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ABSTRACT
Above-ground biomass (AGB) is an important indicator for effectively assessing
crop growth and yield and, in addition, is an important ecological indicator for
assessing the efficiency with which crops use light and store carbon in
ecosystems. However, most existing methods using optical remote sensing to
estimate AGB cannot observe structures below the maize canopy, which may lead
to poor estimation accuracy. This paper proposes to use the stem-leaf
separation strategy integrated with unmanned aerial vehicle LiDAR and
multispectral image data to estimate the AGB in maize. First, the correlation matrix
was used to screen optimal the LiDAR structural parameters (LSPs) and the
spectral vegetation indices (SVIs). According to the screened indicators, the SVIs
and the LSPs were subjected to multivariable linear regression (MLR) with the
above-ground leaf biomass (AGLB) and above-ground stem biomass (AGSB),
respectively. At the same time, all SVIs derived frommultispectral data and all LSPs
derived from LiDAR data were subjected to partial least squares regression
(PLSR) with the AGLB and AGSB, respectively. Finally, the AGB was computed by
adding the AGLB and the AGSB, and each was estimated by using the MLR and
the PLSR methods, respectively. The results indicate a strong correlation between
the estimated and field-observed AGB using the MLR method (R2 = 0.82, RMSE =
79.80 g/m2, NRMSE = 11.12%) and the PLSR method (R2 = 0.86, RMSE =
72.28 g/m2, NRMSE = 10.07%). The results indicate that PLSR more accurately
estimates AGB than MLR, with R2 increasing by 0.04, root mean square error
(RMSE) decreasing by 7.52 g/m2, and normalized root mean square error (NRMSE)
decreasing by 1.05%. In addition, the AGB is more accurately estimated by
combining LiDAR with multispectral data than LiDAR and multispectral data
alone, with R2 increasing by 0.13 and 0.30, respectively, RMSE decreasing by
22.89 and 54.92 g/m2, respectively, and NRMSE decreasing by 4.46% and
7.65%, respectively. This study improves the prediction accuracy of AGB and
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provides a new guideline for monitoring based on the fusion of multispectral and
LiDAR data.

Subjects Agricultural Science, Statistics
Keywords Maize, Multispectral image, LiDAR, Above-ground biomass, Unmanned aerial vehicle

INTRODUCTION
Maize is one of the main food crops today and is planted on a large scale worldwide.
The timely and effective access to high-resolution spatial crop-development information
provides important guidance for precision agricultural management, which allows the
implementation of effective fertilization programs (Cilia et al., 2014; Gracia-Romero et al.,
2017; Samborski, Tremblay & Fallon, 2009), irrigation measures (Barker et al., 2018;
Ma et al., 2018; Maresma, Lloveras & Martinez-Casasnovas, 2018), and early production
forecasts (Elazab et al., 2016; Kitchen et al., 2003; Vergara-Diaz et al., 2016). Crop
above-ground biomass (AGB) is an important indicator for effectively assessing crop
growth and yield, and also an important ecological indicator for assessing the efficiency
of which crops use light and store carbon in ecosystems.

Accurate monitoring of crop AGB is an effective means to assess farmland productivity.
Laboratory destructive methods to estimate biomass mainly involve inefficient and
time-consuming manual sampling measurements, which is difficult to scale up for
application to large areas. How to rapidly and accurately estimate the AGB of crops has
always been a hot topic (Li et al., 2015b; Wang et al., 2017; Zolkos, Goetz & Dubayah,
2013). With its ability to acquire regional- and global-scale information, remote sensing
technology has become an effective tool for estimating the AGB of crops over large regions.
With the rapid development of remote sensing technology in recent years, multi-
source remote sensing data acquired by unmanned aerial vehicle (UAV) fitted with
spectral and LiDAR sensors have become widely applied. Unmanned aerial vehicles have
been key to solve different problems in agriculture, which require high-precision crop
data, such as crop pest detection (Albetis et al., 2017), crop yield estimation (Zhou et al.,
2017), and crop variable measurement (Bendig et al., 2015). This approach allows
high-efficiency and dynamic remote sensing monitoring of large areas in a convenient and
nondestructive manner and with high throughput. Remote sensing from UAVs has thus
become an important part of precision agriculture (Liebisch et al., 2015; Marshall &
Thenkabail, 2015; Yang et al., 2017).

In spectroscopy, spectral sensors have been frequently cited as a rapid, nondestructive,
and cost-effective tool for estimating agronomic parameters of different crops. With the
rapid development of the UAV platform in recent years, the observation scale and
timeliness of the spectrometer have rapidly improved (Yang, Yang & Mo, 2018a). Spectral
measurements can be used to obtain appropriate spectral indicators from the visible and
near-infrared spectral regions to estimate factors that describe crop-canopy growth
such as biomass (Liu et al., 2010), leaf area index (Potgieter et al., 2017), and nitrogen
content (Fitzgerald, Rodriguez & O’Leary, 2010). To evaluate the optimal method to
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estimate crop biomass, many scholars have improved the accuracy of crop-biomass
estimates by screening the optimal band or by combining the visible and near-infrared
spectral bands (Bendig et al., 2015; Fu et al., 2014; Gnyp et al., 2014; Kross et al., 2015).
Other studies have focused on combining crop-growth models with remote sensing data,
and assimilating remote sensing data with uncertain input parameters of the crop-growth
model, thereby improving the accuracy of crop-biomass predictions (Jin et al., 2016;
Machwitz et al., 2014). As the spectral resolution of UAV multispectral cameras continues
to improve and because the prices are reasonable, this platform has been widely used in
vegetation phenotypic monitoring. However, the information obtained by the passive
optical sensors mainly comes from the top of the vegetation, so very little information
about the vertical structure of the vegetation can be obtained, which reduces the accuracy
of the crop-biomass estimate (Wang et al., 2017).

