for spontaneous base flipping in
A-rich tracts. Flipping in the long-time dynamics of this
kB DNA could be studied via the chemical (flipped base
trapping) and biophysical (proton exchange) methods
outlined earlier, as well as a recently developed selective,
non-covalent base flipping assay (64). Simulation-derived
dynamics of this kB element also could be tested in terms
of agreement (on the �50 ns timescale) with experiments
using the time-resolved Stokes shift spectroscopic method
that has been fruitfully applied to DNA by Berg and cow-
orkers (65). Perhaps most compelling, the XSIS transition
(and coupled flipping) could be explored by assaying the
charge transfer properties of DNA duplexes containing
this and related kB sequences. Conformationally gated
charge transfer through DNA has been established by
Barton and colleagues as a sensitive gauge of local DNA
structure [recently reviewed in (66)], and the sequence-
sensitivity of this phenomena has been demonstrated (67).
Surveying the anticipated disruptive effect of an XSIS-like
state (Figure 4e and f) uponDNA charge transfer efficiency
in multiple sequence contexts would serve as a test of the
predictive results from our simulation, and the data from
such studies would help support or refute a mechanistic
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model for spontaneous base flipping via XSIS-facilitated
base pair opening.

Aminor groove-bound ‘barbed’ structure

DNA oligonucleotide structures in which a terminal
nucleoside loops back upon its parent strand to form a
stable, well-defined, yet alternative (non-canonical) struc-
ture are uncommon: Formation of DNA secondary and
tertiary structure is a highly cooperative process wherein
complementary strands reproducibly ‘zip-up’ into the
same configuration of energetically stable Watson–Crick
base pairs (3). Thus, a kB DNA conformation in which a
30 terminal nucleotide ‘peels’ away from the helical stack
and forms favorable (hydrogen bonded) interactions with
the proximal minor groove of its parent strand was unex-
pected (Figures 3c–f, 7 and S7). It is intriguing that this
barbing occurs at the (G�C)1 rather than the (A=T)20
terminus of the non-palindromic kB DNA duplex
(Figure 7), given that solvent-exposed triply hydrogen-
bonded G�C pairs are more stable than A�T pairs. As a
positive control on the dynamical behavior of the kBDNA
trajectory with respect to the termini, the large-scale
pattern of fraying at the (A�T)20 terminus (Figure S7)
and the train of transient fraying events at (G�C)1
prior to barbing (Figure 7) are consistent with the ther-
mally induced terminal fraying previously observed in
nanosecond-scale MD simulations of nucleic acids (68).
Neglecting intermolecular terminus���groove contacts in
the lattices of some DNA crystals, the most structurally
similar examples to barbing of which we are aware are
the minor groove association of extra-helical cytosines
in the solution structure of a crosslinked DNA [(69);

the Cyt base is not near a terminus], and the ‘G1’ confor-
mation found in simulations of a DNA octamer containing
an adenine bulge [the bulged adenine occasionally makes
edge���minor groove contacts, (70)].

In addition to being structurally (Figure 7, inset) and
dynamically distinct from the known stochastic fraying of
DNA termini, the kB DNA barbed terminus emerges only
at very long times (appearing at �750 ns, it is likely to be
coupled to XSIS), and can stably persist for periods on the
order of 100 ns. The fact that the barbed state reproduci-
bly and independently arises over the course of the same
trajectory (multiple �7.5-Å plateaus in the blue trace of
Figure 7) bolsters its potential significance, although the
biological significance of this DNA conformation is inher-
ently limited by it being an ‘end effect’. Nonetheless,
a barbed-like structure may be relevant from other per-
spectives, including the design of minor groove-binding
agents (71), and in light of the numerous biochemical
assays that rely upon the use of oligonucleotides not
unlike the kB DNA element studied here. The barbed
kB terminus suggests that addition of even up to three
G�C pairs (Figure 1) to reinforce a presumably weak ter-
minus does not suffice to prevent such end-effects from
occurring on the microsecond timescale.