LiDAR is a stable active remote sensing technology with strong penetration. It works
with UAV platforms and provides accurate three-dimensional structural information of
the vegetation canopy (Wallace, Lucieer & Watson, 2014). It provides rapid and
nondestructive estimates of structural information, such as height, volume, leaf area index,
and leaf area density of vegetation, which can resolve the problem of spectral saturation
that occurs in optical remote sensing (Cao et al., 2018; Du et al., 2016; Luo et al., 2018;
Tagarakis et al., 2018). Unlike manned aircraft, UAVs are being increasingly used to
provide detailed, high-resolution imagery and associated digital elevation models (DEMs)
for surface processes and geomorphological research (James & Robson, 2014). LiDAR
has been widely used in many scenarios, especially for monitoring forest biomass
(Dubayah et al., 2010; Gonzalez de Tanago et al., 2018; Knapp, Fischer & Huth, 2018;
Li et al., 2014, 2017; Nelson et al., 2017; Silva et al., 2017; Stovall et al., 2017). However,
LiDAR applications for crop biomass are fewer, and the penetration depth of LiDAR is
limited because of the higher density of the crop canopy. A high-density LiDAR point
cloud is a necessary condition for detecting crop-canopy density and increasing canopy
penetration and can be used to directly quantify crop-structure parameters (Christiansen
et al., 2018; Eitel et al., 2014; Li et al., 2015a).

In recent years, numerous studies have estimated vegetation biomass by using a
combination that includes the three-dimensional structural information of the vegetation
and the canopy spectral information (Clark et al., 2011; Laurin et al., 2014; Swatantran et al.,
2011). This approach mainly involves (i) merging the LiDAR structural parameters (LSPs)
extracted from airborne LiDAR data with the spectral vegetation indices (SVIs) extracted
from satellite remote sensing images (Li et al., 2015b), (ii) merging the LSPs derived from
airborne LiDAR data with the SVIs derived from hyperspectral imagery (Luo et al., 2017;
Wang et al., 2017), (iii) merging the LSPs derived from ground-based LiDAR and the SVIs
derived from hyperspectral data (Tilly, Aasen & Bareth, 2015), and (iv) merging the LSPs
extracted from vehicle-based LiDAR data with the SVIs extracted from data acquired by
active optical sensors (Schaefer & Lamb, 2016). However, previous studies have basically
fused LSPs with spectral parameters at the data level to estimate vegetation biomass, and
most of the research focuses on forestry. In contrast, few studies have focused on agriculture,
and none have estimated the AGB of maize by separating the stem and leaf biomass.
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This paper proposes a method to estimate the AGB of maize based on estimates of
above-ground leaf biomass (AGLB) and above-ground stem biomass (AGSB) from
multispectral data and LiDAR point cloud data, respectively, with both acquired from a
UAV platform. By comparing the results of the two types of indicators with those of
the AGB estimation model, we evaluate the value of integrating LiDAR data with
multispectral data to estimate AGB. This study provides a good guideline for maize-field
management based on using multispectral data to estimate leaf biomass and LiDAR
point cloud data to estimate stem biomass. The main objectives of this study were: (1) to
estimate the maize AGB based on a stem-leaf separation strategy integrated with LiDAR
and optical remote sensing data; and (2) to compare the multivariable linear regression
(MLR) and partial least squares regression (PLSR) models to determine which is most
effective for estimating maize AGB.

MATERIALS AND METHODS
Study area
The study area was at the Xiaotangshan National Precision Agriculture Research and
Demonstration Base of Beijing Academy of Agriculture and Forestry Sciences, Changping
District, Beijing, China (40�00′–40�21′N, 116�34′–117�00′E). The site has an average
altitude of 36 m, its total area is about 1.08 km2, it has an average rainfall of 600 mm, and it
is characterized by a typical north temperate semi-humid continental monsoon climate.
The main type of crop grown in the area is maize, which is usually sown in late May,
flowers in late July, and is harvested in mid-to-late September (Li et al., 2015b). The study
area (15 × 15 m) contained 30 plots (3 × 1.25 m per plot) and was planted with the
summer maize variety Jingdan 40. The field-management measures followed the standard
practice for maize production (Fig. 1).

Field measurement
The field measurements were made in the study area on August 28, 2018. The seedlings
were treated, and the density of maize plants gradually decreased from north to south.
To obtain the AGB of each sample, the data collectors first counted the number of maize
plants in each plot. Next, they collected at random from each plot six plants with uniform
growth, measured the plant height, and used the average height of the six plants as the
measured height for the plot. All samples were then taken back to the laboratory to be oven
dried at 80 �C until a constant weight was reached, and the dry weight (DW) of the maize
leaves and stems were recorded separately. The average DW of the six maize plants in
each plot was calculated and multiplied by the number N of corresponding plot plants to
obtain the final DW. The DW was divided by the plot area, and the result converted to
g/m2. Finally, the AGB of each sample was measured.

UAV multispectral data and digital image
The UAV multispectral data and digital image were collected from 11:00 to 13:00 during
sunny and windless weather. The Parrot Sequoia multispectral camera (MicaSense Inc.,
Seattle, WA, USA) and the DJI FC6310 digital camera were simultaneously fit to the UAV
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platform of the DJI Phantom 4 Pro (SZ DJI Technology Co., Shenzhen, China) and are
characterized by high precision, low weight, and ease of use. The acquired multispectral
images contain four spectral channels: green (wavelength 550 nm, bandwidth 40 nm),
red (660 nm, 40 nm), red edge (735 nm, 10 nm), and near infrared (790 nm, 40 nm).
In addition, the DJI FC6310 digital camera is equipped with a 1-inch CMOS sensor
with a resolution of 20 megapixels. The UAV flight height was set to 15 m, the speed to
three m/s, the forward overlap to 80%, and the side overlap to 70%. The Parrot Sequoia
multispectral camera was calibrated before and after the flight test by using a calibrated
reflectance panel (MicaSense Inc., Seattle, WA, USA) to minimize error during image
capture.

The pre-processing for multispectral image data, including mosaic, radiation
calibration, and geometric correction, was handled by the data producer. The Agisoft
PhotoScan Professional software (version 1.4.2, Agisoft LCC, St. Petersburg, Russia) was
introduced into the multispectral camera’s own calibration file to splice the multispectral
images. The geometric correction and registration of multispectral images were done
based on ground control points, and the spliced multispectral images in four spectral
bands were then converted to reflectance by using the QUick Atmospheric Correction tool
(Sensor type set to Generic/Unknown Sensor) in ENVI software (version 5.3.1, Esri Inc.,

Figure 1 Study area and experimental design. (A) Location of study area in Beijing. (B) The red line in
the figure is the flight path of the UAV with LiDAR. (C) The red line in the figure is the flight path of the
UAV with multispectral capabilities. (D) The study area and field plot. (E) Experimental design. (F)–(I)
represents the four levels of plant density. N is the number of plants. Plot represents the field plot.

Full-size DOI: 10.7717/peerj.7593/fig-1
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Redlands, CA, USA). The ground resolution and reprojection error of the spliced
multispectral image are 1.33 cm/pix and 0.687 pix, respectively. The SVIs were calculated
by using the bandmath tool to obtain the SVIs maps. Since these SVIs can respond to
different ground objects, we used the bandmath tool to binarize the SVIs maps, and then
separated plants from the soil background in these SVIs maps, where the spectral curves of
the different AGB soils are shown in Fig. 2. In addition, ArcMap (version 10.3.1, Esri Inc.,
Redlands, CA, USA) was used to create the area of interest (AOI) with separated plant
areas and to extract the average vegetation index for each plot.

Similar to the multispectral data pre-processing method, digital images with spatial
position information were stitched by Agisoft PhotoScan Professional software, and
geometric correction and registration of images based on ground control points were then
exported to DEM images. The average plant height of each plot was extracted from
ArcMap by using the AOI created in the previous step.

UAV LiDAR point cloud data
The LiDAR data were synchronized with the multispectral image data-acquisition time,
and the three-dimensional point cloud data of the study area plants were obtained by the
UAV platform DJI M600 Pro (SZ DJI Technology Co., Shenzhen, China) equipped with
a RIEGL VUX-1UAV (RIEGL Laser Measurement Systems, Ltd., Horn, Austria) laser
scanner (the spot diameter was 0.0075 m, the average ground point spacing was 0.0239 m,
the flying height was 15 m, the speed was three m/s, and the maximum scanning angle
was 70�).

The RiPROCESS software (RIEGL Laser Measurement Systems, Ltd., Horn, Austria)
was used for pre-processing, which included the analytical correction of multi-route
LiDAR data. Post-processing of the LiDAR data was done by using the LiDAR360 software
(version 2.0, GreenValle International, Ltd., Berkeley, CA, USA). First, the point cloud data

Figure 2 Reflectance spectra of soils with different AGB. GRE, RED, REG, and NIR represent the
green band, red band, red edge band, and near-infrared band, respectively. F–I represents the density of
plants. Full-size DOI: 10.7717/peerj.7593/fig-2
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were denoised. Next, the point cloud data of the study area were classified into ground
points and non-ground points. The ground point was then normalized by the classified
ground point cloud, which eliminates any influence of the terrain. Finally, the DEM and
DSM with a high spatial resolution raster of 1 × 1 cm were obtained by using the terrain
tool, and the CHM of the study area was calculated as the difference between the DSM
and the DEM model. The vegetation height relative to the surface was obtained based
on the CHM, and the standardized point cloud structure parameters were calculated from
the LiDAR point cloud of the vegetation height. The detailed LiDAR point cloud
parameters are shown in Table 1.

Research route
Research route is shown in Fig. 3.

Deriving metrics from multispectral data and LiDAR point cloud data
The physiological properties of vegetation imaged via remote sensing can be extracted by
the vegetation indices. The reflectance of a given wavelength provides useful information
about leaf-plant health. The vegetation indices are numbers that are computed from
different wavelength reflectances by well-known equations that use the light reflectance
of the plants in different bandwidths, especially the green, red, and near infrared (Devia
et al., 2019). Vegetation indices have been widely used to estimate biomass by using
empirical relationships with biomass (Foody, Boyd & Cutler, 2003). The more the
vegetation grows, the more the red edge redshifts. When the vegetation grows under
nutrient stress, the red edge blueshifts. In this study, the sensitivity of multispectral data
to the physiological properties of vegetation and the multi-channel advantages of
multispectral sensors combine to provide 10 vegetation indices commonly used in the
literature to estimate crop biomass. These different vegetation indices were computed
(Table 2) and include the Chlorophyll index green (CIgreen), Chlorophyll vegetation index
(CVI), Enhanced vegetation index 2 (EVI2), Simple ratio greenness index (GI), Modified
triangular vegetation index 2 (MTVI2), Normalized difference vegetation index (NDVI),

Table 1 LiDAR point cloud parameter of different routes.

Direction Route Point cloud
density (pts/m2)

Spot
diameter (cm)

Average ground
point spacing (cm)

CHM
resolution (cm)

EW R1 112 0.75 2.39 1

R2 280

R3 529

R4 213

NS R5 228

R6 496

R7 417

R8 162

Note:
EW indicates the east–west direction, NS indicates the north–south direction, and R1 to R8 are the various routes of the
UAV-LiDAR.
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Figure 3 Research technology route. (A) Field measurement data; (B) unmanned aerial vehicle LiDAR
and multispectral image data preprocessing; (C) and estimation and verification of AGB.