Validation of the trajectory and DNA backbone dynamics
on the microsecond timescale

The present work on kB DNA focuses on the unexpected
XSIS and base flipping events rather than a comprehen-
sive analysis of the microsecond-scale conformational
dynamics of the DNA backbone or technical aspects of
MD force field development. Nevertheless, methodolog-
ical studies of force field shortcomings and parameteriza-
tion are of immense concern and relevance in biomolecular
MD simulations, and are the subject of much active inves-
tigation [(72) and references therein]; our current simula-
tion provides additional data for such studies, as well as a
host of definite, testable predictions about a specific micro-
second-scale dynamical process that may be investigated
by both theoretical and experimental means. Compared
to NMR and crystallographic data, existing force fields
are known to yield discrepancies between trajectory-
averaged values of base pair and base pair step parameters
such as the Roll (r) and Twist [o; (73)]. In particular,
MD-derived values of Roll are generally moderate over-
estimates (rMD� 4–58, rNMR� 38, rx-ray� 08), while
simulations typically underestimate the average Twist
(oMD� 308, oNMR/X-ray� 348). The microsecond-scale
DNA trajectory reported here recapitulates these trends,
both within the XSIS/flipping region (Figure S6d) and at a
distal site that effectively serves as an internal control for
the behavior of these parameters (Figure S6g). On a larger
structural scale, two aspects of backbone dynamics iden-
tified as being particularly relevant based on nanosecond-
scale MD simulations are transitions between the BI/BII

substates (74) and possibly insufficient (and/or imbal-
anced) sampling of long-lived backbone states arising
from concerted (crankshaft) a/g rotations (30,72,75).
For instance, a concern in nanosecond-scale DNA simu-
lations is that the trajectory may improperly sample

Figure 7. A minor groove-bound ‘barbed’ terminus. A bp parameter
suitable for monitoring the minor groove-bound barbed terminus is the
translational Stretch (Sy) parameter plotted here (same diagrammatic
conventions as elsewhere). Sy values for a bp distal to the barbed transi-
tion ((T�A)4) are also plotted, as a representative example of a stable,
unperturbed Watson–Crick bp (i.e. an internal positive control). A repre-
sentative structure from the first occurrence of the barbing transition
(between 740!850-ns) is shown. Note that the barbed transition can be
detected as an initial shift in Sy away from the near-zero value of an ideal
Watson–Crick pair, and the structural and dynamical stability of this
state (versus, e.g. stochastic fraying events) can be inferred from persis-
tence of the new Sy value at a constant value over extended lengths of time
(the �7.5 Å plateau in the blue trace).
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(or even become indefinitely trapped in) non-canonical
regions of a/g conformational space, leading to force
field-dependent artifacts.
The a/g and BI/BII sampling properties of the trajectory

were examined, both to gain an initial understanding of
the backbone dynamics of this kB DNA on the microse-
cond timescale, and also to gauge possible artifactual sam-
pling due to force field imbalances (e.g. becoming trapped
at non-canonical a/g values for half of the trajectory).
Two distinct (but interrelated) facets of the a/g sampl-
ing issue involve (i) the relative frequencies of visiting
various a/g states (i.e. free energy differences), such as
the known a/g� g–/g+� (3008, 308) energy minimum;
and (ii) whether or not the backbone is able to intercon-
vert between distinct (and possibly long-lived) a/g states,
including the canonical g–/g+ ground state in addition to
g+/t and g–/t local minima (the latter being a ‘g’ flip away
from the global minimum). With regards to (i), it is reas-
suring that it is the g–/g+ ground state which is occupied
by the only nucleotide to not undergo a single a/g transi-
tion over the course of the entire microsecond (Figure 8a;
interestingly, this is the XSIS adenine). With regards to
(ii), the kB DNA trajectory shows extensive sampling of
discrete basins of the a/g conformational landscape on
the microsecond timescale, including reversible transitions
to/from the g–/g+ energy minimum (Figure 8b). Indeed,
the most densely populated region of this space is the
known g–/g+ ground state, followed by the two regions
(g–/t and g+/t) previously identified as local minima (75).
Similarly, the BI$BII sampling behavior of the microse-
cond-scale trajectory is consistent with existing principles.
An angular histogram of the BI/BII torsional parameter
(e – z) for a nucleotide adjacent to the XSIS position
reveals extensive sampling near the favorable BI state
that is found in canonical B-form DNA (e – z� –908),
in addition to a smaller component corresponding to the
slightly less favorable BII state (e – z> 08). The complete
body of a/g and BI/BII sampling data (i.e. for all 38 nt)
indicates that the kB DNA trajectory reasonably samples
these backbone substates, and does not exhibit artifact-
ual ‘trapping’ in anomalous, high-energy states. Several
features of kB DNA backbone dynamics are in agreement
with a recent microsecond-scale dodecamer simulation
(31), including the differential features of a/g and BI/BII