Full-size DOI: 10.7717/peerj.7593/fig-3

Table 2 Optical vegetation indices used in this study and citations for biomass.

Metric Equations References

CIgreen ρNIR=ρgreen � 1 Gitelson et al. (2003)

CVI ρNIR � ρred=ρ2green Datt et al. (2003)

EVI2 2:5 ρNIR � ρredð Þ= ρNIR þ 2:4ρred þ 1ð Þ Jiang et al. (2008)

GI ρgreen=ρred Smith et al. (1995)

MTVI2
1:5 1:2 ρNIR � ρgreen

� �� 2:5 ρred � ρgreen
� �� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρNIR þ 1ð Þ2 � 6ρNIR � 5

ffiffiffiffiffiffiffiffi
ρred

p� �� 0:5
q Haboudane et al. (2004)

NDVI ρNIR � ρredð Þ= ρNIR þ ρredð Þ Tucker et al. (1979)

NGRDI ρgreen � ρred
� �

= ρgreen þ ρred
� �

Zarco-Tejada et al. (2001)

OSAVI 1þ Yð Þ ρNIR � ρredð Þ= ρNIR þ ρred þ Yð Þ Y ¼ 0:16ð Þ Rondeaux, Steven & Baret (1996)

SAVI 1þ Lð Þ ρNIR � ρredð Þ= ρNIR þ ρred þ Lð Þ L ¼ 0:5ð Þ Huete (1988)

SRVI ρNIR=ρred Birth & McVey (1968)

Note:
In this table, ρ is the abbreviation for reflectance.
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Normalized green red difference index (NGRDI), Optimized soil adjusted vegetation
index (OSAVI), Soil adjusted vegetation index (SAVI), and Simple ratio vegetation index
(SRVI).

In addition, based on the point cloud structural parameters used in previous studies
that focused on estimating crop biomass, we selected four common LSPs: average height
(H_mean), maximum height (H_max), height standard deviation (H_sd), and height
coefficient of variation (H_cv). Table 3 gives detailed definitions and explanations of these
four point cloud structural parameters.

Estimation and verification of above-ground biomass
We propose herein a method for estimating the AGB of maize that uses estimated AGLB
and AGSB obtained from multispectral data and LiDAR point cloud data (Fig. 4). As
opposed to previous methods of predicting AGB by LiDAR and optical remote sensing
data in their respective or combined forms, we divided the measurement of maize AGB

Table 3 LiDAR-derived metrics for estimating biomass parameters.

Metric Equations Description

H max H max ¼ max Hið Þ; 1 � i � N Maximum height of plants

H mean H mean ¼ 1
N

XN

i¼1
Hi Mean height of plants

H sd H sd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN

i¼1
Hi �H meanð Þ2

r
Standard deviation of plants height

H cv H cv ¼ H sd=H mean Variation coefficient of plants height

Note:
In the table, Hi is the height of maize plants.

Figure 4 Schematic diagram of estimation of maize AGB based on stem-leaf separation strategy
integrated with LiDAR and multispectral data. Full-size DOI: 10.7717/peerj.7593/fig-4
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into two parts: AGLB and AGSB. The method combines the respective advantages of
multispectral data and LiDAR point cloud data to measure AGLB and AGSB,
respectively. The AGLB of maize was measured by using multispectral data sensitive to
the vegetation canopy; the AGSB of maize was measured by using LiDAR point cloud data
sensitive to vegetation structure. Finally, the maize AGB was obtained by accumulating the
AGLB and AGSB measured in each plot.

In this study, MLR and PLSR were used for maize AGB measurements. First, the
correlation between SVIs (CIgreen, CVI, EVI2, GI, MTVI2, NDVI, NGRDI, OSAVI, SAVI,
SRVI), LSPs (H_max, H_mean, H_sd, H_cv), and field-measured AGLB and AGSB was
used to determine the relationship between the two types of indicators and the
above-ground leaf and stem biomass, and the optimal SVIs and LSPs were screened. Next,
following previous studies (Bendig et al., 2015), we used MLR methods to estimate crop
biomass. Based on the optimized LSPs and SVIs for estimating biomass, a MLR model
was then constructed with AGLB and AGSB. We then use all SVIs and LSPs to estimate
maize AGB based on the PLSR method. To solve the over-fitting problem of the model,
the cross-validation method was used to determine the appropriate number of important
factors in the PLSR model. Finally, the optimal method was selected by comparing the
effectiveness of MLR and PLSR in estimating corn AGB. In addition, we evaluated the
accuracy of the AGB estimation model based on the stem-leaf separation strategy by using
LiDAR and multispectral metrics.

Statistical analysis
In this study, the correlation coefficient between the predicted biomass and the measured
biomass was evaluated by using R2, which measures the relationship between two datasets
and describes the proportion of the total variance in the measured data that can be
explained by the model (Eq. (1)). R2 ranges between 0 and 1 with higher values indicating
better simulations. The discrepancy between the predicted and measured values of AGB is
evaluated based on the root mean square error (RMSE) and normalized root mean
square error (NRMSE). The RMSE serves to measure the extent to which the observed
value deviates from the measured value and is very sensitive to the error response (Eq. (2)).
The smaller the RMSE, the more accurate the measurement. However, it was difficult
to estimate the actual gap between the predicted value and the measured value by RMSE
because no specific measurement standard is available. The NRMSE helps to compare
datasets or models that use different scales and is usually expressed as a percent, where a
lower percent indicates a smaller residual variance and, typically, the model accuracy is
excellent if NRMSE is less than 10%, good if NRMSE is between 10% and 20%, fair if
NRMSE is between 20% and 30%, and poor if NRMSE exceeds 30% (Ahmadi et al., 2015)
(Eq. (3)). Therefore, the use of RMSE and NRMSE as indicators for evaluation better
reflects the actual accuracy of the model. Meanwhile, one-way analysis of variance
(ANOVA) was used to test whether significant differences existed between above-ground
biomass at different density levels (0.01 � p � 0.05 indicates a significant difference;
p < 0.01 means an extremely significant difference).
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R2 ¼ 1�
Xn

t¼1
ðŷt � �yÞ2Xn

t¼1
ðyt � �yÞ2

(1)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

t¼1
ŷt � yt
� �2
n

s
(2)

NRMSE ¼ RMSE
ymax � ymin

(3)

In the above formulas, n is the number of samples, ŷt is the values calculated with
models, yt is the measured value; �y is the average value, ymax is the maximum value,
and ymin is the minimum value.

RESULTS
Plant height extracted from digital image and LiDAR data
The average plant height of each plot was extracted from ArcMap by using the AOI created
in the previous step. Subsequently, plant heights of 30 plots were obtained from digital
images and LiDAR point cloud data, respectively. Table 4 shows the average, maximum,
minimum, and coefficient of variation with plant heights derived from the image, LiDAR
point cloud, and ground measured. The spot diameter and the average ground point
spacing of the LiDAR point cloud were 0.0075 and 0.0239 m, respectively.

Screening for optimal variables
In this study, we constructed the correlation matrix for SVIs and AGB and AGLB and
found a significant correlation between different SVIs and AGB and AGLB. Compared
with the AGB, the correlation between the AGLB and the vegetation index is higher
because the stem of maize cannot be observed in the multispectral image, so the SVIs are
more sensitive to the AGLB, as shown in Fig. 5A. Because of the high correlation
between the SVIs, the multivariate collinearity between indices may be problematic.
Therefore, two vegetation indices, NGRDI and SRVI, with the highest correlation
coefficient with the corresponding biomass (NGRDI-AGB/AGLB: 0.75/0.85, SRVI-AGB/
AGLB: 0.72/0.83) were selected as multivariate variables to prevent overfitting and to
reduce the complexity of the model. Compared with other indices, the NGRDI is very
effective for monitoring AGB (Elazab et al., 2016), thereby improving the accuracy of
models that estimate AGB. Fig. 5A shows that the AGLB is more correlated with SVIs
than AGB, which further confirms that the SVIs are more sensitive to the AGLB.

Table 4 Basic statistics of the plant height measurements.

Data Mean (m) Maximum (m) Minimum (m) SD (m2) CV (%)

Digital 1.86 2.29 1.06 0.39 0.21

LiDAR 2.23 2.51 2.02 0.13 0.06

Ground-truth 2.18 2.42 1.97 0.13 0.06
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Figure 5 (A) Data exploration of SVIs and AGB and AGLB; (B) data exploration of LSPs and AGB
and AGSB. The distribution of the variable itself is given in the diagonal area; the scatter plot and the
curve fit between the two attributes are given at the lower left of the diagonal; the upper-right digit of the
diagonal indicates the relationship between the two attributes; the asterisk � indicates the degree of
significance between attributes. Full-size DOI: 10.7717/peerj.7593/fig-5
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Similarly, we constructed a correlation matrix for LSPs, AGB, and AGSB and then
found that different LSPs have different sensitivities to AGB and AGSB, as shown in
Fig. 5B. Because H_mean and H_max are significantly correlated with AGB and AGSB
(H_mean-AGB/AGSB: 0.84/0.87, H_max-AGB/AGSB: 0.81/0.83), we select these two
structural parameters as multivariate variables to construct the MLR model. Figure 5B
shows that the AGSB is more correlated with LSPs than AGB, which further confirms that
the LSPs are more sensitive to the AGSB.

Estimate of maize biomass from multispectral data
In this study, we constructed a MLR model by screening multiple-regression variables
(NGRDI and SRVI). The AGB was measured from 20 (2/3) samples as the modeling set,
and the remaining 10 (1/3) samples were used as validation sets to evaluate the accuracy
of the AGB estimate based on multispectral data. The results show that the variance of
0.67 is explained by the modeling set data (RMSE = 119.03 g/m2, NRMSE = 16.59%) in the
AGB measurement, and the variance of 0.18 is explained by the validation set data
(RMSE = 136.76 g/m2, NRMSE = 28.51%) in the AGB measurement. Figure 6A shows a
scatterplot of field-observed biomass versus estimated biomass using two vegetation
indices (R2 = 0.56, RMSE = 125.38 g/m2, NRMSE = 17.47%), and introduce 95%
confidence level (Wang et al., 2018a). In addition, we constructed a PLSR model by all
SVIs, with 20 (2/3) samples as the modeling set; the remaining 10 (1/3) samples were used
as validation sets to evaluate the accuracy with which the AGB is estimated based on
multispectral data. At the same time, two important factors in the PLSR model were
determined by using the cross-validation method. The results show that the variance of
0.67 is explained by the modeling set data (RMSE = 118.40 g/m2, NRMSE = 16.49%) in the
AGB measurement, and the variance of 0.32 is explained by the validation set data
(RMSE = 143.18 g/m2, NRMSE = 29.84%) in the AGB measurement. Figure 6B shows a
scatterplot of field-observed biomass versus estimated biomass using all vegetation indices
(R2 = 0.56, RMSE = 127.20 g/m2, NRMSE = 17.72%).

The results show a low correlation between field-observed biomass and estimated
biomass, which is tentatively attributed to the stem of maize not appearing in the
multispectral images and the maize AGLB only accounting for about 25% of the AGB.
Meanwhile, no significant difference appears in the accuracy of the AGB-SVIs estimation
model constructed by the MLR and PLSR methods. Thus, the ability to predict AGB by
using multispectral data is limited.