time series sampling for A�T and G�C bps (data not
shown).
The overall microsecond-scale structural integrity of the

DNA duplex, as well as any systematic biases towards a
particular helical morphology (ideal A-, B-, etc. forms)
due to force field-specific limitations, were assessed by
classifying the DNA conformation as either A, B or TA-
like at each timepoint. Such analysis of the microsecond-
scale trajectory in terms of the sampling of known DNA

Figure 8. DNA backbone dynamics on the microsecond timescale:
Extensive sampling of a/g and BI/BII conformational substates.
Values of backbone a/g torsion angles are shown as scatter plots for
the two indicated nucleotides, color-coded by progress along the

microsecond-scale trajectory (color bar). The backbone at A1,12 (a)
persists in the energetically favorable a/g� g–/g+ basin for the full
length of the trajectory, while multiple transitions between this ground
state and a higher-energy (but locally minimal) g+/t state can be seen to
occur at G1,19 (b). An angular histogram of BI/BII torsional parameter
values (c) at the A1,11 site (proximal to XSIS) shows preferential sampling
of the canonical BI state (e – z� –908); the bimodal distribution also
reveals a minute population of BII state (e – z> 08; green arrow).
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helical structures provides a form of simulation validation
that lies beyond the local level of nucleotides and base
pairs. The phosphate-based zP/zP(h) metric has been
shown to be a particularly effective discriminator between
the A, B and TA-like forms of DNA (76). Details of this
quantity as a classifier of DNA structure are provided in
Figures 9 and S8 (see the arrows denoting A-, B- and
TA-like regions). Note that the most significantly per-
turbed helical steps in the XSIS and flipping events
[(AA/TT)12 and (AT/AT)13] are also the ones which exhibit
multiple discrete clusters (green patches in Figure 9b,
purple in Figure S8a); nevertheless, the preponderance of
the trajectory is spent in the B-like regions of zP/zP(h) space
for each step of the kB duplex (data not shown). These
scatter plots demonstrate that the overall conformation
of the duplex—i.e., its structure at a slightly more global
level than that addressed by geometric quantities such as

local bp parameters and backbone torsion angles—is
well-maintained throughout the microsecond-long simula-
tion, even at highly dynamical sites that exhibit the most
significant structural variability (i.e. XSIS and flipping).

Also in connection with potential force field-induced
artifactual behavior, note that the starting DNA struc-
ture was somewhat ‘distorted’ in the region distal to the
kB site—i.e. it was not perfectly identical to canonical
B-form DNA (see e.g. Figure 3a). However, it was
found that the simulation effectively ‘regularized’ this
region of the DNA over a broad time span (�350–
600 ns), yielding a duplex structure more similar to cano-
nical B-form DNA than was the starting structure (see e.g.
the 1!100 ns bundle in Figure 3b and the depressed
plateau in the RMSD traces of Figure S3). This is a sig-
nificant observation, as it effectively serves as an internal
control of simulation quality and demonstrates that the
trajectory was neither driven directly into a B-form helix
by the force field, nor did it monotonically degrade into an
artifact-ridden state capable of producing transitions such
as XSIS and base flipping.