Estimate of maize biomass from LiDAR data
In this study, we constructed a MLR model by screening multiple-regression variables
(H_mean and H_max) and measured AGB, with 20 (2/3) samples as the modeling set and
the remaining 10 (1/3) samples serving as validation sets to evaluate the accuracy with
which the AGB is estimated based on LiDAR data. The results show that the variance of
0.77 is explained by the modeling set data (RMSE = 98.81 g/m2, NRMSE = 13.77%) in the
AGB measurement, and the variance of 0.53 is explained by the validation set data
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(RMSE = 91.04 g/m2, NRMSE = 18.98%) in the AGB measurement. Figure 7A shows a
scatterplot of the field-observed AGB versus the AGB estimated by using two LSPs
(R2 = 0.73, RMSE = 96.29 g/m2, NRMSE = 13.41%). In addition, we constructed a
PLSR model by all LSPs, with 20 (2/3) samples as the modeling set and the remaining
10 (1/3) samples serving as validation sets to evaluate the accuracy with which the AGB is

Figure 6 (A) Scatterplot of field-observed AGB versus AGB estimated by using two SVIs (MLR);
(B) scatterplot of field-observed AGB versus AGB estimated by using all SVIs (PLSR). The red line
represents the 1:1 line. Full-size DOI: 10.7717/peerj.7593/fig-6
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estimated based on LiDAR data. At the same time, two important factors in the PLSR
model are determined by using the cross-validation method. The results show that the
variance of 0.76 is explained by the modeling set data (RMSE = 99.92 g/m2, NRMSE =
13.92%) in the AGB measurement, and the variance of 0.66 is explained by the validation
set data (RMSE = 84.85 g/m2, NRMSE = 17.68%) in the AGB measurement. Figure 7B

Figure 7 (A) Scatterplot of field-observed AGB versus AGB estimated by using two LSPs (MLR);
(B) scatterplot of field-observed AGB versus AGB estimated by using all LSPs (PLSR). The red line
represents the 1:1 line. Full-size DOI: 10.7717/peerj.7593/fig-7
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shows a scatterplot of the field-observed AGB versus the AGB estimated by using two LSPs
(R2 = 0.74, RMSE = 95.17 g/m2, NRMSE = 13.26%).

The accuracy of AGB estimate based on LiDAR data clearly exceeds that of the
AGB estimate based on multispectral data: R2 increases by 0.17–0.18, RMSE decreases
by 29.08–32.03 g/m2, NRMSE decreases by 4.36–4.46%, and the estimated biomass is
consistent with the field-observed biomass. These results further confirm a strong
correlation between the LSPs and the AGB. The MLR and PLSR model constructed from
the LSPs can better estimate the AGB of maize, which is consistent with the results of
previous studies (Wang et al., 2017).

Estimate of maize AGB from fusion of multispectral and LiDAR data
compared with multispectral and LiDAR data only
In this study, because of the sensitivity of multispectral data to AGLB and of LiDAR data to
AGSB, we propose a method for estimating maize biomass in which the AGLB and
AGSB are estimated based on the multispectral data and LiDAR data, respectively.
According to the screened indicators, the SVIs derived from multispectral data and the
LSPs derived from LiDAR data were subjected to MLR with the AGLB and AGSB,
respectively. At the same time, all SVIs derived from multispectral data and all LSPs
derived from LiDAR data were subjected to PLSR with the AGLB and AGSB, respectively.
Similarly, 20 (2/3) samples were used as the modeling set, and the remaining 10 (1/3)
samples were used as the verification set (Figs. 8 and 9).

The results show that the MLR model constructed by SVIs and AGLB with the variance
of 0.77 is explained by the modeling set data (RMSE = 27.39 g/m2, NRMSE = 13.84%), and
the variance of 0.57 is explained by the validation set data (RMSE = 26.15 g/m2, NRMSE =
25.78%). Figure 8A shows a scatterplot of the field-observed AGLB versus the AGLB
estimated by using two vegetation indices (R2 = 0.72, RMSE = 26.98 g/m2, NRMSE =
13.63%). Next, the results show that the MLR model constructed by the LSPs and AGSB,
with a variance of 0.81, is explained by the modeling set data (RMSE = 66.46 g/m2,
NRMSE = 12.79%), and the variance of 0.61 is explained by the validation set data
(RMSE = 64.92 g/m2, NRMSE = 17.16%). Figure 8B shows a scatterplot of the
field-observed AGSB versus the AGSB estimated by using two LSPs (R2 = 0.77, RMSE =
65.95 g/m2, NRMSE = 12.68%).

In addition, two important factors in the PLSR model are determined by using the
cross-validation method. The results show that the PLSR model constructed by SVIs and
AGLB with the variance of 0.78 is explained by the modeling set data (RMSE = 26.55 g/m2,
NRMSE = 13.41%), and the variance of 0.70 is explained by the validation set data
(RMSE = 29.46 g/m2, NRMSE = 29.04%). Figure 9A shows a scatterplot of the
field-observed AGLB versus the AGLB estimated by using all vegetation indices (R2 = 0.73,
RMSE = 27.56 g/m2, NRMSE = 13.92%). Next, the results show that the PLSR model
constructed by the LSPs and AGSB, with a variance of 0.80, is explained by the modeling
set data (RMSE = 68.23 g/m2, NRMSE = 13.12%), and the variance of 0.75 is explained by
the validation set data (RMSE = 59.02 g/m2, NRMSE = 15.60%). Figure 9B shows a
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scatterplot of the field-observed AGSB versus the AGSB estimated by using all LSPs
(R2 = 0.78, RMSE = 65.31 g/m2, NRMSE = 12.57%).

Overall, compared with the AGB, the multispectral data estimate of the AGLB leads to
an increase in R2 of 0.16–0.17, which means that the multispectral data are more sensitive
to the AGLB. In addition, the LiDAR-data estimate of the AGSB leads to an increase in

Figure 8 (A) Scatterplot of field-observed AGLB versus AGLB estimated by using two SVIs (MLR);
(B) scatterplot of field-observed AGSB versus AGSB estimated by using two LSPs (MLR). The red line
represents the 1:1 line. Full-size DOI: 10.7717/peerj.7593/fig-8
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R2 of 0.04–0.05, which means that the LiDAR data are more sensitive to the AGSB. We
then estimated the AGB by accumulating the estimated AGLB and the estimated AGSB
using MLR and PLSR methods, respectively, and a linear regression was constructed by
using the field-observed AGB and the estimated AGB. The results show that the
variance of 0.82 is explained by the synergistic use of multispectral and LiDAR data

Figure 9 (A) Scatterplot of field-observed AGLB versus AGLB estimated by using all SVIs (PLSR);
(B) scatterplot of field-observed AGSB versus AGSB estimated by using all LSPs (PLSR). The red
line represents the 1:1 line. Full-size DOI: 10.7717/peerj.7593/fig-9
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(RMSE = 79.80 g/m2, NRMSE = 11.12%) in the AGB measurement using MLR method
(Fig. 10A); and the variance of 0.86 is explained by the synergistic use of multispectral
and LiDAR data (RMSE = 72.28 g/m2, NRMSE = 10.07%) in the AGB measurement using
PLSR method (Fig. 10B).

Figure 10 (A) Scatterplot of field-observed AGB versus AGB estimated by merging multispectral and
LiDAR data (MLR); (B) scatterplot of field-observed AGB versus AGB estimated by merging
multispectral and LiDAR data (PLSR). The red line represents the 1:1 line.

Full-size DOI: 10.7717/peerj.7593/fig-10
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The study found that PLSR is more accurate for AGB estimation than MLR, with R2

increasing by 0.04, RMSE decreasing by 7.52 g/m2, and NRMSE decreasing by 1.05%.
Instead of using the SVIs and LSPs separately to estimate AGB, this study estimates the
AGB by using the AGLB and AGSB of maize estimated from multispectral and LiDAR
data, respectively. By merging the estimates based on LiDAR and multispectral data,
the method improves the accuracy with which the maize AGB is estimated. This study thus
gives good results that indicate a high potential for estimating maize AGB based on
stem-leaf separation strategy (Table 5).

To illustrate the difference in AGB between different densities, the results of the
ANOVA analysis show that the p-value is less than 0.001, which indicates that there were
statistical differences between the groups at different density levels. We therefore do a
multiple comparative analysis in the discussion.

DISCUSSION
Accurate monitoring of maize AGB can provide valuable guidance for agricultural
production. In this study, MLR and PLSR were used for maize AGB measurements. To
avoid the multi-collinearity and over-fitting problems of the MLR model, all the predictors
are screened in advance to obtain the optimal variables. The obvious advantage of the
MLR method is that it is highly interpretable, and its standardized partial regression
coefficient determines the strength of independent variables versus dependent variables
(Han et al., 2019). Compared with the traditional MLR model, however, the PLSR model
concentrates on the characteristics of principal component regression (PCR) and MLR
methods in the modeling process (Geladi & Kowalski, 1986). Therefore, the PLSR
model can allow regression modeling under the condition that the independent variables
have multiple collinearities to find latent structures in a large number of variables by
reducing the number of variables to a few noncorrelated principal components (Cho et al.,
2007; Næsset, Bollandsås & Gobakken, 2005). Although the PLSR model has higher
prediction accuracy, both methods achieve acceptable accuracy. To obtain the optimal
training model, sufficient samples are necessary. Considering that the actual sample size of
this study is relatively small, no attempt was made to use these methods, such as artificial

Table 5 Modeling statistics between the estimated and the measured AGB.

Models Different combinations Verification

R2 RMSE (g/m2) NRMSE (%)

MLR AGB-SVI 0.56 125.38 17.47

AGB-LSP 0.73 96.29 13.41

AGB-SVI+LSP 0.82 79.80 11.12

PLSR AGB-SVI 0.56 127.20 17.72

AGB-LSP 0.74 95.17 13.26

AGB-SVI+LSP 0.86 72.28 10.07

Note:
In the table, AGB-SVI, AGB-LSP, and AGB-SVI+LSP represent three different combinations for MLRmethod. AGB-SVI +
LSP represents the estimation of AGB based on stem-leaf separation strategy with LiDAR and multispectral data.
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neural network (Vahedi, 2016; Xie et al., 2009; Yang et al., 2018b) or support vector
machine (SVM) (Clevers et al., 2007; Marabel & Alvarez-Taboada, 2013). In fact, we
emphasize herein the idea of stem-leaf separation modeling. The application of this idea in
the above machine learning model will be realized after the sample is expanded in
future experiments.

Plant height is an important morphological and phenotypic indicator that directly
indicates the overall growth of plants and predicts crop biomass and yield. Therefore,
obtaining high-precision vegetation height is an important factor for accurately estimating
vegetation biomass (Wang et al., 2018b). In previous studies, many scholars used digital
and LiDAR data to estimate vegetation height (Jensen &Mathews, 2016;Madec et al., 2017;
Wallace et al., 2016). In the present study, the plant height was determined based on digital
and LiDAR point cloud data, and the results were verified by comparison with the
measured plant height on artificial ground. The results show that, compared with the
LiDAR point cloud data, the height parameters of the extracted digital image contain some
outliers, which differ significantly from the values measured on the ground. However, the
height parameters derived from the canopy three-dimensional dense point cloud data
acquired by the LiDAR sensor are strongly consistent with the values measured on the
ground, and the accuracy of the height measurement is greatly improved compared with
the digital image (Fig. 11). Therefore, compared with digital images, the use of the LiDAR
point cloud data leads to accurate estimates of plant height.