CONCLUSIONS AND IMPLICATIONS FOR
NF-iB���DNA RECOGNITION

The XSIS and base flipping events spur great interest in
potential links between these transitions and the exact
mechanism(s) of NF-kB���kB DNA recognition. What dic-
tates the specificity of NF-kB���DNA binding? A partial
answer comes from recognition of the modular nature of
NF-kB-bound kB elements: Crystal structures [e.g. (21)]
show that one NF-kB monomer typically forms most of
the contacts to one kB half site (e.g. the 50 AGAA in
Figure 1a), while the other subunit primarily contacts the
other half site. This implies a model of ‘cognate site recog-
nition’ (21), wherein the kB DNA specificity of a given
NF-kB dimer is a composite of individual half-site prefer-
ences. However, numerous exceptions to this model exist
(the consensus sequence is weak), and NF-kB is somewhat
atypical in its interactions with DNA: (i) DNA-contacting
side chains reside in the loops of NF-kB (rather than sec-
ondary structure elements); (ii) many DNA contacts are
mediated by water molecules [rather than direct side
chain���base interactions; see e.g. (77)]; and (iii) a large
fraction of DNA contacts are to the phosphodiester back-
bone (rather than the sequence-specific grooves). Together
with the biochemical and biophysical studies on which they
are based, these principles suggest that the mechanism by
which a particular NF-kB dimer recognizes and binds to a
specific kB site is one of exquisitely subtle indirect readout.

A mechanistic basis for this readout is implied by the
microsecond-scale conformational properties of the kB
DNA element studied here: The cognate site recognition
model should be broadened to account for the dynamical
behavior of target kB sites, including the possibility of
transient base flipping. The occurrence of XSIS-facilitated
flipping at the junction (N0) of kB half sites in the
A�4G�3A�2A�1N0T+1T+2C+3C+4 element is extremely
salient for several reasons. First, several features of
known kB sequences are consistent with the model

Figure 9. DNA backbone dynamics at the junction of kB half sites:
Equilibrium sampling of canonical A-, B- and TA-like helical morphol-
ogies. Values of the phosphate-based zP/zP(h) metric are shown for four
base pair steps (11!14, a!d) which overlap the XSIS/flipping locus
between kB half sites. As in Figure 8, data over the full microsecond
are plotted as temporally colored points. The maximal extent of sam-
pling is illustrated by the convex hull (orange line), and regions char-
acteristic of A, B and TA-like DNA (arrows in a) are demarcated by
dashed cyan lines.
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proposed above for XSIS-based flipping, including the
fact that the central positions (–2 ! +2) of naturally
occurring kB elements are generally A/T-rich, in organ-
isms ranging from insect (78) to human (79). Also, in vitro
selection experiments for sequences which optimally bind
to different NF-kBs recapitulate this trend, frequently
finding a consecutive run of A/T’s near the middle of
the optimal kB DNA sequence (80). Finally, systematic
surveys of kB sequence preferences via both array-based
experiments and informatics analyses have revealed simi-
lar patterns of kB elements with A-rich centers; most intri-
guingly, these analyses also found strong coupling
between base pair positions 0 and +1 (i.e. where the flip-
ping occurs in our simulation).

Detailed conformational and dynamical properties of kB
DNA sequences likely modulate the binding of NF-kB
dimers to various kB sites, as noted in crystallographic
studies of an unbound class II kB DNA (81). A similar
perspective on the important role of dynamics originates
in NMR studies of HIV kB DNA (37). More generally,
sequence-specific DNA curvature and flexibility have
been suggested as essential in modulating affinity and
specificity in other transcription factor systems, including,
for example, the specific recognition profiles of TATA box-
binding proteins for potential high-affinity DNA sites (82).
Expanding upon this idea, a primary and experimentally
testable prediction of our microsecond-scale MD studies is
that base flipping may occur in kB DNA systems, with a
transiently extruded thymine playing a key role in indirect
readout of a dynamical kB recognition motif. Exploration
of this possibility will likely deepen our understanding of
the malleability of the DNA double helix, as well as the
significance of such flexibility in mediating protein���DNA
recognition in the NF-kB gene regulatory network.

SUPPLEMENTARY DATA

Supplementary Data are available on NAR Online.
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