Figure 11 Comparison of accuracy of maize plant height extracted from digital and LiDAR data. The
blue dashed circle in the figure represents the height parameters of the extracted digital image contain
some outliers in the lower planting density area. The outer number represents the field plot, and the inner
number represents the plant height. Full-size DOI: 10.7717/peerj.7593/fig-11

Zhu et al. (2019), PeerJ, DOI 10.7717/peerj.7593 21/30

http://dx.doi.org/10.7717/peerj.7593/fig-11
http://dx.doi.org/10.7717/peerj.7593
https://peerj.com/


Although many studies have estimated crop biomass based on airborne spectral data
(Bendig et al., 2015; Fu et al., 2014; Gnyp et al., 2014; Kross et al., 2015; Liu et al., 2010),
multispectral data have only limited ability to estimate crop biomass. In fact, because
airborne multispectral images only observe the upper canopy leaves, the structure below
the canopy is not monitored when the vegetation density is high, resulting in limited
information on the vertical structure of the observed vegetation. Moreover, when the crop
density in the observation area is large, the spectral signal from the spectral sensor
saturates (Baret & Guyot, 1991; Turner et al., 1999). In addition, we find that the percent of
AGLB and AGSB in the AGB is 13.77–27.84% and 72.16–86.23%, respectively (Fig. 12).
These results show that the AGLB accounts for no more than 30% of the AGB. Therefore,
since it is difficult to obtain the vertical structure information of the crop from the
spectral data, estimating the AGB of the crop based on the spectral data alone may result in
less accurate estimates of crop biomass (Wang et al., 2017).

In addition, from the one-way ANOVA, since the p-value is far less than 0.05, it can be
inferred that, when the plant density differs between plots, the mean value of the AGB
differs significantly. Second, based on the multiple comparison results and the
homogeneity of the variance, we conclude that the mean difference in AGB is statistically
significant when the p-value is less than 0.05, when the density F (1–10) is compared with
the density G (11–20), the density F is compared with the density H (21–30), the density F
is compared with the density I (>30), and the density G is compared with the density I.
However, when the density H is compared with the density G and the density H is
compared with the density I, the mean difference in AGB is not statistically significant.
This may increase the density of the plants in the given plot, and plant height also increases
due to competitive-growth effects between plants, but the overall biomass of the plot
does not differ significantly from the biomass of the density G and I, resulting in no
statistical significance between density H and G, I (Table 6).

Figure 12 Proportion of AGLB and AGSB in AGB. Full-size DOI: 10.7717/peerj.7593/fig-12
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CONCLUSIONS
Remote sensing UAV platforms equipped with LiDAR and multispectral sensors offer
the advantages of flexible operation, convenient data acquisition, and high-spatial
resolution. In this study, we use the LiDAR and multispectral data acquired from the
UAV platform to evaluate their use for estimating the AGB of maize. This paper proposes
the stem-leaf separation strategy integrated with UAV LiDAR and multispectral image
data to estimate the AGB of maize.

According to the screened indicators, the SVIs derived from multispectral data and the
LSPs derived from LiDAR data were subjected to MLR with the AGLB and AGSB,
respectively. At the same time, all SVIs derived from multispectral data and all LSPs
derived from LiDAR data were subjected to PLSR with the AGLB and AGSB, respectively.
Next, the estimated values of AGLB and AGSB were added to a single estimation for AGB.
The results indicate a strong correlation between the estimated and field-observed of
AGB using the MLR method (R2 = 0.82, RMSE = 79.80 g/m2, NRMSE = 11.12%) and the
PLSR method (R2 = 0.86, RMSE = 72.28 g/m2, NRMSE = 10.07%). The results show that
PLSR is more accurate for estimating AGB than MLR, with R2 increasing by 0.04,
RMSE decreasing by 7.52 g/m2, and NRMSE decreasing by 1.05%. In addition, the AGB is
more accurately estimated by combining LiDAR with multispectral data than LiDAR and
multispectral data alone, with R2 increasing by 0.13 and 0.30, respectively, RMSE
decreasing by 22.89 and 54.92 g/m2, respectively, and NRMSE decreasing by 4.46% and
7.65%, respectively. This result reflects a significant improvement in the accuracy of the
estimated AGB of maize.

Thus, the findings of this study lead us to conclude that this technology would allow for
the convenient surveillance of maize to observe growth trends and could therefore provide
guidance in agriculture management decisions. Although the statistical tests showed the

Table 6 Multiple comparison result for one-way ANOVA.

Density (I) Density (J) Mean difference
(I–J)

Standard error p-value 95% Confidence interval

Lower limit Upper limit

F G −242.22 55.37 0.000 −356.05 −128.40

H −318.02 57.07 0.000 −435.34 −200.69

I −420.17 70.58 0.000 −565.26 −275.07

G F 242.22 55.37 0.000 128.40 356.05

H −75.79 57.07 0.196 −193.11 41.53

I −177.94 70.58 0.018 −323.03 −32.84

H F 318.02 57.07 0.000 200.69 435.34

G 75.79 57.07 0.196 −41.53 193.11

I −102.15 71.93 0.167 −250.00 45.70

I F 420.17 70.58 0.000 275.07 565.26

G 177.94 70.58 0.018 32.84 323.03

H 102.15 71.93 0.167 −45.70 250.00

Note:
In the table, when the p-value is less than 0.05, the mean difference in AGB is statistically significant.
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effectiveness of the stem-leaf separation strategy, the scale of maize plants tested in this
study is relatively small. Out next study will therefore assess different scales of maize
planting to determine the effectiveness of the proposed method in real production
scenarios.
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